/* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs * Copyright (C) 2011 Don Zickus Red Hat, Inc. * * Pentium III FXSR, SSE support * Gareth Hughes , May 2000 */ /* * Handle hardware traps and faults. */ #include #include #include #include #include #include #include #if defined(CONFIG_EDAC) #include #endif #include #include #include #include #define NMI_MAX_NAMELEN 16 struct nmiaction { struct list_head list; nmi_handler_t handler; unsigned int flags; char *name; }; struct nmi_desc { spinlock_t lock; struct list_head head; }; static struct nmi_desc nmi_desc[NMI_MAX] = { { .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), .head = LIST_HEAD_INIT(nmi_desc[0].head), }, { .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), .head = LIST_HEAD_INIT(nmi_desc[1].head), }, }; struct nmi_stats { unsigned int normal; unsigned int unknown; unsigned int external; unsigned int swallow; }; static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); static int ignore_nmis; int unknown_nmi_panic; /* * Prevent NMI reason port (0x61) being accessed simultaneously, can * only be used in NMI handler. */ static DEFINE_RAW_SPINLOCK(nmi_reason_lock); static int __init setup_unknown_nmi_panic(char *str) { unknown_nmi_panic = 1; return 1; } __setup("unknown_nmi_panic", setup_unknown_nmi_panic); #define nmi_to_desc(type) (&nmi_desc[type]) static int notrace __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b) { struct nmi_desc *desc = nmi_to_desc(type); struct nmiaction *a; int handled=0; rcu_read_lock(); /* * NMIs are edge-triggered, which means if you have enough * of them concurrently, you can lose some because only one * can be latched at any given time. Walk the whole list * to handle those situations. */ list_for_each_entry_rcu(a, &desc->head, list) handled += a->handler(type, regs); rcu_read_unlock(); /* return total number of NMI events handled */ return handled; } static int __setup_nmi(unsigned int type, struct nmiaction *action) { struct nmi_desc *desc = nmi_to_desc(type); unsigned long flags; spin_lock_irqsave(&desc->lock, flags); /* * most handlers of type NMI_UNKNOWN never return because * they just assume the NMI is theirs. Just a sanity check * to manage expectations */ WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); /* * some handlers need to be executed first otherwise a fake * event confuses some handlers (kdump uses this flag) */ if (action->flags & NMI_FLAG_FIRST) list_add_rcu(&action->list, &desc->head); else list_add_tail_rcu(&action->list, &desc->head); spin_unlock_irqrestore(&desc->lock, flags); return 0; } static struct nmiaction *__free_nmi(unsigned int type, const char *name) { struct nmi_desc *desc = nmi_to_desc(type); struct nmiaction *n; unsigned long flags; spin_lock_irqsave(&desc->lock, flags); list_for_each_entry_rcu(n, &desc->head, list) { /* * the name passed in to describe the nmi handler * is used as the lookup key */ if (!strcmp(n->name, name)) { WARN(in_nmi(), "Trying to free NMI (%s) from NMI context!\n", n->name); list_del_rcu(&n->list); break; } } spin_unlock_irqrestore(&desc->lock, flags); synchronize_rcu(); return (n); } int register_nmi_handler(unsigned int type, nmi_handler_t handler, unsigned long nmiflags, const char *devname) { struct nmiaction *action; int retval = -ENOMEM; if (!handler) return -EINVAL; action = kzalloc(sizeof(struct nmiaction), GFP_KERNEL); if (!action) goto fail_action; action->handler = handler; action->flags = nmiflags; action->name = kstrndup(devname, NMI_MAX_NAMELEN, GFP_KERNEL); if (!action->name) goto fail_action_name; retval = __setup_nmi(type, action); if (retval) goto fail_setup_nmi; return retval; fail_setup_nmi: kfree(action->name); fail_action_name: kfree(action); fail_action: return retval; } EXPORT_SYMBOL_GPL(register_nmi_handler); void unregister_nmi_handler(unsigned int type, const char *name) { struct nmiaction *a; a = __free_nmi(type, name); if (a) { kfree(a->name); kfree(a); } } EXPORT_SYMBOL_GPL(unregister_nmi_handler); static notrace __kprobes void pci_serr_error(unsigned char reason, struct pt_regs *regs) { pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", reason, smp_processor_id()); /* * On some machines, PCI SERR line is used to report memory * errors. EDAC makes use of it. */ #if defined(CONFIG_EDAC) if (edac_handler_set()) { edac_atomic_assert_error(); return; } #endif if (panic_on_unrecovered_nmi) panic("NMI: Not continuing"); pr_emerg("Dazed and confused, but trying to continue\n"); /* Clear and disable the PCI SERR error line. */ reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; outb(reason, NMI_REASON_PORT); } static notrace __kprobes void io_check_error(unsigned char reason, struct pt_regs *regs) { unsigned long i; pr_emerg( "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", reason, smp_processor_id()); show_registers(regs); if (panic_on_io_nmi) panic("NMI