// SPDX-License-Identifier: GPL-2.0 /* * Functions related to segment and merge handling */ #include #include #include #include #include #include #include #include "blk.h" #include "blk-rq-qos.h" #include "blk-throttle.h" static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline bool bio_will_gap(struct request_queue *q, struct request *prev_rq, struct bio *prev, struct bio *next) { struct bio_vec pb, nb; if (!bio_has_data(prev) || !queue_virt_boundary(q)) return false; /* * Don't merge if the 1st bio starts with non-zero offset, otherwise it * is quite difficult to respect the sg gap limit. We work hard to * merge a huge number of small single bios in case of mkfs. */ if (prev_rq) bio_get_first_bvec(prev_rq->bio, &pb); else bio_get_first_bvec(prev, &pb); if (pb.bv_offset & queue_virt_boundary(q)) return true; /* * We don't need to worry about the situation that the merged segment * ends in unaligned virt boundary: * * - if 'pb' ends aligned, the merged segment ends aligned * - if 'pb' ends unaligned, the next bio must include * one single bvec of 'nb', otherwise the 'nb' can't * merge with 'pb' */ bio_get_last_bvec(prev, &pb); bio_get_first_bvec(next, &nb); if (biovec_phys_mergeable(q, &pb, &nb)) return false; return __bvec_gap_to_prev(q, &pb, nb.bv_offset); } static inline bool req_gap_back_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, req, req->biotail, bio); } static inline bool req_gap_front_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, NULL, bio, req->bio); } static struct bio *blk_bio_discard_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { unsigned int max_discard_sectors, granularity; int alignment; sector_t tmp; unsigned split_sectors; *nsegs = 1; /* Zero-sector (unknown) and one-sector granularities are the same. */ granularity = max(q->limits.discard_granularity >> 9, 1U); max_discard_sectors = min(q->limits.max_discard_sectors, bio_allowed_max_sectors(q)); max_discard_sectors -= max_discard_sectors % granularity; if (unlikely(!max_discard_sectors)) { /* XXX: warn */ return NULL; } if (bio_sectors(bio) <= max_discard_sectors) return NULL; split_sectors = max_discard_sectors; /* * If the next starting sector would be misaligned, stop the discard at * the previous aligned sector. */ alignment = (q->limits.discard_alignment >> 9) % granularity; tmp = bio->bi_iter.bi_sector + split_sectors - alignment; tmp = sector_div(tmp, granularity); if (split_sectors > tmp) split_sectors -= tmp; return bio_split(bio, split_sectors, GFP_NOIO, bs); } static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { *nsegs = 0; if (!q->limits.max_write_zeroes_sectors) return NULL; if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) return NULL; return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); } static struct bio *blk_bio_write_same_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { *nsegs = 1; if (!q->limits.max_write_same_sectors) return NULL; if (bio_sectors(bio) <= q->limits.max_write_same_sectors) return NULL; return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); } /* * Return the maximum number of sectors from the start of a bio that may be * submitted as a single request to a block device. If enough sectors remain, * align the end to the physical block size. Otherwise align the end to the * logical block size. This approach minimizes the number of non-aligned * requests that are submitted to a block device if the start of a bio is not * aligned to a physical block boundary. */ static inline unsigned get_max_io_size(struct request_queue *q, struct bio *bio) { unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); unsigned max_sectors = sectors; unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); max_sectors += start_offset; max_sectors &= ~(pbs - 1); if (max_sectors > start_offset) return max_sectors - start_offset; return sectors & ~(lbs - 1); } static inline unsigned get_max_segment_size(const struct request_queue *q, struct page *start_page, unsigned long offset) { unsigned long mask = queue_segment_boundary(q); offset = mask & (page_to_phys(start_page) + offset); /* * overflow may be triggered in case of zero page physical address * on 32bit arch, use queue's max segment size when that happens. */ return min_not_zero(mask - offset + 1, (unsigned long)queue_max_segment_size(q)); } /** * bvec_split_segs - verify whether or not a bvec should be split in the middle * @q: [in] request queue associated with the bio associated with @bv * @bv: [in] bvec to examine * @nsegs: [in,out] Number of segments in the bio