// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/file.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include "acl.h" #include "gc.h" #include "trace.h" #include static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) { struct inode *inode = file_inode(vmf->vma->vm_file); vm_fault_t ret; down_read(&F2FS_I(inode)->i_mmap_sem); ret = filemap_fault(vmf); up_read(&F2FS_I(inode)->i_mmap_sem); if (!ret) f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, F2FS_BLKSIZE); trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); return ret; } static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vmf->vma->vm_file); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; bool need_alloc = true; int err = 0; if (unlikely(f2fs_cp_error(sbi))) { err = -EIO; goto err; } if (!f2fs_is_checkpoint_ready(sbi)) { err = -ENOSPC; goto err; } #ifdef CONFIG_F2FS_FS_COMPRESSION if (f2fs_compressed_file(inode)) { int ret = f2fs_is_compressed_cluster(inode, page->index); if (ret < 0) { err = ret; goto err; } else if (ret) { if (ret < F2FS_I(inode)->i_cluster_size) { err = -EAGAIN; goto err; } need_alloc = false; } } #endif /* should do out of any locked page */ if (need_alloc) f2fs_balance_fs(sbi, true); sb_start_pagefault(inode->i_sb); f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); file_update_time(vmf->vma->vm_file); down_read(&F2FS_I(inode)->i_mmap_sem); lock_page(page); if (unlikely(page->mapping != inode->i_mapping || page_offset(page) > i_size_read(inode) || !PageUptodate(page))) { unlock_page(page); err = -EFAULT; goto out_sem; } if (need_alloc) { /* block allocation */ f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_block(&dn, page->index); f2fs_put_dnode(&dn); f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); } #ifdef CONFIG_F2FS_FS_COMPRESSION if (!need_alloc) { set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); f2fs_put_dnode(&dn); } #endif if (err) { unlock_page(page); goto out_sem; } f2fs_wait_on_page_writeback(page, DATA, false, true); /* wait for GCed page writeback via META_MAPPING */ f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); /* * check to see if the page is mapped already (no holes) */ if (PageMappedToDisk(page)) goto out_sem; /* page is wholly or partially inside EOF */ if (((loff_t)(page->index + 1) << PAGE_SHIFT) > i_size_read(inode)) { loff_t offset; offset = i_size_read(inode) & ~PAGE_MASK; zero_user_segment(page, offset, PAGE_SIZE); } set_page_dirty(page); if (!PageUptodate(page)) SetPageUptodate(page); f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); f2fs_update_time(sbi, REQ_TIME); trace_f2fs_vm_page_mkwrite(page, DATA); out_sem: up_read(&F2FS_I(inode)->i_mmap_sem); sb_end_pagefault(inode->i_sb); err: return block_page_mkwrite_return(err); } static const struct vm_operations_struct f2fs_file_vm_ops = { .fault = f2fs_filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = f2fs_vm_page_mkwrite, }; static int get_parent_ino(struct inode *inode, nid_t *pino) { struct dentry *dentry; /* * Make sure to get the non-deleted alias. The alias associated with * the open file descriptor being fsync()'ed may be deleted already. */ dentry = d_find_alias(inode); if (!dentry) return 0; *pino = parent_ino(dentry); dput(dentry); return 1; } static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); enum cp_reason_type cp_reason = CP_NO_NEEDED; if (!S_ISREG(inode->i_mode)) cp_reason = CP_NON_REGULAR; else if (f2fs_compressed_file(inode)) cp_reason = CP_COMPRESSED; else if (inode->i_nlink != 1) cp_reason = CP_HARDLINK; else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) cp_reason = CP_SB_NEED_CP; else if (file_wrong_pino(inode)) cp_reason = CP_WRONG_PINO; else if (!f2fs_space_for_roll_forward(sbi)) cp_reason = CP_NO_SPC_ROLL; else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) cp_reason = CP_NODE_NEED_CP; else if (test_opt(sbi, FASTBOOT)) cp_reason = CP_FASTBOOT_MODE; else if (F2FS_OPTION(sbi).active_logs == 2) cp_reason = CP_SPEC_LOG_NUM; else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && f2fs_need_dentry_mark(sbi, inode->i_ino) && f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO)) cp_reason = CP_RECOVER_DIR; return cp_reason; } static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) { struct page *i = find_get_page(NODE_MAPPING(sbi), ino); bool ret = false; /* But we need to avoid that there are some inode updates */ if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) ret = true; f2fs_put_page(i, 0); return ret; } static void try_to_fix_pino(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); nid_t pino; down_write(&fi->i_sem); if (file_wrong_pino(inode) && inode->i_nlink == 1 && get_parent_ino(inode, &pino)) { f2fs_i_pino_write(inode, pino); file_got_pino(inode); } up_write(&fi->i_sem); } static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, int datasync, bool atomic) { struct inode *inode = file->f_mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t ino = inode->i_ino; int ret = 0; enum cp_reason_type cp_reason = 0; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; unsigned int seq_id = 0; if (unlikely(f2fs_readonly(inode->i_sb) || is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return 0; trace_f2fs_sync_file_enter(inode); if (S_ISDIR(inode->i_mode)) goto go_write; /* if fdatasync is triggered, let's do in-place-update */ if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) set_inode_flag(inode, FI_NEED_IPU); ret = file_write_and_wait_range(file, start, end); clear_inode_flag(inode, FI_NEED_IPU); if (ret) { trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); return ret; } /* if the inode is dirty, let's recover all the time */ if (!f2fs_skip_inode_update(inode, datasync)) { f2fs_write_inode(inode, NULL); goto go_write; } /* * if there is no written data, don't waste time to write recovery info. */ if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { /* it may call write_inode just prior to fsync */ if (need_inode_page_update(sbi, ino)) goto go_write; if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || f2fs_exist_written_data(sbi, ino, UPDATE_INO)) goto flush_out; goto out; } go_write: /* * Both of fdatasync() and fsync() are able to be recovered from * sudden-power-off. */ down_read(&F2FS_I(inode)->i_sem); cp_reason = need_do_checkpoint(inode); up_read(&F2FS_I(inode)->i_sem); if (cp_reason) { /* all the dirty node pages should be flushed for POR */ ret = f2fs_sync_fs(inode->i_sb, 1); /* * We've secured consistency through sync_fs. Following pino * will be used only for fsynced inodes after checkpoint. */ try_to_fix_pino(inode); clear_inode_flag(inode, FI_APPEND_WRITE); clear_inode_flag(inode, FI_UPDATE_WRITE); goto out; } sync_nodes: atomic_inc(&sbi->wb_sync_req[NODE]); ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); atomic_dec(&sbi->wb_sync_req[NODE]); if (ret) goto out; /* if cp_error was enabled, we should avoid infinite loop */ if (unlikely(f2fs_cp_error(sbi))) { ret = -EIO; goto out; } if (f2fs_need_inode_block_update(sbi, ino)) { f2fs_mark_inode_dirty_sync(inode, true); f2fs_write_inode(inode, NULL); goto sync_nodes; } /* * If it's atomic_write, it's just fine to keep write ordering. So * here we don't need to wait for node write completion, since we use * node chain which serializes node blocks. If one of node writes are * reordered, we can see simply broken chain, resulting in stopping * roll-forward recovery. It means we'll recover all or none node blocks * given fsync mark. */ if (!atomic) { ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); if (ret) goto out; } /* once recovery info is written, don't need to tack this */ f2fs_remove_ino_entry(sbi, ino, APPEND_INO); clear_inode_flag(inode, FI_APPEND_WRITE); flush_out: if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ret = f2fs_issue_flush(sbi, inode->i_ino); if (!ret) { f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); clear_inode_flag(inode, FI_UPDATE_WRITE); f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); } f2fs_update_time(sbi, REQ_TIME); out: trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); f2fs_trace_ios(NULL, 1); return ret; } int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) { if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) return -EIO; return f2fs_do_sync_file(file, start, end, datasync, false); } static pgoff_t __get_first_dirty_index(struct address_space *mapping, pgoff_t pgofs, int whence) { struct page *page; int nr_pages; if (whence != SEEK_DATA) return 0; /* find first dirty page index */ nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 1, &page); if (!nr_pages) return ULONG_MAX; pgofs = page->index; put_page(page); return pgofs; } static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, int whence) { switch (whence) { case SEEK_DATA: if ((blkaddr == NEW_ADDR && dirty == pgofs) || __is_valid_data_blkaddr(blkaddr)) return true; break; case SEEK_HOLE: if (blkaddr == NULL_ADDR) return true; break; } return false; } static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; struct dnode_of_data dn; pgoff_t pgofs, end_offset, dirty; loff_t data_ofs = offset; loff_t isize; int err = 0; inode_lock(inode); isize = i_size_read(inode); if (offset >= isize) goto fail; /* handle inline data case */ if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { if (whence == SEEK_HOLE) data_ofs = isize; goto found; } pgofs = (pgoff_t)(offset >> PAGE_SHIFT); dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); if (err && err != -ENOENT) { goto fail; } else if (err == -ENOENT) { /* direct node does not exists */ if (whence == SEEK_DATA) { pgofs = f2fs_get_next_page_offset(&dn, pgofs); continue; } else { goto found; } } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); /* find data/hole in dnode block */ for (; dn.ofs_in_node < end_offset; dn.ofs_in_node++, pgofs++, data_ofs = (loff_t)pgofs << PAGE_SHIFT) { block_t blkaddr; blkaddr = f2fs_data_blkaddr(&dn); if (__is_valid_data_blkaddr(blkaddr) && !