// SPDX-License-Identifier: GPL-2.0 //! String representations. use core::fmt::{self, Write}; use core::ops::{self, Deref, Index}; use crate::{ bindings, error::{code::*, Error}, }; /// Byte string without UTF-8 validity guarantee. /// /// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning. pub type BStr = [u8]; /// Creates a new [`BStr`] from a string literal. /// /// `b_str!` converts the supplied string literal to byte string, so non-ASCII /// characters can be included. /// /// # Examples /// /// ``` /// # use kernel::b_str; /// # use kernel::str::BStr; /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); /// ``` #[macro_export] macro_rules! b_str { ($str:literal) => {{ const S: &'static str = $str; const C: &'static $crate::str::BStr = S.as_bytes(); C }}; } /// Possible errors when using conversion functions in [`CStr`]. #[derive(Debug, Clone, Copy)] pub enum CStrConvertError { /// Supplied bytes contain an interior `NUL`. InteriorNul, /// Supplied bytes are not terminated by `NUL`. NotNulTerminated, } impl From for Error { #[inline] fn from(_: CStrConvertError) -> Error { EINVAL } } /// A string that is guaranteed to have exactly one `NUL` byte, which is at the /// end. /// /// Used for interoperability with kernel APIs that take C strings. #[repr(transparent)] pub struct CStr([u8]); impl CStr { /// Returns the length of this string excluding `NUL`. #[inline] pub const fn len(&self) -> usize { self.len_with_nul() - 1 } /// Returns the length of this string with `NUL`. #[inline] pub const fn len_with_nul(&self) -> usize { // SAFETY: This is one of the invariant of `CStr`. // We add a `unreachable_unchecked` here to hint the optimizer that // the value returned from this function is non-zero. if self.0.is_empty() { unsafe { core::hint::unreachable_unchecked() }; } self.0.len() } /// Returns `true` if the string only includes `NUL`. #[inline] pub const fn is_empty(&self) -> bool { self.len() == 0 } /// Wraps a raw C string pointer. /// /// # Safety /// /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` /// must not be mutated. #[inline] pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { // SAFETY: The safety precondition guarantees `ptr` is a valid pointer // to a `NUL`-terminated C string. let len = unsafe { bindings::strlen(ptr) } + 1; // SAFETY: Lifetime guaranteed by the safety precondition. let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. // As we have added 1 to `len`, the last byte is known to be `NUL`. unsafe { Self::from_bytes_with_nul_unchecked(bytes) } } /// Creates a [`CStr`] from a `[u8]`. /// /// The provided slice must be `NUL`-terminated, does not contain any /// interior `NUL` bytes. pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { if bytes.is_empty() { return Err(CStrConvertError::NotNulTerminated); } if bytes[bytes.len() - 1] != 0 { return Err(CStrConvertError::NotNulTerminated); } let mut i = 0; // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. while i + 1 < bytes.len() { if bytes[i] == 0 { return Err(CStrConvertError::InteriorNul); } i += 1; } // SAFETY: We just checked that all properties hold. Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) } /// Creates a [`CStr`] from a `[u8]` without performing any additional /// checks. /// /// # Safety /// /// `bytes` *must* end with a `NUL` byte, and should only have a single /// `NUL` byte (or the string will be truncated). #[inline] pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { // SAFETY: Properties of `bytes` guaranteed by the safety precondition. unsafe { core::mem::transmute(bytes) } } /// Returns a C pointer to the string. #[inline] pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { self.0.as_ptr() as _ } /// Convert the string to a byte slice without the trailing 0 byte. #[inline] pub fn as_bytes(&self) -> &[u8] { &self.0[..self.len()] } /// Convert the string to a byte slice containing the trailing 0 byte. #[inline] pub const fn as_bytes_with_nul(&self) -> &[u8] { &self.0 } /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. /// /// If the contents of the [`CStr`] are valid UTF-8 data, this /// function will return the corresponding [`&str`] slice. Otherwise, /// it will return an error with details of where UTF-8 validation failed. /// /// # Examples /// /// ``` /// # use kernel::str::CStr; /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); /// assert_eq!