being built. Incremented * by the number of segments from @bv that may be appended to that * bio without exceeding @max_segs * @sectors: [in,out] Number of sectors in the bio being built. Incremented * by the number of sectors from @bv that may be appended to that * bio without exceeding @max_sectors * @max_segs: [in] upper bound for *@nsegs * @max_sectors: [in] upper bound for *@sectors * * When splitting a bio, it can happen that a bvec is encountered that is too * big to fit in a single segment and hence that it has to be split in the * middle. This function verifies whether or not that should happen. The value * %true is returned if and only if appending the entire @bv to a bio with * *@nsegs segments and *@sectors sectors would make that bio unacceptable for * the block driver. */ static bool bvec_split_segs(const struct request_queue *q, const struct bio_vec *bv, unsigned *nsegs, unsigned *sectors, unsigned max_segs, unsigned max_sectors) { unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; unsigned len = min(bv->bv_len, max_len); unsigned total_len = 0; unsigned seg_size = 0; while (len && *nsegs < max_segs) { seg_size = get_max_segment_size(q, bv->bv_page, bv->bv_offset + total_len); seg_size = min(seg_size, len); (*nsegs)++; total_len += seg_size; len -= seg_size; if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) break; } *sectors += total_len >> 9; /* tell the caller to split the bvec if it is too big to fit */ return len > 0 || bv->bv_len > max_len; } /** * blk_bio_segment_split - split a bio in two bios * @q: [in] request queue pointer * @bio: [in] bio to be split * @bs: [in] bio set to allocate the clone from * @segs: [out] number of segments in the bio with the first half of the sectors * * Clone @bio, update the bi_iter of the clone to represent the first sectors * of @bio and update @bio->bi_iter to represent the remaining sectors. The * following is guaranteed for the cloned bio: * - That it has at most get_max_io_size(@q, @bio) sectors. * - That it has at most queue_max_segments(@q) segments. * * Except for discard requests the cloned bio will point at the bi_io_vec of * the original bio. It is the responsibility of the caller to ensure that the * original bio is not freed before the cloned bio. The caller is also * responsible for ensuring that @bs is only destroyed after processing of the * split bio has finished. */ static struct bio *blk_bio_segment_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *segs) { struct bio_vec bv, bvprv, *bvprvp = NULL; struct bvec_iter iter; unsigned nsegs = 0, sectors = 0; const unsigned max_sectors = get_max_io_size(q, bio); const unsigned max_segs = queue_max_segments(q); bio_for_each_bvec(bv, bio, iter) { /* * If the queue doesn't support SG gaps and adding this * offset would create a gap, disallow it. */ if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) goto split; if (nsegs < max_segs && sectors + (bv.bv_len >> 9) <= max_sectors && bv.bv_offset + bv.bv_len <= PAGE_SIZE) { nsegs++; sectors += bv.bv_len >> 9; } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, max_sectors)) { goto split; } bvprv = bv; bvprvp = &bvprv; } *segs = nsegs; return NULL; split: *segs = nsegs; /* * Bio splitting may cause subtle trouble such as hang when doing sync * iopoll in direct IO routine. Given performance gain of iopoll for * big IO can be trival, disable iopoll when split needed. */ bio_clear_polled(bio); return bio_split(bio, sectors, GFP_NOIO, bs); } /** * __blk_queue_split - split a bio and submit the second half * @q: [in] request_queue new bio is being queued at * @bio: [in, out] bio to be split * @nr_segs: [out] number of segments in the first bio * * Split a bio into two bios, chain the two bios, submit the second half and * store a pointer to the first half in *@bio. If the second bio is still too * big it will be split by a recursive call to this function. Since this * function may allocate a new bio from q->bio_split, it is the responsibility * of the caller to ensure that q->bio_split is only released after processing * of the split bio has finished. */ void __blk_queue_split(struct request_queue *q, struct bio **bio, unsigned int *nr_segs) { struct bio *split = NULL; switch (bio_op(*bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); break; case REQ_OP_WRITE_ZEROES: split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, nr_segs); break; case REQ_OP_WRITE_SAME: split = blk_bio_write_same_split(q, *bio, &q->bio_split, nr_segs); break; default: split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); break; } if (split) { /* there isn't chance to merge the splitted bio */ split->bi_opf |= REQ_NOMERGE; bio_chain(split, *bio); trace_block_split(split, (*bio)->bi_iter.bi_sector); submit_bio_noacct(*bio); *bio = split; blk_throtl_charge_bio_split(*bio); } } /** * blk_queue_split - split a bio and submit the second half * @bio: [in, out] bio to be split * * Split a bio into two bios, chains the two bios, submit the second half and * store a pointer to the first half in *@bio. Since this function may allocate * a new bio from q->bio_split, it is the responsibility of the caller to ensure * that q->bio_split is only released after processing of the split bio has * finished. */ void blk_queue_split(struct bio **bio) { struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue; unsigned int nr_segs; if (blk_may_split(q, *bio)) __blk_queue_split(q, bio, &nr_segs); } EXPORT_SYMBOL(blk_queue_split); unsigned int blk_recalc_rq_segments(struct request *rq) { unsigned int nr_phys_segs = 0; unsigned int nr_sectors = 0; struct req_iterator iter; struct bio_vec bv; if (!rq->bio) return 0; switch (bio_op(rq->bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: if (queue_max_discard_segments(rq->q) > 1) { struct bio *bio = rq->bio; for_each_bio(bio) nr_phys_segs++; return nr_phys_segs; } return 1; case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; } rq_for_each_bvec(bv, rq, iter) bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, UINT_MAX, UINT_MAX); return nr_phys_segs; } static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, struct scatterlist *sglist) { if (!*sg) return sglist; /* * If the driver previously mapped a shorter list, we could see a * termination bit prematurely unless it fully inits the sg table * on each mapping. We KNOW that there must be more entries here * or the driver would be buggy, so force clear the termination bit * to avoid doing a full sg_init_table() in drivers for each command. */ sg_unmark_end(*sg); return sg_next(*sg); } static unsigned blk_bvec_map_sg(struct request_queue *q, struct bio_vec *bvec, struct scatterlist *sglist, struct scatterlist **sg) { unsigned nbytes = bvec->bv_len; unsigned nsegs = 0, total = 0; while (nbytes > 0) { unsigned offset = bvec->bv_offset + total; unsigned len = min(get_max_segment_size(q, bvec->bv_page, offset), nbytes); struct page *page = bvec->bv_page; /* * Unfortunately a fair number of drivers barf on scatterlists * that have an offset larger than PAGE_SIZE, despite other * subsystems dealing with that invariant just fine. For now * stick to the legacy format where we never present those from * the block layer, but the code below should be removed once * these offenders (mostly MMC/SD drivers) are fixed. */ page += (offset >> PAGE_SHIFT); offset &= ~PAGE_MASK; *sg = blk_next_sg(sg, sglist); sg_set_page(*sg, page, len, offset); total += len; nbytes -= len; nsegs++; } return nsegs; } static inline int __blk_bvec_map_sg(struct bio_vec bv, struct scatterlist *sglist, struct scatterlist **sg) { *sg = blk_next_sg(sg, sglist); sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); return 1; } /* only try to merge bvecs into one sg if they are from two bios */ static inline bool __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, struct bio_vec *bvprv, struct scatterlist **sg) { int nbytes = bvec->bv_len; if (!*sg) return false; if ((*sg)->length + nbytes > queue_max_segment_size(q)) return false; if (!biovec_phys_mergeable(q, bvprv, bvec)) return false; (*sg)->length += nbytes; return true; } static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, struct scatterlist *sglist, struct scatterlist **sg) { struct bio_vec bvec, bvprv = { NULL }; struct bvec_iter iter; int nsegs = 0; bool new_bio = false; for_each_bio(bio) { bio_for_each_bvec(bvec, bio, iter) { /* * Only try to merge bvecs from two bios given we * have done bio internal merge when adding pages * to bio */ if (new_bio && __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) goto next_bvec; if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) nsegs += __blk_bvec_map_sg(bvec, sglist, sg); else nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); next_bvec: new_bio = false; } if (likely(bio->bi_iter.bi_size)) { bvprv = bvec; new_bio = true; } } return nsegs; } /* * map a request to scatterlist, return number of sg entries setup. Caller * must make sure sg can hold rq->nr_phys_segments entries */ int __blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist, struct scatterlist **last_sg) { int nsegs = 0; if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); else if (rq->bio) nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); if (*last_sg) sg_mark_end(*last_sg); /* * Something must have been wrong if the figured number of * segment is bigger than number of req's physical segments */ WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); return nsegs; } EXPORT_SYMBOL(__blk_rq_map_sg); static inline unsigned int blk_rq_get_max_segments(struct request *rq) { if (req_op(rq) == REQ_OP_DISCARD) return queue_max_discard_segments(rq->q); return queue_max_segments(rq->q); } static inline unsigned int blk_rq_get_max_sectors(struct request *rq, sector_t offset) { struct request_queue *q = rq->q; if (blk_rq_is_passthrough(rq)) return q->limits.max_hw_sectors; if (!q->limits.chunk_sectors || req_op(rq) == REQ_OP_DISCARD || req_op(rq) == REQ_OP_SECURE_ERASE) return blk_queue_get_max_sectors(q, req_op(rq)); return min(blk_max_size_offset(q, offset, 0), blk_queue_get_max_sectors(q, req_op(rq))); } static inline int ll_new_hw_segment(struct request *req, struct bio *bio, unsigned int nr_phys_segs) { if (blk_integrity_merge_bio(req->q, req, bio) == false) goto no_merge; /* discard request merge won't add new segment */ if (req_op(req) == REQ_OP_DISCARD) return 1; if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) goto no_merge; /* * This will form the start of a new hw segment. Bump both * counters. */ req->nr_phys_segments += nr_phys_segs; return 1; no_merge: req_set_nomerge(req->q, req); return 0; } int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) { if (req_gap_back_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_back_merge(req, bio)) return 0; if (!bio_crypt_ctx_back_mergeable(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) { req_set_nomerge(req->q, req); return 0; } return ll_new_hw_segment(req, bio, nr_segs); } static int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) { if (req_gap_front_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_front_merge(req, bio)) return 0; if (!bio_crypt_ctx_front_mergeable(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { req_set_nomerge(req->q, req); return 0; } return ll_new_hw_segment(req, bio, nr_segs); } static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, struct request *next) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(next->bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); return true; no_merge: req_set_nomerge(q, req); return false; } static int ll_merge_requests_fn(struct request_queue *q, struct request *req, struct request *next) { int total_phys_segments; if (req_gap_back_merge(req, next->bio)) return 0; /* * Will it become too large? */ if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) return 0; total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; if (total_phys_segments > blk_rq_get_max_segments(req)) return 0; if (blk_integrity_merge_rq(q, req, next) == false) return 0; if (!bio_crypt_ctx_merge_rq(req, next)) return 0; /* Merge is OK... */ req->nr_phys_segments = total_phys_segments; return 1; } /** * blk_rq_set_mixed_merge - mark a request as mixed merge * @rq: request to mark as mixed merge * * Description: * @rq is about to be mixed merged. Make sure the attributes * which can be mixed are set in each bio and mark @rq as mixed * merged. */ void blk_rq_set_mixed_merge(struct request *rq) { unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; struct bio *bio; if (rq->rq_flags & RQF_MIXED_MERGE) return; /* * @rq will no longer represent mixable attributes for all the * contained bios. It will just track those of the first one. * Distributes the attributs to each bio. */ for (bio = rq->bio; bio; bio = bio->bi_next) { WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && (bio->bi_opf & REQ_FAILFAST_MASK) != ff); bio->bi_opf |= ff; } rq->rq_flags |= RQF_MIXED_MERGE; } static void blk_account_io_merge_request(struct request *req) { if (blk_do_io_stat(req)) { part_stat_lock(); part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); part_stat_unlock(); } } static enum elv_merge blk_try_req_merge(struct request *req, struct request *next) { if (blk_discard_mergable(req)) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) return ELEVATOR_BACK_MERGE; return ELEVATOR_NO_MERGE; } static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) { if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b)) return true; return false; } /* * For non-mq, this has to be called with the request spinlock acquired. * For mq with scheduling, the