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), blkaddr, DATA_GENERIC_ENHANCE)) { f2fs_put_dnode(&dn); goto fail; } if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, pgofs, whence)) { f2fs_put_dnode(&dn); goto found; } } f2fs_put_dnode(&dn); } if (whence == SEEK_DATA) goto fail; found: if (whence == SEEK_HOLE && data_ofs > isize) data_ofs = isize; inode_unlock(inode); return vfs_setpos(file, data_ofs, maxbytes); fail: inode_unlock(inode); return -ENXIO; } static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek_size(file, offset, whence, maxbytes, i_size_read(inode)); case SEEK_DATA: case SEEK_HOLE: if (offset < 0) return -ENXIO; return f2fs_seek_block(file, offset, whence); } return -EINVAL; } static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *inode = file_inode(file); int err; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; /* we don't need to use inline_data strictly */ err = f2fs_convert_inline_inode(inode); if (err) return err; file_accessed(file); vma->vm_ops = &f2fs_file_vm_ops; set_inode_flag(inode, FI_MMAP_FILE); return 0; } static int f2fs_file_open(struct inode *inode, struct file *filp) { int err = fscrypt_file_open(inode, filp); if (err) return err; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; err = fsverity_file_open(inode, filp); if (err) return err; filp->f_mode |= FMODE_NOWAIT; return dquot_file_open(inode, filp); } void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct f2fs_node *raw_node; int nr_free = 0, ofs = dn->ofs_in_node, len = count; __le32 *addr; int base = 0; bool compressed_cluster = false; int cluster_index = 0, valid_blocks = 0; int cluster_size = F2FS_I(dn->inode)->i_cluster_size; bool released = !F2FS_I(dn->inode)->i_compr_blocks; if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) base = get_extra_isize(dn->inode); raw_node = F2FS_NODE(dn->node_page); addr = blkaddr_in_node(raw_node) + base + ofs; /* Assumption: truncateion starts with cluster */ for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { block_t blkaddr = le32_to_cpu(*addr); if (f2fs_compressed_file(dn->inode) && !(cluster_index & (cluster_size - 1))) { if (compressed_cluster) f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); compressed_cluster = (blkaddr == COMPRESS_ADDR); valid_blocks = 0; } if (blkaddr == NULL_ADDR) continue; dn->data_blkaddr = NULL_ADDR; f2fs_set_data_blkaddr(dn); if (__is_valid_data_blkaddr(blkaddr)) { if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) continue; if (compressed_cluster) valid_blocks++; } if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); f2fs_invalidate_blocks(sbi, blkaddr); if (!released || blkaddr != COMPRESS_ADDR) nr_free++; } if (compressed_cluster) f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); if (nr_free) { pgoff_t fofs; /* * once we invalidate valid blkaddr in range [ofs, ofs + count], * we will invalidate all blkaddr in the whole range. */ fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + ofs; f2fs_update_extent_cache_range(dn, fofs, 0, len); dec_valid_block_count(sbi, dn->inode, nr_free); } dn->ofs_in_node = ofs; f2fs_update_time(sbi, REQ_TIME); trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, dn->ofs_in_node, nr_free); } void f2fs_truncate_data_blocks(struct dnode_of_data *dn) { f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); } static int truncate_partial_data_page(struct inode *inode, u64 from, bool cache_only) { loff_t offset = from & (PAGE_SIZE - 1); pgoff_t index = from >> PAGE_SHIFT; struct address_space *mapping = inode->i_mapping; struct page *page; if (!offset && !cache_only) return 0; if (cache_only) { page = find_lock_page(mapping, index); if (page && PageUptodate(page)) goto truncate_out; f2fs_put_page(page, 1); return 0; } page = f2fs_get_lock_data_page(inode, index, true); if (IS_ERR(page)) return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); truncate_out: f2fs_wait_on_page_writeback(page, DATA, true, true); zero_user(page, offset, PAGE_SIZE - offset); /* An encrypted inode should have a key and truncate the last page. */ f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); if (!cache_only) set_page_dirty(page); f2fs_put_page(page, 1); return 0; } int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; pgoff_t free_from; int count = 0, err = 0; struct page *ipage; bool truncate_page = false; trace_f2fs_truncate_blocks_enter(inode, from); free_from = (pgoff_t)F2FS_BLK_ALIGN(from); if (free_from >= sbi->max_file_blocks) goto free_partial; if (lock) f2fs_lock_op(sbi); ipage = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out; } if (f2fs_has_inline_data(inode)) { f2fs_truncate_inline_inode(inode, ipage, from); f2fs_put_page(ipage, 1); truncate_page = true; goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); if (err) { if (err == -ENOENT) goto free_next; goto out; } count = ADDRS_PER_PAGE(dn.node_page, inode); count -= dn.ofs_in_node; f2fs_bug_on(sbi, count < 0); if (dn.ofs_in_node || IS_INODE(dn.node_page)) { f2fs_truncate_data_blocks_range(&dn, count); free_from += count; } f2fs_put_dnode(&dn); free_next: err = f2fs_truncate_inode_blocks(inode, free_from); out: if (lock) f2fs_unlock_op(sbi); free_partial: /* lastly zero out the first data page */ if (!err) err = truncate_partial_data_page(inode, from, truncate_page); trace_f2fs_truncate_blocks_exit(inode, err); return err; } int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) { u64 free_from = from; int err; #ifdef CONFIG_F2FS_FS_COMPRESSION /* * for compressed file, only support cluster size * aligned truncation. */ if (f2fs_compressed_file(inode)) free_from = round_up(from, F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); #endif err = f2fs_do_truncate_blocks(inode, free_from, lock); if (err) return err; #ifdef CONFIG_F2FS_FS_COMPRESSION if (from != free_from) err = f2fs_truncate_partial_cluster(inode, from, lock); #endif return err; } int f2fs_truncate(struct inode *inode) { int err; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return 0; trace_f2fs_truncate(inode); if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); return -EIO; } /* we should check inline_data size */ if (!f2fs_may_inline_data(inode)) { err = f2fs_convert_inline_inode(inode); if (err) return err; } err = f2fs_truncate_blocks(inode, i_size_read(inode), true); if (err) return err; inode->i_mtime = inode->i_ctime = current_time(inode); f2fs_mark_inode_dirty_sync(inode, false); return 0; } int f2fs_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_inode *ri; unsigned int flags; if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { stat->result_mask |= STATX_BTIME; stat->btime.tv_sec = fi->i_crtime.tv_sec; stat->btime.tv_nsec = fi->i_crtime.tv_nsec; } flags = fi->i_flags; if (flags & F2FS_COMPR_FL) stat->attributes |= STATX_ATTR_COMPRESSED; if (flags & F2FS_APPEND_FL) stat->attributes |= STATX_ATTR_APPEND; if (IS_ENCRYPTED(inode)) stat->attributes |= STATX_ATTR_ENCRYPTED; if (flags & F2FS_IMMUTABLE_FL) stat->attributes |= STATX_ATTR_IMMUTABLE; if (flags & F2FS_NODUMP_FL) stat->attributes |= STATX_ATTR_NODUMP; if (IS_VERITY(inode)) stat->attributes |= STATX_ATTR_VERITY; stat->attributes_mask |= (STATX_ATTR_COMPRESSED | STATX_ATTR_APPEND | STATX_ATTR_ENCRYPTED | STATX_ATTR_IMMUTABLE | STATX_ATTR_NODUMP | STATX_ATTR_VERITY); generic_fillattr(inode, stat); /* we need to show initial sectors used for inline_data/dentries */ if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || f2fs_has_inline_dentry(inode)) stat->blocks += (stat->size + 511) >> 9; return 0; } #ifdef CONFIG_F2FS_FS_POSIX_ACL static void __setattr_copy(struct inode *inode, const struct iattr *attr) { unsigned int ia_valid = attr->ia_valid; if (ia_valid & ATTR_UID) inode->i_uid = attr->ia_uid; if (ia_valid & ATTR_GID) inode->i_gid = attr->ia_gid; if (ia_valid & ATTR_ATIME) inode->i_atime = attr->ia_atime; if (ia_valid & ATTR_MTIME) inode->i_mtime = attr->ia_mtime; if (ia_valid & ATTR_CTIME) inode->i_ctime = attr->ia_ctime; if (ia_valid & ATTR_MODE) { umode_t mode = attr->ia_mode; if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) mode &= ~S_ISGID; set_acl_inode(inode, mode); } } #else #define __setattr_copy setattr_copy #endif int f2fs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); int err; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if ((attr->ia_valid & ATTR_SIZE) && !f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; err = setattr_prepare(dentry, attr); if (err) return err; err = fscrypt_prepare_setattr(dentry, attr); if (err) return err; err = fsverity_prepare_setattr(dentry, attr); if (err) return err; if (is_quota_modification(inode, attr)) { err = dquot_initialize(inode); if (err) return