/* * Fifo-attached Serial Interface (FSI) support for SH7724 * * Copyright (C) 2009 Renesas Solutions Corp. * Kuninori Morimoto * * Based on ssi.c * Copyright (c) 2007 Manuel Lauss * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #define DO_FMT 0x0000 #define DOFF_CTL 0x0004 #define DOFF_ST 0x0008 #define DI_FMT 0x000C #define DIFF_CTL 0x0010 #define DIFF_ST 0x0014 #define CKG1 0x0018 #define CKG2 0x001C #define DIDT 0x0020 #define DODT 0x0024 #define MUTE_ST 0x0028 #define OUT_SEL 0x0030 #define REG_END OUT_SEL #define A_MST_CTLR 0x0180 #define B_MST_CTLR 0x01A0 #define CPU_INT_ST 0x01F4 #define CPU_IEMSK 0x01F8 #define CPU_IMSK 0x01FC #define INT_ST 0x0200 #define IEMSK 0x0204 #define IMSK 0x0208 #define MUTE 0x020C #define CLK_RST 0x0210 #define SOFT_RST 0x0214 #define FIFO_SZ 0x0218 #define MREG_START A_MST_CTLR #define MREG_END FIFO_SZ /* DO_FMT */ /* DI_FMT */ #define CR_MONO (0x0 << 4) #define CR_MONO_D (0x1 << 4) #define CR_PCM (0x2 << 4) #define CR_I2S (0x3 << 4) #define CR_TDM (0x4 << 4) #define CR_TDM_D (0x5 << 4) #define CR_SPDIF 0x00100120 /* DOFF_CTL */ /* DIFF_CTL */ #define IRQ_HALF 0x00100000 #define FIFO_CLR 0x00000001 /* DOFF_ST */ #define ERR_OVER 0x00000010 #define ERR_UNDER 0x00000001 #define ST_ERR (ERR_OVER | ERR_UNDER) /* CKG1 */ #define ACKMD_MASK 0x00007000 #define BPFMD_MASK 0x00000700 /* A/B MST_CTLR */ #define BP (1 << 4) /* Fix the signal of Biphase output */ #define SE (1 << 0) /* Fix the master clock */ /* CLK_RST */ #define B_CLK 0x00000010 #define A_CLK 0x00000001 /* INT_ST */ #define INT_B_IN (1 << 12) #define INT_B_OUT (1 << 8) #define INT_A_IN (1 << 4) #define INT_A_OUT (1 << 0) /* SOFT_RST */ #define PBSR (1 << 12) /* Port B Software Reset */ #define PASR (1 << 8) /* Port A Software Reset */ #define IR (1 << 4) /* Interrupt Reset */ #define FSISR (1 << 0) /* Software Reset */ /* FIFO_SZ */ #define OUT_SZ_MASK 0x7 #define BO_SZ_SHIFT 8 #define AO_SZ_SHIFT 0 #define FSI_RATES SNDRV_PCM_RATE_8000_96000 #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE) /************************************************************************ struct ************************************************************************/ struct fsi_priv { void __iomem *base; struct snd_pcm_substream *substream; struct fsi_master *master; int fifo_max; int chan; int byte_offset; int period_len; int buffer_len; int periods; u32 mst_ctrl; }; struct fsi_core { int ver; u32 int_st; u32 iemsk; u32 imsk; }; struct fsi_master { void __iomem *base; int irq; struct fsi_priv fsia; struct fsi_priv fsib; struct fsi_core *core; struct sh_fsi_platform_info *info; spinlock_t lock; }; /************************************************************************ basic read write function ************************************************************************/ static void __fsi_reg_write(u32 reg, u32 data) { /* valid data area is 24bit */ data &= 0x00ffffff; __raw_writel(data, reg); } static u32 __fsi_reg_read(u32 reg) { return __raw_readl(reg); } static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data) { u32 val = __fsi_reg_read(reg); val &= ~mask; val |= data & mask; __fsi_reg_write(reg, val); } static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data) { if (reg > REG_END) { pr_err("fsi: register access err (%s)\n", __func__); return; } __fsi_reg_write((u32)(fsi->base + reg), data); } static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg) { if (reg > REG_END) { pr_err("fsi: register access err (%s)\n", __func__); return 0; } return __fsi_reg_read((u32)(fsi->base + reg)); } static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data) { if (reg > REG_END) { pr_err("fsi: register access err (%s)\n", __func__); return; } __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data); } static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data) { unsigned long flags; if ((reg < MREG_START) || (reg > MREG_END)) { pr_err("fsi: register access err (%s)\n", __func__); return; } spin_lock_irqsave(&master->lock, flags); __fsi_reg_write((u32)(master->base + reg), data); spin_unlock_irqrestore(&master->lock, flags); } static u32 fsi_master_read(struct fsi_master *master, u32 reg) { u32 