appropriate queue wide lock should be held. */ static struct request *attempt_merge(struct request_queue *q, struct request *req, struct request *next) { if (!rq_mergeable(req) || !rq_mergeable(next)) return NULL; if (req_op(req) != req_op(next)) return NULL; if (rq_data_dir(req) != rq_data_dir(next) || req->rq_disk != next->rq_disk) return NULL; if (req_op(req) == REQ_OP_WRITE_SAME && !blk_write_same_mergeable(req->bio, next->bio)) return NULL; /* * Don't allow merge of different write hints, or for a hint with * non-hint IO. */ if (req->write_hint != next->write_hint) return NULL; if (req->ioprio != next->ioprio) return NULL; /* * If we are allowed to merge, then append bio list * from next to rq and release next. merge_requests_fn * will have updated segment counts, update sector * counts here. Handle DISCARDs separately, as they * have separate settings. */ switch (blk_try_req_merge(req, next)) { case ELEVATOR_DISCARD_MERGE: if (!req_attempt_discard_merge(q, req, next)) return NULL; break; case ELEVATOR_BACK_MERGE: if (!ll_merge_requests_fn(q, req, next)) return NULL; break; default: return NULL; } /* * If failfast settings disagree or any of the two is already * a mixed merge, mark both as mixed before proceeding. This * makes sure that all involved bios have mixable attributes * set properly. */ if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || (req->cmd_flags & REQ_FAILFAST_MASK) != (next->cmd_flags & REQ_FAILFAST_MASK)) { blk_rq_set_mixed_merge(req); blk_rq_set_mixed_merge(next); } /* * At this point we have either done a back merge or front merge. We * need the smaller start_time_ns of the merged requests to be the * current request for accounting purposes. */ if (next->start_time_ns < req->start_time_ns) req->start_time_ns = next->start_time_ns; req->biotail->bi_next = next->bio; req->biotail = next->biotail; req->__data_len += blk_rq_bytes(next); if (!blk_discard_mergable(req)) elv_merge_requests(q, req, next); /* * 'next' is going away, so update stats accordingly */ blk_account_io_merge_request(next); trace_block_rq_merge(next); /* * ownership of bio passed from next to req, return 'next' for * the caller to free */ next->bio = NULL; return next; } static struct request *attempt_back_merge(struct request_queue *q, struct request *rq) { struct request *next = elv_latter_request(q, rq); if (next) return attempt_merge(q, rq, next); return NULL; } static struct request *attempt_front_merge(struct request_queue *q, struct request *rq) { struct request *prev = elv_former_request(q, rq); if (prev) return attempt_merge(q, prev, rq); return NULL; } /* * Try to merge 'next' into 'rq'. Return true if the merge happened, false * otherwise. The caller is responsible for freeing 'next' if the merge * happened. */ bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next) { return attempt_merge(q, rq, next); } bool blk_rq_merge_ok(struct request *rq, struct bio *bio) { if (!rq_mergeable(rq) || !bio_mergeable(bio)) return false; if (req_op(rq) != bio_op(bio)) return false; /* different data direction or already started, don't merge */ if (bio_data_dir(bio) != rq_data_dir(rq)) return false; /* must be same device */ if (rq->rq_disk != bio->bi_bdev->bd_disk) return false; /* only merge integrity protected bio into ditto rq */ if (blk_integrity_merge_bio(rq->q, rq, bio) == false) return false; /* Only merge if the crypt contexts are compatible */ if (!bio_crypt_rq_ctx_compatible(rq, bio)) return false; /* must be using the same buffer */ if (req_op(rq) == REQ_OP_WRITE_SAME && !blk_write_same_mergeable(rq->bio, bio)) return false; /* * Don't allow merge of different write hints, or for a hint with * non-hint IO. */ if (rq->write_hint != bio->bi_write_hint) return false; if (rq->ioprio != bio_prio(bio)) return false; return true; } enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) { if (blk_discard_mergable(rq)) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) return ELEVATOR_BACK_MERGE; else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) return ELEVATOR_FRONT_MERGE; return ELEVATOR_NO_MERGE; } static void blk_account_io_merge_bio(struct request *req) { if (!blk_do_io_stat(req)) return; part_stat_lock(); part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); part_stat_unlock(); } enum bio_merge_status { BIO_MERGE_OK, BIO_MERGE_NONE, BIO_MERGE_FAILED, }; static enum bio_merge_status bio_attempt_back_merge(struct request *req, struct bio *bio, unsigned int nr_segs) { const int ff = bio->bi_opf & REQ_FAILFAST_MASK; if (!ll_back_merge_fn(req, bio, nr_segs)) return