err; } if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { f2fs_lock_op(F2FS_I_SB(inode)); err = dquot_transfer(inode, attr); if (err) { set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR); f2fs_unlock_op(F2FS_I_SB(inode)); return err; } /* * update uid/gid under lock_op(), so that dquot and inode can * be updated atomically. */ if (attr->ia_valid & ATTR_UID) inode->i_uid = attr->ia_uid; if (attr->ia_valid & ATTR_GID) inode->i_gid = attr->ia_gid; f2fs_mark_inode_dirty_sync(inode, true); f2fs_unlock_op(F2FS_I_SB(inode)); } if (attr->ia_valid & ATTR_SIZE) { loff_t old_size = i_size_read(inode); if (attr->ia_size > MAX_INLINE_DATA(inode)) { /* * should convert inline inode before i_size_write to * keep smaller than inline_data size with inline flag. */ err = f2fs_convert_inline_inode(inode); if (err) return err; } down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); truncate_setsize(inode, attr->ia_size); if (attr->ia_size <= old_size) err = f2fs_truncate(inode); /* * do not trim all blocks after i_size if target size is * larger than i_size. */ up_write(&F2FS_I(inode)->i_mmap_sem); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); if (err) return err; spin_lock(&F2FS_I(inode)->i_size_lock); inode->i_mtime = inode->i_ctime = current_time(inode); F2FS_I(inode)->last_disk_size = i_size_read(inode); spin_unlock(&F2FS_I(inode)->i_size_lock); } __setattr_copy(inode, attr); if (attr->ia_valid & ATTR_MODE) { err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { inode->i_mode = F2FS_I(inode)->i_acl_mode; clear_inode_flag(inode, FI_ACL_MODE); } } /* file size may changed here */ f2fs_mark_inode_dirty_sync(inode, true); /* inode change will produce dirty node pages flushed by checkpoint */ f2fs_balance_fs(F2FS_I_SB(inode), true); return err; } const struct inode_operations f2fs_file_inode_operations = { .getattr = f2fs_getattr, .setattr = f2fs_setattr, .get_acl = f2fs_get_acl, .set_acl = f2fs_set_acl, .listxattr = f2fs_listxattr, .fiemap = f2fs_fiemap, }; static int fill_zero(struct inode *inode, pgoff_t index, loff_t start, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *page; if (!len) return 0; f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); page = f2fs_get_new_data_page(inode, NULL, index, false); f2fs_unlock_op(sbi); if (IS_ERR(page)) return PTR_ERR(page); f2fs_wait_on_page_writeback(page, DATA, true, true); zero_user(page, start, len); set_page_dirty(page); f2fs_put_page(page, 1); return 0; } int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) { int err; while (pg_start < pg_end) { struct dnode_of_data dn; pgoff_t end_offset, count; set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); if (err) { if (err == -ENOENT) { pg_start = f2fs_get_next_page_offset(&dn, pg_start); continue; } return err; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); f2fs_truncate_data_blocks_range(&dn, count); f2fs_put_dnode(&dn); pg_start += count; } return 0; } static int punch_hole(struct inode *inode, loff_t offset, loff_t len) { pgoff_t pg_start, pg_end; loff_t off_start, off_end; int ret; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; off_start = offset & (PAGE_SIZE - 1); off_end = (offset + len) & (PAGE_SIZE - 1); if (pg_start == pg_end) { ret = fill_zero(inode, pg_start, off_start, off_end - off_start); if (ret) return ret; } else { if (off_start) { ret = fill_zero(inode, pg_start++, off_start, PAGE_SIZE - off_start); if (ret) return ret; } if (off_end) { ret = fill_zero(inode, pg_end, 0, off_end); if (ret) return ret; } if (pg_start < pg_end) { struct address_space *mapping = inode->i_mapping; loff_t blk_start, blk_end; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); f2fs_balance_fs(sbi, true); blk_start = (loff_t)pg_start << PAGE_SHIFT; blk_end = (loff_t)pg_end << PAGE_SHIFT; down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); truncate_inode_pages_range(mapping, blk_start, blk_end - 1); f2fs_lock_op(sbi); ret = f2fs_truncate_hole(inode, pg_start, pg_end); f2fs_unlock_op(sbi); up_write(&F2FS_I(inode)->i_mmap_sem); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); } } return ret; } static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, int *do_replace, pgoff_t off, pgoff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; int ret, done, i; next_dnode: set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { return ret; } else if (ret == -ENOENT) { if (dn.max_level == 0) return -ENOENT; done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - dn.ofs_in_node, len); blkaddr += done; do_replace += done; goto next; } done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - dn.ofs_in_node, len); for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { *blkaddr = f2fs_data_blkaddr(&dn); if (__is_valid_data_blkaddr(*blkaddr) && !f2fs_is_valid_blkaddr(sbi, *blkaddr, DATA_GENERIC_ENHANCE)) { f2fs_put_dnode(&dn); return -EFSCORRUPTED; } if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { if (f2fs_lfs_mode(sbi)) { f2fs_put_dnode(&dn); return -EOPNOTSUPP; } /* do not invalidate this block address */ f2fs_update_data_blkaddr(&dn, NULL_ADDR); *do_replace = 1; } } f2fs_put_dnode(&dn); next: len -= done; off += done; if (len) goto next_dnode; return 0; } static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, int *do_replace, pgoff_t off, int len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; int ret, i; for (i = 0; i < len; i++, do_replace++, blkaddr++) { if (*do_replace == 0) continue; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); if (ret) { dec_valid_block_count(sbi, inode, 1); f2fs_invalidate_blocks(sbi, *blkaddr); } else { f2fs_update_data_blkaddr(&dn, *blkaddr); } f2fs_put_dnode(&dn); } return 0; } static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, block_t *blkaddr, int *do_replace, pgoff_t src, pgoff_t dst, pgoff_t len, bool full) { struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); pgoff_t i = 0; int ret; while (i < len) { if (blkaddr[i] == NULL_ADDR && !full) { i++; continue; } if (do_replace[i] || blkaddr[i] == NULL_ADDR) { struct dnode_of_data dn; struct node_info ni; size_t new_size; pgoff_t ilen; set_new_dnode(&dn, dst_inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); if (ret) return ret; ret = f2fs_get_node_info(sbi, dn.nid, &ni); if (ret) { f2fs_put_dnode(&dn); return ret; } ilen = min((pgoff_t) ADDRS_PER_PAGE(dn.node_page, dst_inode) - dn.ofs_in_node, len - i); do { dn.data_blkaddr = f2fs_data_blkaddr(&dn); f2fs_truncate_data_blocks_range(&dn, 1); if (do_replace[i]) { f2fs_i_blocks_write(src_inode, 1, false, false); f2fs_i_blocks_write(dst_inode, 1, true, false); f2fs_replace_block(sbi, &dn, dn.data_blkaddr, blkaddr[i], ni.version, true, false); do_replace[i] = 0; } dn.ofs_in_node++; i++; new_size = (loff_t)(dst + i) << PAGE_SHIFT; if (dst_inode->i_size < new_size) f2fs_i_size_write(dst_inode, new_size); } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); f2fs_put_dnode(&dn); } else { struct page *psrc, *pdst; psrc = f2fs_get_lock_data_page(src_inode, src + i, true); if (IS_ERR(psrc)) return PTR_ERR(psrc); pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, true); if (IS_ERR(pdst)) { f2fs_put_page(psrc, 1); return PTR_ERR(pdst); } f2fs_copy_page(psrc, pdst); set_page_dirty(pdst); f2fs_put_page(pdst, 1); f2fs_put_page(psrc, 1); ret = f2fs_truncate_hole(src_inode, src + i, src + i + 1); if (ret) return ret; i++; } } return 0; } static int __exchange_data_block(struct inode *src_inode, struct inode *dst_inode, pgoff_t src, pgoff_t dst, pgoff_t len, bool full) { block_t *src_blkaddr; int *do_replace; pgoff_t olen; int ret; while (len) { olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), array_size(olen, sizeof(block_t)), GFP_NOFS); if (!src_blkaddr) return -ENOMEM; do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), array_size(olen, sizeof(int)), GFP_NOFS); if (!do_replace) { kvfree(src_blkaddr); return -ENOMEM; } ret = __read_out_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); if (ret) goto roll_back; ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, do_replace, src, dst, olen, full); if (ret) goto roll_back; src += olen; dst += olen; len -= olen; kvfree(src_blkaddr); kvfree(do_replace); } return 0; roll_back: __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); kvfree(src_blkaddr); kvfree(do_replace); return ret; } static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); pgoff_t start = offset >> PAGE_SHIFT; pgoff_t end = (offset + len) >> PAGE_SHIFT; int ret; f2fs_balance_fs(sbi, true); /* avoid gc operation during block exchange */ down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); f2fs_lock_op(sbi); f2fs_drop_extent_tree(inode); truncate_pagecache(inode, offset); ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); f2fs_unlock_op(sbi); up_write(&F2FS_I(inode)->i_mmap_sem); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); return ret; } static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) { loff_t new_size; int ret; if (offset + len >= i_size_read(inode)) return -EINVAL; /* collapse range should be aligned to block size of f2fs. */ if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) return -EINVAL; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); if (ret) return ret; ret = f2fs_do_collapse(inode, offset, len); if (ret) return ret; /* write out all moved pages, if possible */ down_write(&F2FS_I(inode)->i_mmap_sem); filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); truncate_pagecache(inode, offset); new_size = i_size_read(inode) - len; ret = f2fs_truncate_blocks(inode, new_size, true); up_write(&F2FS_I(inode)->i_mmap_sem); if (!ret) f2fs_i_size_write(inode, new_size); return ret; } static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, pgoff_t end) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); pgoff_t index = start; unsigned int ofs_in_node = dn->ofs_in_node; blkcnt_t count = 0; int ret; for (; index < end; index++, dn->ofs_in_node++) { if (f2fs_data_blkaddr(dn) == NULL_ADDR) count++; } dn->ofs_in_node = ofs_in_node; ret = f2fs_reserve_new_blocks(dn, count); if (ret) return ret; dn->ofs_in_node = ofs_in_node; for (index = start; index < end; index++, dn->ofs_in_node++) { dn->data_blkaddr = f2fs_data_blkaddr(dn); /* * f2fs_reserve_new_blocks will not guarantee entire block * allocation. */ if (dn->data_blkaddr == NULL_ADDR) { ret = -ENOSPC; break; } if (dn->data_blkaddr != NEW_ADDR) { f2fs_invalidate_blocks(sbi, dn->data_blkaddr); dn->data_blkaddr = NEW_ADDR; f2fs_set_data_blkaddr(dn); } } f2fs_update_extent_cache_range(dn, start, 0, index - start); return ret; } static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct address_space *mapping = inode->i_mapping; pgoff_t index, pg_start, pg_end; loff_t new_size = i_size_read(inode); loff_t off_start, off_end; int ret = 0; ret = inode_newsize_ok(inode, (len + offset)); if (ret) return ret; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); if (ret) return ret; pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; off_start = offset & (PAGE_SIZE - 1); off_end = (offset + len) & (PAGE_SIZE - 1); if (pg_start == pg_end) { ret = fill_zero(inode, pg_start, off_start, off_end - off_start); if (ret) return ret; new_size = max_t(loff_t, new_size, offset + len); } else { if (off_start) { ret = fill_zero(inode, pg_start++, off_start, PAGE_SIZE - off_start); if (ret) return ret; new_size = max_t(loff_t, new_size, (loff_t)pg_start << PAGE_SHIFT); } for (index = pg_start; index < pg_end;) { struct dnode_of_data dn; unsigned int end_offset; pgoff_t end; down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); truncate_pagecache_range(inode, (loff_t)index << PAGE_SHIFT, ((loff_t)pg_end << PAGE_SHIFT) - 1); f2fs_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); if (ret) { f2fs_unlock_op(sbi); up_write(&F2FS_I(inode)->i_mmap_sem); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); goto out; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); end = min(pg_end, end_offset - dn.ofs_in_node + index); ret = f2fs_do_zero_range(&dn, index, end); f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); up_write(&F2FS_I(inode)->i_mmap_sem); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); f2fs_balance_fs(sbi, dn.node_changed); if (ret) goto out; index = end; new_size = max_t(loff_t, new_size, (loff_t)index << PAGE_SHIFT); } if (off_end) { ret = fill_zero(inode, pg_end, 0, off_end); if (ret) goto out; new_size = max_t(loff_t, new_size, offset + len); } } out: if (new_size > i_size_read(inode)) { if (mode & FALLOC_FL_KEEP_SIZE) file_set_keep_isize(inode); else f2fs_i_size_write(inode, new_size); } return ret; } static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t nr, pg_start, pg_end, delta, idx; loff_t new_size; int ret = 0; new_size = i_size_read(inode) + len; ret = inode_newsize_ok(inode, new_size); if (ret) return ret; if (offset >= i_size_read(inode)) return -EINVAL; /* insert range should be aligned to block size of f2fs. */ if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) return -EINVAL; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; f2fs_balance_fs(sbi, true); down_write(&F2FS_I(inode)->i_mmap_sem); ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); up_write(&F2FS_I(inode)->i_mmap_sem); if (ret) return ret; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); if (ret) return ret; pg_start = offset >> PAGE_SHIFT; pg_end = (offset + len) >> PAGE_SHIFT; delta = pg_end - pg_start; idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); /* avoid gc operation during block exchange */ down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); truncate_pagecache(inode, offset); while (!ret && idx > pg_start) { nr = idx - pg_start; if (nr > delta) nr = delta; idx -= nr; f2fs_lock_op(sbi); f2fs_drop_extent_tree(inode); ret = __exchange_data_block(inode, inode, idx, idx + delta, nr, false); f2fs_unlock_op(sbi); } up_write(&F2FS_I(inode)->i_mmap_sem); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); /* write out all moved pages, if possible */ down_write(&F2FS_I(inode)->i_mmap_sem); filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); truncate_pagecache(inode, offset); up_write(&F2FS_I(inode)->i_mmap_sem); if (!ret) f2fs_i_size_write(inode, new_size); return ret; } static int expand_inode_data(struct inode *inode, loff_t offset, loff_t len, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_map_blocks map = { .m_next_pgofs = NULL, .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, .m_may_create = true }; pgoff_t pg_end; loff_t new_size = i_size_read(inode); loff_t off_end; int err; err = inode_newsize_ok(inode, (len + offset)); if (err) return err; err = f2fs_convert_inline_inode(inode); if (err) return err; f2fs_balance_fs(sbi, true); pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; off_end = (offset + len) & (PAGE_SIZE - 1); map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; map.m_len = pg_end - map.m_lblk; if (off_end) map.m_len++; if (!map.m_len) return 0; if (f2fs_is_pinned_file(inode)) { block_t len = (map.m_len >> sbi->log_blocks_per_seg) << sbi->log_blocks_per_seg; block_t done = 0; if (map.m_len % sbi->blocks_per_seg) len += sbi->blocks_per_seg; map.m_len = sbi->blocks_per_seg; next_alloc: if (has_not_enough_free_secs(sbi, 0, GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { down_write(&sbi->gc_lock); err = f2fs_gc(sbi, true, false, NULL_SEGNO); if (err && err != -ENODATA && err != -EAGAIN) goto out_err; } down_write(&sbi->pin_sem); map.m_seg_type = CURSEG_COLD_DATA_PINNED; f2fs_lock_op(sbi); f2fs_allocate_new_segment(sbi, CURSEG_COLD_DATA); f2fs_unlock_op(sbi); err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); up_write(&sbi->pin_sem); done += map.m_len; len -= map.m_len; map.m_lblk += map.m_len; if (!err && len) goto next_alloc; map.m_len = done; } else { err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); } out_err: if (err) { pgoff_t last_off; if (!map.m_len) return err; last_off = map.m_lblk + map.m_len - 1; /* update new size to the failed position */ new_size = (last_off == pg_end) ? offset + len : (loff_t)(last_off + 1) << PAGE_SHIFT; } else { new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; } if (new_size > i_size_read(inode)) { if (mode & FALLOC_FL_KEEP_SIZE) file_set_keep_isize(inode); else f2fs_i_size_write(inode, new_size); } return err; } static long f2fs_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); long ret = 0; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) return -ENOSPC; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; /* f2fs only support ->fallocate for regular file */ if (!S_ISREG(inode->i_mode)) return -EINVAL; if (IS_ENCRYPTED(inode) && (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) return -EOPNOTSUPP; if (f2fs_compressed_file(inode) && (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) return -EOPNOTSUPP; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)) return -EOPNOTSUPP; inode_lock(inode); if (mode & FALLOC_FL_PUNCH_HOLE) { if (offset >= inode->i_size) goto out; ret = punch_hole(inode, offset, len); } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { ret = f2fs_collapse_range(inode, offset, len); } else if (mode & FALLOC_FL_ZERO_RANGE) { ret = f2fs_zero_range(inode, offset, len, mode); } else if (mode & FALLOC_FL_INSERT_RANGE) { ret = f2fs_insert_range(inode, offset, len); } else { ret = expand_inode_data(inode, offset, len, mode); } if (!ret) { inode->i_mtime = inode->i_ctime = current_time(inode); f2fs_mark_inode_dirty_sync(inode, false); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); } out: inode_unlock(inode); trace_f2fs_fallocate(inode, mode, offset, len, ret); return ret; } static int f2fs_release_file(struct inode *inode, struct file *filp) { /* * f2fs_relase_file is called at every close calls. So we should * not drop any inmemory pages by close called by other process. */ if (!