ret; unsigned long flags; if ((reg < MREG_START) || (reg > MREG_END)) { pr_err("fsi: register access err (%s)\n", __func__); return 0; } spin_lock_irqsave(&master->lock, flags); ret = __fsi_reg_read((u32)(master->base + reg)); spin_unlock_irqrestore(&master->lock, flags); return ret; } static void fsi_master_mask_set(struct fsi_master *master, u32 reg, u32 mask, u32 data) { unsigned long flags; if ((reg < MREG_START) || (reg > MREG_END)) { pr_err("fsi: register access err (%s)\n", __func__); return; } spin_lock_irqsave(&master->lock, flags); __fsi_reg_mask_set((u32)(master->base + reg), mask, data); spin_unlock_irqrestore(&master->lock, flags); } /************************************************************************ basic function ************************************************************************/ static struct fsi_master *fsi_get_master(struct fsi_priv *fsi) { return fsi->master; } static int fsi_is_port_a(struct fsi_priv *fsi) { return fsi->master->base == fsi->base; } static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; return rtd->cpu_dai; } static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream) { struct snd_soc_dai *dai = fsi_get_dai(substream); struct fsi_master *master = snd_soc_dai_get_drvdata(dai); if (dai->id == 0) return &master->fsia; else return &master->fsib; } static u32 fsi_get_info_flags(struct fsi_priv *fsi) { int is_porta = fsi_is_port_a(fsi); struct fsi_master *master = fsi_get_master(fsi); return is_porta ? master->info->porta_flags : master->info->portb_flags; } static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play) { u32 mode; u32 flags = fsi_get_info_flags(fsi); mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE; /* return * 1 : master mode * 0 : slave mode */ return (mode & flags) != mode; } static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play) { int is_porta = fsi_is_port_a(fsi); u32 data; if (is_porta) data = is_play ? (1 << 0) : (1 << 4); else data = is_play ? (1 << 8) : (1 << 12); return data; } static void fsi_stream_push(struct fsi_priv *fsi, struct snd_pcm_substream *substream, u32 buffer_len, u32 period_len) { fsi->substream = substream; fsi->buffer_len = buffer_len; fsi->period_len = period_len; fsi->byte_offset = 0; fsi->periods = 0; } static void fsi_stream_pop(struct fsi_priv *fsi) { fsi->substream = NULL; fsi->buffer_len = 0; fsi->period_len = 0; fsi->byte_offset = 0; fsi->periods = 0; } static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play) { u32 status; u32 reg = is_play ? DOFF_ST : DIFF_ST; int residue; status = fsi_reg_read(fsi, reg); residue = 0x1ff & (status >> 8); residue *= fsi->chan; return residue; } /************************************************************************ irq function ************************************************************************/ static void fsi_irq_enable(struct fsi_priv *fsi, int is_play) { u32 data = fsi_port_ab_io_bit(fsi, is_play); struct fsi_master *master = fsi_get_master(fsi); fsi_master_mask_set(master, master->core->imsk, data, data); fsi_master_mask_set(master, master->core->iemsk, data, data); } static void fsi_irq_disable(struct fsi_priv *fsi, int is_play) { u32 data = fsi_port_ab_io_bit(fsi, is_play); struct fsi_master *master = fsi_get_master(fsi); fsi_master_mask_set(master, master->core->imsk, data, 0); fsi_master_mask_set(master, master->core->iemsk, data, 0); } static u32 fsi_irq_get_status(struct fsi_master *master) { return fsi_master_read(master, master->core->int_st); } static void fsi_irq_clear_all_status(struct fsi_master *master) { fsi_master_write(master, master->core->int_st, 0); } static void fsi_irq_clear_status(struct fsi_priv *fsi) { u32 data = 0; struct fsi_master *master = fsi_get_master(fsi); data |= fsi_port_ab_io_bit(fsi, 0); data |= fsi_port_ab_io_bit(fsi, 1); /* clear interrupt factor */ fsi_master_mask_set(master, master->core->int_st, data, 0); } /************************************************************************ SPDIF master clock function These functions are used later FSI2 ************************************************************************/ static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable) { struct