BIO_MERGE_FAILED; trace_block_bio_backmerge(bio); rq_qos_merge(req->q, req, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bio->bi_iter.bi_size; bio_crypt_free_ctx(bio); blk_account_io_merge_bio(req); return BIO_MERGE_OK; } static enum bio_merge_status bio_attempt_front_merge(struct request *req, struct bio *bio, unsigned int nr_segs) { const int ff = bio->bi_opf & REQ_FAILFAST_MASK; if (!ll_front_merge_fn(req, bio, nr_segs)) return BIO_MERGE_FAILED; trace_block_bio_frontmerge(bio); rq_qos_merge(req->q, req, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); bio->bi_next = req->bio; req->bio = bio; req->__sector = bio->bi_iter.bi_sector; req->__data_len += bio->bi_iter.bi_size; bio_crypt_do_front_merge(req, bio); blk_account_io_merge_bio(req); return BIO_MERGE_OK; } static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, struct request *req, struct bio *bio) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; rq_qos_merge(q, req, bio); req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bio->bi_iter.bi_size; req->nr_phys_segments = segments + 1; blk_account_io_merge_bio(req); return BIO_MERGE_OK; no_merge: req_set_nomerge(q, req); return BIO_MERGE_FAILED; } static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, struct request *rq, struct bio *bio, unsigned int nr_segs, bool sched_allow_merge) { if (!blk_rq_merge_ok(rq, bio)) return BIO_MERGE_NONE; switch (blk_try_merge(rq, bio)) { case ELEVATOR_BACK_MERGE: if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) return bio_attempt_back_merge(rq, bio, nr_segs); break; case ELEVATOR_FRONT_MERGE: if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) return bio_attempt_front_merge(rq, bio, nr_segs); break; case ELEVATOR_DISCARD_MERGE: return bio_attempt_discard_merge(q, rq, bio); default: return BIO_MERGE_NONE; } return BIO_MERGE_FAILED; } /** * blk_attempt_plug_merge - try to merge with %current's plugged list * @q: request_queue new bio is being queued at * @bio: new bio being queued * @nr_segs: number of segments in @bio * @same_queue_rq: output value, will be true if there's an existing request * from the passed in @q already in the plug list * * Determine whether @bio being queued on @q can be merged with the previous * request on %current's plugged list. Returns %true if merge was successful, * otherwise %false. * * Plugging coalesces IOs from the same issuer for the same purpose without * going through @q->queue_lock. As such it's more of an issuing mechanism * than scheduling, and the request, while may have elvpriv data, is not * added on the elevator at this point. In addition, we don't have * reliable access to the elevator outside queue lock. Only check basic * merging parameters without querying the elevator. * * Caller must ensure !blk_queue_nomerges(q) beforehand. */ bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, bool *same_queue_rq) { struct blk_plug *plug; struct request *rq; plug = blk_mq_plug(q, bio); if (!plug || rq_list_empty(plug->mq_list)) return false; /* check the previously added entry for a quick merge attempt */ rq = rq_list_peek(&plug->mq_list); if (rq->q == q) { /* * Only blk-mq multiple hardware queues case checks the rq in * the same queue, there should be only one such rq in a queue */ *same_queue_rq = true; } if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == BIO_MERGE_OK) return true; return false; } /* * Iterate list of requests and see if we can merge this bio with any * of them. */ bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs) { struct request *rq; int checked = 8; list_for_each_entry_reverse(rq, list, queuelist) { if (!checked--) break; switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { case BIO_MERGE_NONE: continue; case BIO_MERGE_OK: return true; case BIO_MERGE_FAILED: return false; } } return false; } EXPORT_SYMBOL_GPL(blk_bio_list_merge); bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **merged_request) { struct request *rq; switch (elv_merge(q, &rq, bio)) { case ELEVATOR_BACK_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) return false; *merged_request = attempt_back_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); return true; case ELEVATOR_FRONT_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) return false; *merged_request = attempt_front_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); return true; case ELEVATOR_DISCARD_MERGE: return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; default: return false; } } EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);