(filp->f_mode & FMODE_WRITE) || atomic_read(&inode->i_writecount) != 1) return 0; /* some remained atomic pages should discarded */ if (f2fs_is_atomic_file(inode)) f2fs_drop_inmem_pages(inode); if (f2fs_is_volatile_file(inode)) { set_inode_flag(inode, FI_DROP_CACHE); filemap_fdatawrite(inode->i_mapping); clear_inode_flag(inode, FI_DROP_CACHE); clear_inode_flag(inode, FI_VOLATILE_FILE); stat_dec_volatile_write(inode); } return 0; } static int f2fs_file_flush(struct file *file, fl_owner_t id) { struct inode *inode = file_inode(file); /* * If the process doing a transaction is crashed, we should do * roll-back. Otherwise, other reader/write can see corrupted database * until all the writers close its file. Since this should be done * before dropping file lock, it needs to do in ->flush. */ if (f2fs_is_atomic_file(inode) && F2FS_I(inode)->inmem_task == current) f2fs_drop_inmem_pages(inode); return 0; } static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) { struct f2fs_inode_info *fi = F2FS_I(inode); u32 masked_flags = fi->i_flags & mask; f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask)); /* Is it quota file? Do not allow user to mess with it */ if (IS_NOQUOTA(inode)) return -EPERM; if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) return -EOPNOTSUPP; if (!f2fs_empty_dir(inode)) return -ENOTEMPTY; } if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) return -EOPNOTSUPP; if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) return -EINVAL; } if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { if (masked_flags & F2FS_COMPR_FL) { if (f2fs_disable_compressed_file(inode)) return -EINVAL; } if (iflags & F2FS_NOCOMP_FL) return -EINVAL; if (iflags & F2FS_COMPR_FL) { if (!f2fs_may_compress(inode)) return -EINVAL; set_compress_context(inode); } } if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { if (masked_flags & F2FS_COMPR_FL) return -EINVAL; } fi->i_flags = iflags | (fi->i_flags & ~mask); f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && (fi->i_flags & F2FS_NOCOMP_FL)); if (fi->i_flags & F2FS_PROJINHERIT_FL) set_inode_flag(inode, FI_PROJ_INHERIT); else clear_inode_flag(inode, FI_PROJ_INHERIT); inode->i_ctime = current_time(inode); f2fs_set_inode_flags(inode); f2fs_mark_inode_dirty_sync(inode, true); return 0; } /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ /* * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. */ static const struct { u32 iflag; u32 fsflag; } f2fs_fsflags_map[] = { { F2FS_COMPR_FL, FS_COMPR_FL }, { F2FS_SYNC_FL, FS_SYNC_FL }, { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, { F2FS_APPEND_FL, FS_APPEND_FL }, { F2FS_NODUMP_FL, FS_NODUMP_FL }, { F2FS_NOATIME_FL, FS_NOATIME_FL }, { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, { F2FS_INDEX_FL, FS_INDEX_FL }, { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, }; #define F2FS_GETTABLE_FS_FL ( \ FS_COMPR_FL | \ FS_SYNC_FL | \ FS_IMMUTABLE_FL | \ FS_APPEND_FL | \ FS_NODUMP_FL | \ FS_NOATIME_FL | \ FS_NOCOMP_FL | \ FS_INDEX_FL | \ FS_DIRSYNC_FL | \ FS_PROJINHERIT_FL | \ FS_ENCRYPT_FL | \ FS_INLINE_DATA_FL | \ FS_NOCOW_FL | \ FS_VERITY_FL | \ FS_CASEFOLD_FL) #define F2FS_SETTABLE_FS_FL ( \ FS_COMPR_FL | \ FS_SYNC_FL | \ FS_IMMUTABLE_FL | \ FS_APPEND_FL | \ FS_NODUMP_FL | \ FS_NOATIME_FL | \ FS_NOCOMP_FL | \ FS_DIRSYNC_FL | \ FS_PROJINHERIT_FL | \ FS_CASEFOLD_FL) /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ static inline u32 f2fs_iflags_to_fsflags(u32 iflags) { u32 fsflags = 0; int i; for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) if (iflags & f2fs_fsflags_map[i].iflag) fsflags |= f2fs_fsflags_map[i].fsflag; return fsflags; } /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) { u32 iflags = 0; int i; for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) if (fsflags & f2fs_fsflags_map[i].fsflag) iflags |= f2fs_fsflags_map[i].iflag; return iflags; } static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_inode_info *fi = F2FS_I(inode); u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); if (IS_ENCRYPTED(inode)) fsflags |= FS_ENCRYPT_FL; if (IS_VERITY(inode)) fsflags |= FS_VERITY_FL; if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) fsflags |= FS_INLINE_DATA_FL; if (is_inode_flag_set(inode, FI_PIN_FILE)) fsflags |= FS_NOCOW_FL; fsflags &= F2FS_GETTABLE_FS_FL; return put_user(fsflags, (int __user *)arg); } static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_inode_info *fi = F2FS_I(inode); u32 fsflags, old_fsflags; u32 iflags; int ret; if (!inode_owner_or_capable(inode)) return -EACCES; if (get_user(fsflags, (int __user *)arg)) return -EFAULT; if (fsflags & ~F2FS_GETTABLE_FS_FL) return -EOPNOTSUPP; fsflags &= F2FS_SETTABLE_FS_FL; iflags = f2fs_fsflags_to_iflags(fsflags); if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) return -EOPNOTSUPP; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); if (ret) goto out; ret = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); out: inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); return put_user(inode->i_generation, (int __user *)arg); } static int f2fs_ioc_start_atomic_write(struct file *filp) { struct inode *inode = file_inode(filp); struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (filp->f_flags & O_DIRECT) return -EINVAL; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); f2fs_disable_compressed_file(inode); if (f2fs_is_atomic_file(inode)) { if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) ret = -EINVAL; goto out; } ret = f2fs_convert_inline_inode(inode); if (ret) goto out; down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); /* * Should wait end_io to count F2FS_WB_CP_DATA correctly by * f2fs_is_atomic_file. */ if (get_dirty_pages(inode)) f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", inode->i_ino, get_dirty_pages(inode)); ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (ret) { up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); goto out; } spin_lock(&sbi->inode_lock[ATOMIC_FILE]); if (list_empty(&fi->inmem_ilist)) list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); sbi->atomic_files++; spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); /* add inode in inmem_list first and set atomic_file */ set_inode_flag(inode, FI_ATOMIC_FILE); clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); F2FS_I(inode)->inmem_task = current; stat_update_max_atomic_write(inode); out: inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_commit_atomic_write(struct file *filp) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; ret = mnt_want_write_file(filp); if (ret) return ret; f2fs_balance_fs(F2FS_I_SB(inode), true); inode_lock(inode); if (f2fs_is_volatile_file(inode)) { ret = -EINVAL; goto err_out; } if (f2fs_is_atomic_file(inode)) { ret = f2fs_commit_inmem_pages(inode); if (ret) goto err_out; ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); if (!ret) f2fs_drop_inmem_pages(inode); } else { ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); } err_out: if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); ret = -EINVAL; } inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_start_volatile_write(struct file *filp) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; if (!S_ISREG(inode->i_mode)) return -EINVAL; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); if (f2fs_is_volatile_file(inode)) goto out; ret = f2fs_convert_inline_inode(inode); if (ret) goto out; stat_inc_volatile_write(inode); stat_update_max_volatile_write(inode); set_inode_flag(inode, FI_VOLATILE_FILE); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); out: inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_release_volatile_write(struct file *filp) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); if (!f2fs_is_volatile_file(inode)) goto out; if (!f2fs_is_first_block_written(inode)) { ret = truncate_partial_data_page(inode, 0, true); goto out; } ret = punch_hole(inode, 0, F2FS_BLKSIZE); out: inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_abort_volatile_write(struct file *filp) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); if (f2fs_is_atomic_file(inode)) f2fs_drop_inmem_pages(inode); if (f2fs_is_volatile_file(inode)) { clear_inode_flag(inode, FI_VOLATILE_FILE); stat_dec_volatile_write(inode); ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); } clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); inode_unlock(inode); mnt_drop_write_file(filp); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return ret; } static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct super_block *sb = sbi->sb; __u32 in; int ret = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(in, (__u32 __user *)arg)) return -EFAULT; if (in != F2FS_GOING_DOWN_FULLSYNC) { ret = mnt_want_write_file(filp); if (ret) { if (ret == -EROFS) { ret = 0; f2fs_stop_checkpoint(sbi, false); set_sbi_flag(sbi, SBI_IS_SHUTDOWN); trace_f2fs_shutdown(sbi, in, ret); } return ret; } } switch (in) { case F2FS_GOING_DOWN_FULLSYNC: sb = freeze_bdev(sb->s_bdev); if (IS_ERR(sb)) { ret = PTR_ERR(sb); goto out; } if (sb) { f2fs_stop_checkpoint(sbi, false); set_sbi_flag(sbi, SBI_IS_SHUTDOWN); thaw_bdev(sb->s_bdev, sb); } break; case F2FS_GOING_DOWN_METASYNC: /* do checkpoint only */ ret = f2fs_sync_fs(sb, 1); if (ret) goto out; f2fs_stop_checkpoint(sbi, false); set_sbi_flag(sbi, SBI_IS_SHUTDOWN); break; case F2FS_GOING_DOWN_NOSYNC: f2fs_stop_checkpoint(sbi, false); set_sbi_flag(sbi, SBI_IS_SHUTDOWN); break; case F2FS_GOING_DOWN_METAFLUSH: f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); f2fs_stop_checkpoint(sbi, false); set_sbi_flag(sbi, SBI_IS_SHUTDOWN); break; case F2FS_GOING_DOWN_NEED_FSCK: set_sbi_flag(sbi, SBI_NEED_FSCK); set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); set_sbi_flag(sbi, SBI_IS_DIRTY); /* do checkpoint only */ ret = f2fs_sync_fs(sb, 1); goto out; default: ret = -EINVAL; goto out; } f2fs_stop_gc_thread(sbi); f2fs_stop_discard_thread(sbi); f2fs_drop_discard_cmd(sbi); clear_opt(sbi, DISCARD); f2fs_update_time(sbi, REQ_TIME); out: if (in != F2FS_GOING_DOWN_FULLSYNC) mnt_drop_write_file(filp); trace_f2fs_shutdown(sbi, in, ret); return