fsi_master *master = fsi_get_master(fsi); u32 val = BP | SE; if (master->core->ver < 2) { pr_err("fsi: register access err (%s)\n", __func__); return; } if (enable) fsi_master_mask_set(master, fsi->mst_ctrl, val, val); else fsi_master_mask_set(master, fsi->mst_ctrl, val, 0); } /************************************************************************ ctrl function ************************************************************************/ static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable) { u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4); struct fsi_master *master = fsi_get_master(fsi); if (enable) fsi_master_mask_set(master, CLK_RST, val, val); else fsi_master_mask_set(master, CLK_RST, val, 0); } static void fsi_fifo_init(struct fsi_priv *fsi, int is_play, struct snd_soc_dai *dai) { struct fsi_master *master = fsi_get_master(fsi); u32 ctrl, shift, i; /* get on-chip RAM capacity */ shift = fsi_master_read(master, FIFO_SZ); shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT; shift &= OUT_SZ_MASK; fsi->fifo_max = 256 << shift; dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max); /* * The maximum number of sample data varies depending * on the number of channels selected for the format. * * FIFOs are used in 4-channel units in 3-channel mode * and in 8-channel units in 5- to 7-channel mode * meaning that more FIFOs than the required size of DPRAM * are used. * * ex) if 256 words of DP-RAM is connected * 1 channel: 256 (256 x 1 = 256) * 2 channels: 128 (128 x 2 = 256) * 3 channels: 64 ( 64 x 3 = 192) * 4 channels: 64 ( 64 x 4 = 256) * 5 channels: 32 ( 32 x 5 = 160) * 6 channels: 32 ( 32 x 6 = 192) * 7 channels: 32 ( 32 x 7 = 224) * 8 channels: 32 ( 32 x 8 = 256) */ for (i = 1; i < fsi->chan; i <<= 1) fsi->fifo_max >>= 1; dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max); ctrl = is_play ? DOFF_CTL : DIFF_CTL; /* set interrupt generation factor */ fsi_reg_write(fsi, ctrl, IRQ_HALF); /* clear FIFO */ fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR); } static void fsi_soft_all_reset(struct fsi_master *master) { /* port AB reset */ fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0); mdelay(10); /* soft reset */ fsi_master_mask_set(master, SOFT_RST, FSISR, 0); fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR); mdelay(10); } /* playback interrupt */ static int fsi_data_push(struct fsi_priv *fsi, int startup) { struct snd_pcm_runtime *runtime; struct snd_pcm_substream *substream = NULL; u32 status; int send; int fifo_free; int width; u8 *start; int i, over_period; if (!fsi || !fsi->substream || !fsi->substream->runtime) return -EINVAL; over_period = 0; substream = fsi->substream; runtime = substream->runtime; /* FSI FIFO has limit. * So, this driver can not send periods data at a time */ if (fsi->byte_offset >= fsi->period_len * (fsi->periods + 1)) { over_period = 1; fsi->periods = (fsi->periods + 1) % runtime->periods; if (0 == fsi->periods) fsi->byte_offset = 0; } /* get 1 channel data width */ width = frames_to_bytes(runtime, 1) / fsi->chan; /* get send size for alsa */ send = (fsi->buffer_len - fsi->byte_offset) / width; /* get FIFO free size */ fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1); /* size check */ if (fifo_free < send) send = fifo_free; start = runtime->dma_area; start += fsi->byte_offset; switch (width) { case 2: for (i = 0; i < send; i++) fsi_reg_write(fsi, DODT, ((u32)*((u16 *)start + i) << 8)); break; case 4: for (i = 0; i < send; i++) fsi_reg_write(fsi, DODT, *((u32 *)start + i)); break; default: return -EINVAL; } fsi->byte_offset += send * width; status = fsi_reg_read(fsi, DOFF_ST); if (!startup) { struct snd_soc_dai *dai = fsi_get_dai(substream); if (status & ERR_OVER) dev_err(dai->dev, "over run\n"); if (status & ERR_UNDER) dev_err(dai->dev, "under run\n"); } fsi_reg_write(fsi, DOFF_ST, 0); fsi_irq_enable(fsi, 1); if (over_period) snd_pcm_period_elapsed(substream); return 0; } static int fsi_data_pop(struct fsi_priv *fsi, int startup) { struct snd_pcm_runtime *runtime; struct snd_pcm_substream *substream = NULL; u32 status; int free; int fifo_fill; int width; u8 *start; int i, over_period; if (!fsi || !fsi->substream || !fsi->substream->runtime) return -EINVAL; over_period = 0; substream = fsi->substream; runtime = substream->runtime; /* FSI FIFO has limit. * So, this driver can not send periods data at a time */ if (fsi->byte_offset >= fsi->period_len * (fsi->periods + 1)) { over_period = 1; fsi->periods = (fsi->periods + 1) % runtime->periods; if (0 == fsi->periods) fsi->byte_offset = 0; } /* get 1 channel data width */ width = frames_to_bytes(runtime, 1) / fsi->chan; /* get free space for alsa */ free = (fsi->buffer_len - fsi->byte_offset) / width; /* get recv size */ fifo_fill = fsi_get_fifo_residue(fsi, 0); if (free < fifo_fill) fifo_fill = free; start = runtime->dma_area; start += fsi->byte_offset; switch (width) { case 2: for (i = 0; i < fifo_fill; i++) *((u16 *)start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8); break; case 4: for (i = 0; i < fifo_fill; i++) *((u32 *)start + i) = fsi_reg_read(fsi, DIDT); break; default: return -EINVAL; } fsi->byte_offset += fifo_fill * width; status = fsi_reg_read(fsi, DIFF_ST); if (!startup) { struct snd_soc_dai *dai = fsi_get_dai(substream); if (status & ERR_OVER) dev_err(dai->dev, "over run\n"); if (status & ERR_UNDER) dev_err(dai->dev, "under run\n"); } fsi_reg_write(fsi, DIFF_ST, 0); fsi_irq_enable(fsi, 0); if (over_period) snd_pcm_period_elapsed(substream); return 0; } static irqreturn_t fsi_interrupt(int irq, void *data) { struct fsi_master *master = data; u32 int_st = fsi_irq_get_status(master); /* clear irq status */ fsi_master_mask_set(master, SOFT_RST, IR, 0); fsi_master_mask_set(master, SOFT_RST, IR, IR); if (int_st & INT_A_OUT) fsi_data_push(&master->fsia, 0); if (int_st & INT_B_OUT) fsi_data_push(&master->fsib, 0); if (int_st & INT_A_IN) fsi_data_pop(&master->fsia, 0); if (int_st & INT_B_IN) fsi_data_pop(&master->fsib, 0); fsi_irq_clear_all_status(master); return IRQ_HANDLED; } /************************************************************************ dai ops ************************************************************************/ static int fsi_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); u32 flags = fsi_get_info_flags(fsi); struct fsi_master *master = fsi_get_master(fsi); u32 fmt; u32 reg; u32 data; int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); int is_master; int ret = 0; pm_runtime_get_sync(dai->dev); /* CKG1 */ data = is_play ? (1 << 0) : (1 << 4); is_master = fsi_is_master_mode(fsi, is_play); if (is_master) fsi_reg_mask_set(fsi, CKG1, data, data); else fsi_reg_mask_set(fsi, CKG1, data, 0); /* clock inversion (CKG2) */ data = 0; if (SH_FSI_LRM_INV & flags) data |= 1 << 12; if (SH_FSI_BRM_INV & flags) data |= 1 << 8; if (SH_FSI_LRS_INV & flags) data |= 1 << 4; if (SH_FSI_BRS_INV & flags) data |= 1 << 0; fsi_reg_write(fsi, CKG2, data); /* do fmt, di fmt */ data = 0; reg = is_play ? DO_FMT : DI_FMT; fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags); switch (fmt) { case SH_FSI_FMT_MONO: data = CR_MONO; fsi->chan = 1; break; case SH_FSI_FMT_MONO_DELAY: data = CR_MONO_D; fsi->chan = 1; break; case SH_FSI_FMT_PCM: data = CR_PCM; fsi->chan = 2; break; case SH_FSI_FMT_I2S: data = CR_I2S; fsi->chan = 2; break; case SH_FSI_FMT_TDM: fsi->chan = is_play ? SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags); data = CR_TDM | (fsi->chan - 1); break; case SH_FSI_FMT_TDM_DELAY: fsi->chan = is_play ? SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags); data = CR_TDM_D | (fsi->chan - 1); break; case SH_FSI_FMT_SPDIF: if (master->core->ver < 2) { dev_err(dai->dev, "This FSI can not use SPDIF\n"); return -EINVAL; } data = CR_SPDIF; fsi->chan = 2; fsi_spdif_clk_ctrl(fsi, 1); fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010); break; default: dev_err(dai->dev, "unknown format.