IOCK error: Not continuing"); /* Re-enable the IOCK line, wait for a few seconds */ reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; outb(reason, NMI_REASON_PORT); i = 20000; while (--i) { touch_nmi_watchdog(); udelay(100); } reason &= ~NMI_REASON_CLEAR_IOCHK; outb(reason, NMI_REASON_PORT); } static notrace __kprobes void unknown_nmi_error(unsigned char reason, struct pt_regs *regs) { int handled; /* * Use 'false' as back-to-back NMIs are dealt with one level up. * Of course this makes having multiple 'unknown' handlers useless * as only the first one is ever run (unless it can actually determine * if it caused the NMI) */ handled = nmi_handle(NMI_UNKNOWN, regs, false); if (handled) { __this_cpu_add(nmi_stats.unknown, handled); return; } __this_cpu_add(nmi_stats.unknown, 1); #ifdef CONFIG_MCA /* * Might actually be able to figure out what the guilty party * is: */ if (MCA_bus) { mca_handle_nmi(); return; } #endif pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", reason, smp_processor_id()); pr_emerg("Do you have a strange power saving mode enabled?\n"); if (unknown_nmi_panic || panic_on_unrecovered_nmi) panic("NMI: Not continuing"); pr_emerg("Dazed and confused, but trying to continue\n"); } static DEFINE_PER_CPU(bool, swallow_nmi); static DEFINE_PER_CPU(unsigned long, last_nmi_rip); static notrace __kprobes void default_do_nmi(struct pt_regs *regs) { unsigned char reason = 0; int handled; bool b2b = false; /* * CPU-specific NMI must be processed before non-CPU-specific * NMI, otherwise we may lose it, because the CPU-specific * NMI can not be detected/processed on other CPUs. */ /* * Back-to-back NMIs are interesting because they can either * be two NMI or more than two NMIs (any thing over two is dropped * due to NMI being edge-triggered). If this is the second half * of the back-to-back NMI, assume we dropped things and process * more handlers. Otherwise reset the 'swallow' NMI behaviour */ if (regs->ip == __this_cpu_read(last_nmi_rip)) b2b = true; else __this_cpu_write(swallow_nmi, false); __this_cpu_write(last_nmi_rip, regs->ip); handled = nmi_handle(NMI_LOCAL, regs, b2b); __this_cpu_add(nmi_stats.normal, handled); if (handled) { /* * There are cases when a NMI handler handles multiple * events in the current NMI. One of these events may * be queued for in the next NMI. Because the event is * already handled, the next NMI will result in an unknown * NMI. Instead lets flag this for a potential NMI to * swallow. */ if (handled > 1) __this_cpu_write(swallow_nmi, true); return; } /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */ raw_spin_lock(&nmi_reason_lock); reason = get_nmi_reason(); if (reason & NMI_REASON_MASK) { if (reason & NMI_REASON_SERR) pci_serr_error(reason, regs); else if (reason & NMI_REASON_IOCHK) io_check_error(reason, regs); #ifdef CONFIG_X86_32 /* * Reassert NMI in case it became active * meanwhile as it's edge-triggered: */ reassert_nmi(); #endif __this_cpu_add(nmi_stats.external, 1); raw_spin_unlock(&nmi_reason_lock); return; } raw_spin_unlock(&nmi_reason_lock); /* * Only one NMI can be latched at a time. To handle * this we may process multiple nmi handlers at once to * cover the case where an NMI is dropped. The downside * to this approach is we may process an NMI prematurely, * while its real NMI is sitting latched. This will cause * an unknown NMI on the next run of the NMI processing. * * We tried to flag that condition above, by setting the * swallow_nmi flag when we process more than one event. * This condition is also only present on the second half * of a back-to-back NMI, so we flag that condition too. * * If both are true, we assume we already processed this * NMI previously and we swallow it. Otherwise we reset * the logic. * * There are scenarios where we may accidentally swallow * a 'real' unknown NMI. For example, while processing * a perf NMI another perf NMI comes in along with a * 'real' unknown NMI. These two NMIs get combined into * one (as descibed above). When the next NMI gets * processed, it will be flagged by perf as handled, but * noone will know that there was a 'real' unknown NMI sent * also. As a result it gets swallowed. Or if the first * perf NMI returns two events handled then the second * NMI will get eaten by the logic below, again losing a * 'real' unknown NMI. But this is the best we can do * for now. */ if (b2b && __this_cpu_read(swallow_nmi)) __this_cpu_add(nmi_stats.swallow, 1); else unknown_nmi_error(reason, regs); } dotraplinkage notrace __kprobes void do_nmi(struct pt_regs *regs, long error_code) { nmi_enter(); inc_irq_stat(__nmi_count); if (!ignore_nmis) default_do_nmi(regs); nmi_exit(); } void stop_nmi(void) { ignore_nmis++; } void restart_nmi(void) { ignore_nmis--; } /* reset the back-to-back NMI logic */ void local_touch_nmi(void) { __this_cpu_write(last_nmi_rip, 0); }