ret; } static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct super_block *sb = inode->i_sb; struct request_queue *q = bdev_get_queue(sb->s_bdev); struct fstrim_range range; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!f2fs_hw_support_discard(F2FS_SB(sb))) return -EOPNOTSUPP; if (copy_from_user(&range, (struct fstrim_range __user *)arg, sizeof(range))) return -EFAULT; ret = mnt_want_write_file(filp); if (ret) return ret; range.minlen = max((unsigned int)range.minlen, q->limits.discard_granularity); ret = f2fs_trim_fs(F2FS_SB(sb), &range); mnt_drop_write_file(filp); if (ret < 0) return ret; if (copy_to_user((struct fstrim_range __user *)arg, &range, sizeof(range))) return -EFAULT; f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return 0; } static bool uuid_is_nonzero(__u8 u[16]) { int i; for (i = 0; i < 16; i++) if (u[i]) return true; return false; } static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) return -EOPNOTSUPP; f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); } static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_get_policy(filp, (void __user *)arg); } static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int err; if (!f2fs_sb_has_encrypt(sbi)) return -EOPNOTSUPP; err = mnt_want_write_file(filp); if (err) return err; down_write(&sbi->sb_lock); if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) goto got_it; /* update superblock with uuid */ generate_random_uuid(sbi->raw_super->encrypt_pw_salt); err = f2fs_commit_super(sbi, false); if (err) { /* undo new data */ memset(sbi->raw_super->encrypt_pw_salt, 0, 16); goto out_err; } got_it: if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 16)) err = -EFAULT; out_err: up_write(&sbi->sb_lock); mnt_drop_write_file(filp); return err; } static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); } static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_add_key(filp, (void __user *)arg); } static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_remove_key(filp, (void __user *)arg); } static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); } static int f2fs_ioc_get_encryption_key_status(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); } static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); } static int f2fs_ioc_gc(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); __u32 sync; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(sync, (__u32 __user *)arg)) return -EFAULT; if (f2fs_readonly(sbi->sb)) return -EROFS; ret = mnt_want_write_file(filp); if (ret) return ret; if (!sync) { if (!down_write_trylock(&sbi->gc_lock)) { ret = -EBUSY; goto out; } } else { down_write(&sbi->gc_lock); } ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); out: mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_gc_range range; u64 end; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, sizeof(range))) return -EFAULT; if (f2fs_readonly(sbi->sb)) return -EROFS; end = range.start + range.len; if (end < range.start || range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) return -EINVAL; ret = mnt_want_write_file(filp); if (ret) return ret; do_more: if (!range.sync) { if (!down_write_trylock(&sbi->gc_lock)) { ret = -EBUSY; goto out; } } else { down_write(&sbi->gc_lock); } ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); if (ret) { if (ret == -EBUSY) ret = -EAGAIN; goto out; } range.start += BLKS_PER_SEC(sbi); if (range.start <= end) goto do_more; out: mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (f2fs_readonly(sbi->sb)) return -EROFS; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); return -EINVAL; } ret = mnt_want_write_file(filp); if (ret) return ret; ret = f2fs_sync_fs(sbi->sb, 1); mnt_drop_write_file(filp); return ret; } static int f2fs_defragment_range(struct f2fs_sb_info *sbi, struct file *filp, struct f2fs_defragment *range) { struct inode *inode = file_inode(filp); struct f2fs_map_blocks map = { .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE , .m_may_create = false }; struct extent_info ei = {0, 0, 0}; pgoff_t pg_start, pg_end, next_pgofs; unsigned int blk_per_seg = sbi->blocks_per_seg; unsigned int total = 0, sec_num; block_t blk_end = 0; bool fragmented = false; int err; /* if in-place-update policy is enabled, don't waste time here */ if (f2fs_should_update_inplace(inode, NULL)) return -EINVAL; pg_start = range->start >> PAGE_SHIFT; pg_end = (range->start + range->len) >> PAGE_SHIFT; f2fs_balance_fs(sbi, true); inode_lock(inode); /* writeback all dirty pages in the range */ err = filemap_write_and_wait_range(inode->i_mapping, range->start, range->start + range->len - 1); if (err) goto out; /* * lookup mapping info in extent cache, skip defragmenting if physical * block addresses are continuous. */ if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { if (ei.fofs + ei.len >= pg_end) goto out; } map.m_lblk = pg_start; map.m_next_pgofs = &next_pgofs; /* * lookup mapping info in dnode page cache, skip defragmenting if all * physical block addresses are continuous even if there are hole(s) * in logical blocks. */ while (map.m_lblk < pg_end) { map.m_len = pg_end - map.m_lblk; err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); if (err) goto out; if (!(map.m_flags & F2FS_MAP_FLAGS)) { map.m_lblk = next_pgofs; continue; } if (blk_end && blk_end != map.m_pblk) fragmented = true; /* record total count of block that we're going to move */ total += map.m_len; blk_end = map.m_pblk + map.m_len; map.m_lblk += map.m_len; } if (!fragmented) { total = 0; goto out; } sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); /* * make sure there are enough free section for LFS allocation, this can * avoid defragment running in SSR mode when free section are allocated * intensively */ if (has_not_enough_free_secs(sbi, 0, sec_num)) { err = -EAGAIN; goto out; } map.m_lblk = pg_start; map.m_len = pg_end - pg_start; total = 0; while (map.m_lblk < pg_end) { pgoff_t idx; int cnt = 0; do_map: map.m_len = pg_end - map.m_lblk; err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); if (err) goto clear_out; if (!(map.m_flags & F2FS_MAP_FLAGS)) { map.m_lblk = next_pgofs; goto check; } set_inode_flag(inode, FI_DO_DEFRAG); idx = map.m_lblk; while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { struct page *page; page = f2fs_get_lock_data_page(inode, idx, true); if (IS_ERR(page)) { err = PTR_ERR(page); goto clear_out; } set_page_dirty(page); f2fs_put_page(page, 1); idx++; cnt++; total++; } map.m_lblk = idx; check: if (map.m_lblk < pg_end && cnt < blk_per_seg) goto do_map; clear_inode_flag(inode, FI_DO_DEFRAG); err = filemap_fdatawrite(inode->i_mapping); if (err) goto out; } clear_out: clear_inode_flag(inode, FI_DO_DEFRAG); out: inode_unlock(inode); if (!err) range->len = (u64)total << PAGE_SHIFT; return err; } static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_defragment range; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) return -EINVAL; if (f2fs_readonly(sbi->sb)) return -EROFS; if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, sizeof(range))) return -EFAULT; /* verify alignment of offset & size */ if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) return -EINVAL; if (unlikely((range.start + range.len) >> PAGE_SHIFT > sbi->max_file_blocks)) return -EINVAL; err = mnt_want_write_file(filp); if (err) return err; err = f2fs_defragment_range(sbi, filp, &range); mnt_drop_write_file(filp); f2fs_update_time(sbi, REQ_TIME); if (err < 0) return err; if (copy_to_user((struct f2fs_defragment __user *)arg, &range, sizeof(range))) return -EFAULT; return 0; } static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len) { struct inode *src = file_inode(file_in); struct inode *dst = file_inode(file_out); struct f2fs_sb_info *sbi = F2FS_I_SB(src); size_t olen = len, dst_max_i_size = 0; size_t dst_osize; int ret; if (file_in->f_path.mnt != file_out->f_path.mnt || src->i_sb != dst->i_sb) return -EXDEV; if (unlikely(f2fs_readonly(src->i_sb))) return -EROFS; if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) return -EINVAL; if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) return -EOPNOTSUPP; if (src == dst) { if (pos_in == pos_out) return 0; if (pos_out > pos_in && pos_out < pos_in + len) return -EINVAL; } inode_lock(src); if (src != dst) { ret = -EBUSY; if (!inode_trylock(dst)) goto out; } ret = -EINVAL; if (pos_in + len > src->i_size || pos_in + len < pos_in) goto out_unlock; if (len == 0) olen = len = src->i_size - pos_in; if (pos_in + len == src->i_size) len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; if (len == 0) { ret = 0; goto out_unlock; } dst_osize = dst->i_size; if (pos_out + olen > dst->i_size) dst_max_i_size = pos_out + olen; /* verify the end result is block aligned */ if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) goto out_unlock; ret = f2fs_convert_inline_inode(src); if (ret) goto out_unlock; ret = f2fs_convert_inline_inode(dst); if (ret) goto out_unlock; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(src->i_mapping, pos_in, pos_in + len); if (ret) goto out_unlock; ret = filemap_write_and_wait_range(dst->i_mapping, pos_out, pos_out + len); if (ret) goto out_unlock; f2fs_balance_fs(sbi, true); down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); if (src != dst) { ret = -EBUSY; if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) goto out_src; } f2fs_lock_op(sbi); ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, pos_out >> F2FS_BLKSIZE_BITS, len >> F2FS_BLKSIZE_BITS, false); if (!ret) { if (dst_max_i_size) f2fs_i_size_write(dst, dst_max_i_size); else if (dst_osize != dst->i_size) f2fs_i_size_write(dst, dst_osize); } f2fs_unlock_op(sbi); if (src != dst) up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); out_src: up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); out_unlock: if (src != dst) inode_unlock(dst); out: inode_unlock(src); return ret; } static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) { struct f2fs_move_range range; struct fd dst; int err; if (!