\n"); return -EINVAL; } fsi_reg_write(fsi, reg, data); /* irq clear */ fsi_irq_disable(fsi, is_play); fsi_irq_clear_status(fsi); /* fifo init */ fsi_fifo_init(fsi, is_play, dai); return ret; } static void fsi_dai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; fsi_irq_disable(fsi, is_play); fsi_clk_ctrl(fsi, 0); pm_runtime_put_sync(dai->dev); } static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); struct snd_pcm_runtime *runtime = substream->runtime; int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: fsi_stream_push(fsi, substream, frames_to_bytes(runtime, runtime->buffer_size), frames_to_bytes(runtime, runtime->period_size)); ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1); break; case SNDRV_PCM_TRIGGER_STOP: fsi_irq_disable(fsi, is_play); fsi_stream_pop(fsi); break; } return ret; } static int fsi_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); struct fsi_master *master = fsi_get_master(fsi); int (*set_rate)(int is_porta, int rate) = master->info->set_rate; int fsi_ver = master->core->ver; int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); int ret; /* if slave mode, set_rate is not needed */ if (!fsi_is_master_mode(fsi, is_play)) return 0; /* it is error if no set_rate */ if (!set_rate) return -EIO; ret = set_rate(fsi_is_port_a(fsi), params_rate(params)); if (ret > 0) { u32 data = 0; switch (ret & SH_FSI_ACKMD_MASK) { default: /* FALL THROUGH */ case SH_FSI_ACKMD_512: data |= (0x0 << 12); break; case SH_FSI_ACKMD_256: data |= (0x1 << 12); break; case SH_FSI_ACKMD_128: data |= (0x2 << 12); break; case SH_FSI_ACKMD_64: data |= (0x3 << 12); break; case SH_FSI_ACKMD_32: if (fsi_ver < 2) dev_err(dai->dev, "unsupported ACKMD\n"); else data |= (0x4 << 12); break; } switch (ret & SH_FSI_BPFMD_MASK) { default: /* FALL THROUGH */ case SH_FSI_BPFMD_32: data |= (0x0 << 8); break; case SH_FSI_BPFMD_64: data |= (0x1 << 8); break; case SH_FSI_BPFMD_128: data |= (0x2 << 8); break; case SH_FSI_BPFMD_256: data |= (0x3 << 8); break; case SH_FSI_BPFMD_512: data |= (0x4 << 8); break; case SH_FSI_BPFMD_16: if (fsi_ver < 2) dev_err(dai->dev, "unsupported ACKMD\n"); else data |= (0x7 << 8); break; } fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data); udelay(10); fsi_clk_ctrl(fsi, 1); ret = 0; } return ret; } static struct snd_soc_dai_ops fsi_dai_ops = { .startup = fsi_dai_startup, .shutdown = fsi_dai_shutdown, .trigger = fsi_dai_trigger, .hw_params = fsi_dai_hw_params, }; /************************************************************************ pcm ops ************************************************************************/ static struct snd_pcm_hardware fsi_pcm_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE, .formats = FSI_FMTS, .rates = FSI_RATES, .rate_min = 8000, .rate_max = 192000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 64 * 1024, .period_bytes_min = 32, .period_bytes_max = 8192, .periods_min = 1, .periods_max = 32, .fifo_size = 256, }; static int fsi_pcm_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; int ret = 0; snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware); ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return ret; } static int fsi_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int fsi_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsi_priv *fsi = fsi_get_priv(substream); long location; location = (fsi->byte_offset - 1); if (location < 0) location = 0; return bytes_to_frames(runtime, location); } static struct snd_pcm_ops fsi_pcm_ops = { .open = fsi_pcm_open, .ioctl = snd_pcm_lib_ioctl, .hw_params = fsi_hw_params, .hw_free = fsi_hw_free, .pointer = fsi_pointer, }; /************************************************************************ snd_soc_platform ************************************************************************/ #define PREALLOC_BUFFER (32 * 1024) #define PREALLOC_BUFFER_MAX (32 * 1024) static void fsi_pcm_free(struct snd_pcm *pcm) { snd_pcm_lib_preallocate_free_for_all(pcm); } static int fsi_pcm_new(struct snd_card *card, struct snd_soc_dai *dai, struct snd_pcm *pcm) { /* * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel * in MMAP mode (i.e. aplay -M) */ return snd_pcm_lib_preallocate_pages_for_all( pcm, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), PREALLOC_BUFFER, PREALLOC_BUFFER_MAX); } /************************************************************************ alsa struct ************************************************************************/ static struct snd_soc_dai_driver fsi_soc_dai[] = { { .name = "fsia-dai", .playback = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 1, .channels_max = 8, }, .capture = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 1, .channels_max = 8, }, .ops = &fsi_dai_ops, }, { .name = "fsib-dai", .playback = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 1, .channels_max = 8, }, .capture = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 1, .channels_max = 8, }, .ops = &fsi_dai_ops, }, }; static struct snd_soc_platform_driver fsi_soc_platform = { .ops = &fsi_pcm_ops, .pcm_new = fsi_pcm_new, .pcm_free = fsi_pcm_free, }; /************************************************************************ platform function ************************************************************************/ static int fsi_probe(struct platform_device *pdev) { struct fsi_master *master; const struct platform_device_id *id_entry; struct resource *res; unsigned int irq; int ret; id_entry = pdev->id_entry; if (!id_entry) { dev_err(&pdev->dev, "unknown fsi device\n"); return -ENODEV; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!res || (int)irq <= 0) { dev_err(&pdev->dev, "Not enough FSI platform resources.\n"); ret = -ENODEV; goto exit; } master = kzalloc(sizeof(*master), GFP_KERNEL); if (!master) { dev_err(&pdev->dev, "Could not allocate master\n"); ret = -ENOMEM; goto exit; } master->base = ioremap_nocache(res->start, resource_size(res)); if (!master->base) { ret = -ENXIO; dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n"); goto exit_kfree; } /* master setting */ master->irq = irq; master->info = pdev->dev.platform_data; master->core = (struct fsi_core *)id_entry->driver_data; spin_lock_init(&master->lock); /* FSI A setting */ master->fsia.base = master->base; master->fsia.master = master; master->fsia.mst_ctrl = A_MST_CTLR; /* FSI B setting */ master->fsib.base = master->base + 0x40; master->fsib.master = master; master->fsib.mst_ctrl = B_MST_CTLR; pm_runtime_enable(&pdev->dev); pm_runtime_resume(&pdev->dev); dev_set_drvdata(&pdev->dev, master); fsi_soft_all_reset(master); ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED, id_entry->name, master); if (ret) { dev_err(&pdev->dev, "irq request err\n"); goto exit_iounmap; } ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform); if (ret < 0) { dev_err(&pdev->dev, "cannot snd soc register\n"); goto exit_free_irq; } return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai)); exit_free_irq: free_irq(irq, master); exit_iounmap: iounmap(master->base); pm_runtime_disable(&pdev->dev); exit_kfree: kfree(master); master = NULL; exit: return ret; } static int fsi_remove(struct platform_device *pdev) { struct fsi_master *master; master = dev_get_drvdata(&pdev->dev); snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai)); snd_soc_unregister_platform(&pdev->dev); pm_runtime_disable(&pdev->dev); free_irq(master->irq, master); iounmap(master->base); kfree(master); return 0; } static int fsi_runtime_nop(struct device *dev) { /* Runtime PM callback shared between ->runtime_suspend() * and ->runtime_resume(). Simply returns success. * * This driver re-initializes all registers after * pm_runtime_get_sync() anyway so there is no need * to save and restore registers here. */ return 0; } static struct dev_pm_ops fsi_pm_ops = { .runtime_suspend = fsi_runtime_nop, .runtime_resume = fsi_runtime_nop, }; static struct fsi_core fsi1_core = { .ver = 1, /* Interrupt */ .int_st = INT_ST, .iemsk = IEMSK, .imsk = IMSK, }; static struct fsi_core fsi2_core = { .ver = 2, /* Interrupt */ .int_st = CPU_INT_ST, .iemsk = CPU_IEMSK, .imsk = CPU_IMSK, }; static struct platform_device_id fsi_id_table[] = { { "sh_fsi", (kernel_ulong_t)&fsi1_core }, { "sh_fsi2", (kernel_ulong_t)&fsi2_core }, }; MODULE_DEVICE_TABLE(platform, fsi_id_table); static struct platform_driver fsi_driver = { .driver = { .name = "fsi-pcm-audio", .pm = &fsi_pm_ops, }, .probe = fsi_probe, .remove = fsi_remove, .id_table = fsi_id_table, }; static int __init fsi_mobile_init(void) { return platform_driver_register(&fsi_driver); } static void __exit fsi_mobile_exit(void) { platform_driver_unregister(&fsi_driver); } module_init(fsi_mobile_init); module_exit(fsi_mobile_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SuperH onchip FSI audio driver"); MODULE_AUTHOR("Kuninori Morimoto ");