(cstr.to_str(), Ok("foo")); /// ``` #[inline] pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { core::str::from_utf8(self.as_bytes()) } /// Unsafely convert this [`CStr`] into a [`&str`], without checking for /// valid UTF-8. /// /// # Safety /// /// The contents must be valid UTF-8. /// /// # Examples /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// // SAFETY: String literals are guaranteed to be valid UTF-8 /// // by the Rust compiler. /// let bar = c_str!("ツ"); /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); /// ``` #[inline] pub unsafe fn as_str_unchecked(&self) -> &str { unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } } } impl fmt::Display for CStr { /// Formats printable ASCII characters, escaping the rest. /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// # use kernel::str::CString; /// let penguin = c_str!("🐧"); /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); /// /// let ascii = c_str!("so \"cool\""); /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for &c in self.as_bytes() { if (0x20..0x7f).contains(&c) { // Printable character. f.write_char(c as char)?; } else { write!(f, "\\x{:02x}", c)?; } } Ok(()) } } impl fmt::Debug for CStr { /// Formats printable ASCII characters with a double quote on either end, escaping the rest. /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// # use kernel::str::CString; /// let penguin = c_str!("🐧"); /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); /// /// // Embedded double quotes are escaped. /// let ascii = c_str!("so \"cool\""); /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str("\"")?; for &c in self.as_bytes() { match c { // Printable characters. b'\"' => f.write_str("\\\"")?, 0x20..=0x7e => f.write_char(c as char)?, _ => write!(f, "\\x{:02x}", c)?, } } f.write_str("\"") } } impl AsRef for CStr { #[inline] fn as_ref(&self) -> &BStr { self.as_bytes() } } impl Deref for CStr { type Target = BStr; #[inline] fn deref(&self) -> &Self::Target { self.as_bytes() } } impl Index> for CStr { type Output = CStr; #[inline] fn index(&self, index: ops::RangeFrom) -> &Self::Output { // Delegate bounds checking to slice. // Assign to _ to mute clippy's unnecessary operation warning. let _ = &self.as_bytes()[index.start..]; // SAFETY: We just checked the bounds. unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } } } impl Index for CStr { type Output = CStr; #[inline] fn index(&self, _index: ops::RangeFull) -> &Self::Output { self } } mod private { use core::ops; // Marker trait for index types that can be forward to `BStr`. pub trait CStrIndex {} impl CStrIndex for usize {} impl CStrIndex for ops::Range {} impl CStrIndex for ops::RangeInclusive {} impl CStrIndex for ops::RangeToInclusive {} } impl Index for CStr where Idx: private::CStrIndex, BStr: Index, { type Output = >::Output; #[inline] fn index(&self, index: Idx) -> &Self::Output { &self.as_bytes()[index] } } /// Allows formatting of [`fmt::Arguments`] into a raw buffer. /// /// It does not fail if callers write past the end of the buffer so that they can calculate the /// size required to fit everything. /// /// # Invariants /// /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` /// is less than `end`. pub(crate) struct RawFormatter { // Use `usize` to use `saturating_*` functions. #[allow(dead_code)] beg: usize, pos: usize, end: usize, } impl RawFormatter { /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. /// /// # Safety /// /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { // INVARIANT: The safety requierments guarantee the type invariants. Self { beg: pos as _, pos: pos as _, end: end as _, } } /// Returns the current insert position. /// /// N.B. It may point to invalid memory. pub(crate) fn pos(&self) -> *mut u8 { self.pos as _ } } impl fmt::Write for RawFormatter { fn write_str(&mut self, s: &str) -> fmt::Result { // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we // don't want it to wrap around to 0. let pos_new = self.pos.saturating_add(s.len()); // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); if len_to_copy > 0 { // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` // yet, so it is valid for write per the type invariants. unsafe { core::ptr::copy_nonoverlapping( s.as_bytes().as_ptr(), self.pos as *mut u8, len_to_copy, ) }; } self.pos = pos_new; Ok(()) } }