(filp->f_mode & FMODE_READ) || !(filp->f_mode & FMODE_WRITE)) return -EBADF; if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, sizeof(range))) return -EFAULT; dst = fdget(range.dst_fd); if (!dst.file) return -EBADF; if (!(dst.file->f_mode & FMODE_WRITE)) { err = -EBADF; goto err_out; } err = mnt_want_write_file(filp); if (err) goto err_out; err = f2fs_move_file_range(filp, range.pos_in, dst.file, range.pos_out, range.len); mnt_drop_write_file(filp); if (err) goto err_out; if (copy_to_user((struct f2fs_move_range __user *)arg, &range, sizeof(range))) err = -EFAULT; err_out: fdput(dst); return err; } static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct sit_info *sm = SIT_I(sbi); unsigned int start_segno = 0, end_segno = 0; unsigned int dev_start_segno = 0, dev_end_segno = 0; struct f2fs_flush_device range; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (f2fs_readonly(sbi->sb)) return -EROFS; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return -EINVAL; if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, sizeof(range))) return -EFAULT; if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || __is_large_section(sbi)) { f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); return -EINVAL; } ret = mnt_want_write_file(filp); if (ret) return ret; if (range.dev_num != 0) dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); start_segno = sm->last_victim[FLUSH_DEVICE]; if (start_segno < dev_start_segno || start_segno >= dev_end_segno) start_segno = dev_start_segno; end_segno = min(start_segno + range.segments, dev_end_segno); while (start_segno < end_segno) { if (!down_write_trylock(&sbi->gc_lock)) { ret = -EBUSY; goto out; } sm->last_victim[GC_CB] = end_segno + 1; sm->last_victim[GC_GREEDY] = end_segno + 1; sm->last_victim[ALLOC_NEXT] = end_segno + 1; ret = f2fs_gc(sbi, true, true, start_segno); if (ret == -EAGAIN) ret = 0; else if (ret < 0) break; start_segno++; } out: mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); /* Must validate to set it with SQLite behavior in Android. */ sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; return put_user(sb_feature, (u32 __user *)arg); } #ifdef CONFIG_QUOTA int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) { struct dquot *transfer_to[MAXQUOTAS] = {}; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct super_block *sb = sbi->sb; int err = 0; transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); if (!IS_ERR(transfer_to[PRJQUOTA])) { err = __dquot_transfer(inode, transfer_to); if (err) set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); dqput(transfer_to[PRJQUOTA]); } return err; } static int f2fs_ioc_setproject(struct file *filp, __u32 projid) { struct inode *inode = file_inode(filp); struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *ipage; kprojid_t kprojid; int err; if (!f2fs_sb_has_project_quota(sbi)) { if (projid != F2FS_DEF_PROJID) return -EOPNOTSUPP; else return 0; } if (!f2fs_has_extra_attr(inode)) return -EOPNOTSUPP; kprojid = make_kprojid(&init_user_ns, (projid_t)projid); if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) return 0; err = -EPERM; /* Is it quota file? Do not allow user to mess with it */ if (IS_NOQUOTA(inode)) return err; ipage = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, i_projid)) { err = -EOVERFLOW; f2fs_put_page(ipage, 1); return err; } f2fs_put_page(ipage, 1); err = dquot_initialize(inode); if (err) return err; f2fs_lock_op(sbi); err = f2fs_transfer_project_quota(inode, kprojid); if (err) goto out_unlock; F2FS_I(inode)->i_projid = kprojid; inode->i_ctime = current_time(inode); f2fs_mark_inode_dirty_sync(inode, true); out_unlock: f2fs_unlock_op(sbi); return err; } #else int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) { return 0; } static int f2fs_ioc_setproject(struct file *filp, __u32 projid) { if (projid != F2FS_DEF_PROJID) return -EOPNOTSUPP; return 0; } #endif /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ /* * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. */ static const struct { u32 iflag; u32 xflag; } f2fs_xflags_map[] = { { F2FS_SYNC_FL, FS_XFLAG_SYNC }, { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, { F2FS_APPEND_FL, FS_XFLAG_APPEND }, { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, }; #define F2FS_SUPPORTED_XFLAGS ( \ FS_XFLAG_SYNC | \ FS_XFLAG_IMMUTABLE | \ FS_XFLAG_APPEND | \ FS_XFLAG_NODUMP | \ FS_XFLAG_NOATIME | \ FS_XFLAG_PROJINHERIT) /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ static inline u32 f2fs_iflags_to_xflags(u32 iflags) { u32 xflags = 0; int i; for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) if (iflags & f2fs_xflags_map[i].iflag) xflags |= f2fs_xflags_map[i].xflag; return xflags; } /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ static inline u32 f2fs_xflags_to_iflags(u32 xflags) { u32 iflags = 0; int i; for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) if (xflags & f2fs_xflags_map[i].xflag) iflags |= f2fs_xflags_map[i].iflag; return iflags; } static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) { struct f2fs_inode_info *fi = F2FS_I(inode); simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); } static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct fsxattr fa; f2fs_fill_fsxattr(inode, &fa); if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) return -EFAULT; return 0; } static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct fsxattr fa, old_fa; u32 iflags; int err; if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) return -EFAULT; /* Make sure caller has proper permission */ if (!inode_owner_or_capable(inode)) return -EACCES; if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) return -EOPNOTSUPP; iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) return -EOPNOTSUPP; err = mnt_want_write_file(filp); if (err) return err; inode_lock(inode); f2fs_fill_fsxattr(inode, &old_fa); err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); if (err) goto out; err = f2fs_setflags_common(inode, iflags, f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); if (err) goto out; err = f2fs_ioc_setproject(filp, fa.fsx_projid); out: inode_unlock(inode); mnt_drop_write_file(filp); return err; } int f2fs_pin_file_control(struct inode *inode, bool inc) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); /* Use i_gc_failures for normal file as a risk signal. */ if (inc) f2fs_i_gc_failures_write(inode, fi->i_gc_failures[GC_FAILURE_PIN] + 1); if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", __func__, inode->i_ino, fi->i_gc_failures[GC_FAILURE_PIN]); clear_inode_flag(inode, FI_PIN_FILE); return -EAGAIN; } return 0; } static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); __u32 pin; int ret = 0; if (get_user(pin, (__u32 __user *)arg)) return -EFAULT; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (f2fs_readonly(F2FS_I_SB(inode)->sb)) return -EROFS; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); if (f2fs_should_update_outplace(inode, NULL)) { ret = -EINVAL; goto out; } if (!pin) { clear_inode_flag(inode, FI_PIN_FILE); f2fs_i_gc_failures_write(inode, 0); goto done; } if (f2fs_pin_file_control(inode, false)) { ret = -EAGAIN; goto out; } ret = f2fs_convert_inline_inode(inode); if (ret) goto out; if (f2fs_disable_compressed_file(inode)) { ret = -EOPNOTSUPP; goto out; } set_inode_flag(inode, FI_PIN_FILE); ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; done: f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); out: inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); __u32 pin = 0; if (is_inode_flag_set(inode, FI_PIN_FILE)) pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; return put_user(pin, (u32 __user *)arg); } int f2fs_precache_extents(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_map_blocks map; pgoff_t m_next_extent; loff_t end; int err; if (is_inode_flag_set(inode, FI_NO_EXTENT)) return -EOPNOTSUPP; map.m_lblk = 0; map.m_next_pgofs = NULL; map.m_next_extent = &m_next_extent; map.m_seg_type = NO_CHECK_TYPE; map.m_may_create = false; end = F2FS_I_SB(inode)->max_file_blocks; while (map.m_lblk < end) { map.m_len = end - map.m_lblk; down_write(&fi->i_gc_rwsem[WRITE]); err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); up_write(&fi->i_gc_rwsem[WRITE]); if (err) return err; map.m_lblk = m_next_extent; } return err; } static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) { return f2fs_precache_extents(file_inode(filp)); } static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) { struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); __u64 block_count; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (f2fs_readonly(sbi->sb)) return -EROFS; if (copy_from_user(&block_count, (void __user *)arg, sizeof(block_count))) return -EFAULT; return f2fs_resize_fs(sbi, block_count); } static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { f2fs_warn(F2FS_I_SB(inode), "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", inode->i_ino); return -EOPNOTSUPP; } return fsverity_ioctl_enable(filp, (const void __user *)arg); } static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fsverity_ioctl_measure(filp, (void __user *)arg); } static int f2fs_get_volume_name(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); char *vbuf; int count; int err = 0; vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); if (!vbuf) return -ENOMEM; down_read(&sbi->sb_lock); count = utf16s_to_utf8s(sbi->raw_super->volume_name, ARRAY_SIZE(sbi->raw_super->volume_name), UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); up_read(&sbi->sb_lock); if (copy_to_user((char __user *)arg, vbuf, min(FSLABEL_MAX, count))) err = -EFAULT; kvfree(vbuf); return err; } static int f2fs_set_volume_name(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); char *vbuf; int err = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); if (IS_ERR(vbuf)) return PTR_ERR(vbuf); err = mnt_want_write_file(filp); if (err) goto out; down_write(&sbi->sb_lock); memset(sbi->raw_super->volume_name, 0, sizeof(sbi->raw_super->volume_name)); utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, sbi->raw_super->volume_name, ARRAY_SIZE(sbi->raw_super->volume_name)); err = f2fs_commit_super(sbi, false); up_write(&sbi->sb_lock); mnt_drop_write_file(filp); out: kfree(vbuf); return err; } static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); __u64 blocks; if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) return -EOPNOTSUPP; if (!f2fs_compressed_file(inode)) return -EINVAL; blocks = F2FS_I(inode)->i_compr_blocks; return put_user(blocks, (u64 __user *)arg); } static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); unsigned int released_blocks = 0; int cluster_size = F2FS_I(dn->inode)->i_cluster_size; block_t blkaddr; int i; for (i = 0; i < count; i++) { blkaddr = data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node + i); if (!__is_valid_data_blkaddr(blkaddr)) continue; if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))) return -EFSCORRUPTED; } while (count) { int compr_blocks = 0; for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { blkaddr = f2fs_data_blkaddr(dn); if (i == 0) { if (blkaddr == COMPRESS_ADDR) continue; dn->ofs_in_node += cluster_size; goto next; } if (__is_valid_data_blkaddr(blkaddr)) compr_blocks++; if (blkaddr != NEW_ADDR) continue; dn->data_blkaddr = NULL_ADDR; f2fs_set_data_blkaddr(dn); } f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); dec_valid_block_count(sbi, dn->inode, cluster_size - compr_blocks); released_blocks += cluster_size - compr_blocks; next: count -= cluster_size; } return released_blocks; } static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t page_idx = 0, last_idx; unsigned int released_blocks = 0; int ret; int writecount; if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) return -EOPNOTSUPP; if (!f2fs_compressed_file(inode)) return -EINVAL; if (f2fs_readonly(sbi->sb)) return -EROFS; ret = mnt_want_write_file(filp); if (ret) return ret; f2fs_balance_fs(F2FS_I_SB(inode), true); inode_lock(inode); writecount = atomic_read(&inode->i_writecount); if ((filp->f_mode & FMODE_WRITE && writecount != 1) || writecount) { ret = -EBUSY; goto out; } if (IS_IMMUTABLE(inode)) { ret = -EINVAL; goto out; } ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (ret) goto out; if (!F2FS_I(inode)->i_compr_blocks) goto out; F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL; f2fs_set_inode_flags(inode); inode->i_ctime = current_time(inode); f2fs_mark_inode_dirty_sync(inode, true); down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); while (page_idx < last_idx) { struct dnode_of_data dn; pgoff_t end_offset, count; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); if (ret) { if (ret == -ENOENT) { page_idx = f2fs_get_next_page_offset(&dn, page_idx); ret = 0; continue; } break; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); count = round_up(count, F2FS_I(inode)->i_cluster_size); ret = release_compress_blocks(&dn, count); f2fs_put_dnode(&dn); if (ret < 0) break; page_idx += count; released_blocks += ret; } up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); up_write(&F2FS_I(inode)->i_mmap_sem); out: inode_unlock(inode); mnt_drop_write_file(filp); if (ret >= 0) { ret = put_user(released_blocks, (u64 __user *)arg); } else if (released_blocks && F2FS_I(inode)->i_compr_blocks) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " "iblocks=%llu, released=%u, compr_blocks=%llu, " "run fsck to fix.", __func__, inode->i_ino, inode->i_blocks, released_blocks, F2FS_I(inode)->i_compr_blocks); } return ret; } static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); unsigned int reserved_blocks = 0; int cluster_size = F2FS_I(dn->inode)->i_cluster_size; block_t blkaddr; int i; for (i = 0; i < count; i++) { blkaddr = data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node + i); if (!__is_valid_data_blkaddr(blkaddr)) continue; if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))) return -EFSCORRUPTED; } while (count) { int compr_blocks = 0; blkcnt_t reserved; int ret; for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { blkaddr = f2fs_data_blkaddr(dn); if (i == 0) { if (blkaddr == COMPRESS_ADDR) continue; dn->ofs_in_node += cluster_size; goto next; } if (__is_valid_data_blkaddr(blkaddr)) { compr_blocks++; continue; } dn->data_blkaddr = NEW_ADDR; f2fs_set_data_blkaddr(dn); } reserved = cluster_size - compr_blocks; ret = inc_valid_block_count(sbi, dn->inode, &reserved); if (ret) return ret; if (reserved != cluster_size - compr_blocks) return -ENOSPC; f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); reserved_blocks += reserved; next: count -= cluster_size; } return reserved_blocks; } static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t page_idx = 0, last_idx; unsigned int reserved_blocks = 0; int ret; if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) return -EOPNOTSUPP; if (!f2fs_compressed_file(inode)) return -EINVAL; if (f2fs_readonly(sbi->sb)) return -EROFS; ret = mnt_want_write_file(filp); if (ret) return ret; if (F2FS_I(inode)->i_compr_blocks) goto out; f2fs_balance_fs(F2FS_I_SB(inode), true); inode_lock(inode); if (!IS_IMMUTABLE(inode)) { ret = -EINVAL; goto unlock_inode; } down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); down_write(&F2FS_I(inode)->i_mmap_sem); last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); while (page_idx < last_idx) { struct dnode_of_data dn; pgoff_t end_offset, count; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); if (ret) { if (ret == -ENOENT) { page_idx = f2fs_get_next_page_offset(&dn, page_idx); ret = 0; continue; } break; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); count = round_up(count, F2FS_I(inode)->i_cluster_size); ret = reserve_compress_blocks(&dn, count); f2fs_put_dnode(&dn); if (ret < 0) break; page_idx += count; reserved_blocks += ret; } up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); up_write(&F2FS_I(inode)->i_mmap_sem); if (ret >= 0) { F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL; f2fs_set_inode_flags(inode); inode->i_ctime = current_time(inode); f2fs_mark_inode_dirty_sync(inode, true); } unlock_inode: inode_unlock(inode); out: mnt_drop_write_file(filp); if (ret >= 0) { ret = put_user(reserved_blocks, (u64 __user *)arg); } else if (reserved_blocks && F2FS_I(inode)->i_compr_blocks) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " "iblocks=%llu, reserved=%u, compr_blocks=%llu, " "run fsck to fix.", __func__, inode->i_ino, inode->i_blocks, reserved_blocks, F2FS_I(inode)->i_compr_blocks); } return ret; } long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) return -EIO; if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) return -ENOSPC; switch (cmd) { case F2FS_IOC_GETFLAGS: return f2fs_ioc_getflags(filp, arg); case F2FS_IOC_SETFLAGS: return f2fs_ioc_setflags(filp, arg); case F2FS_IOC_GETVERSION: return f2fs_ioc_getversion(filp, arg); case F2FS_IOC_START_ATOMIC_WRITE: return f2fs_ioc_start_atomic_write(filp); case F2FS_IOC_COMMIT_ATOMIC_WRITE: return f2fs_ioc_commit_atomic_write(filp); case F2FS_IOC_START_VOLATILE_WRITE: return f2fs_ioc_start_volatile_write(filp); case F2FS_IOC_RELEASE_VOLATILE_WRITE: return f2fs_ioc_release_volatile_write(filp); case F2FS_IOC_ABORT_VOLATILE_WRITE: return f2fs_ioc_abort_volatile_write(filp); case F2FS_IOC_SHUTDOWN: return f2fs_ioc_shutdown(filp, arg); case FITRIM: return f2fs_ioc_fitrim(filp, arg); case F2FS_IOC_SET_ENCRYPTION_POLICY: return f2fs_ioc_set_encryption_policy(filp, arg); case F2FS_IOC_GET_ENCRYPTION_POLICY: return f2fs_ioc_get_encryption_policy(filp, arg); case F2FS_IOC_GET_ENCRYPTION_PWSALT: return f2fs_ioc_get_encryption_pwsalt(filp, arg); case FS_IOC_GET_ENCRYPTION_POLICY_EX: return f2fs_ioc_get_encryption_policy_ex(filp, arg); case FS_IOC_ADD_ENCRYPTION_KEY: return f2fs_ioc_add_encryption_key(filp, arg); case FS_IOC_REMOVE_ENCRYPTION_KEY: return f2fs_ioc_remove_encryption_key(filp, arg); case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: return f2fs_ioc_remove_encryption_key_all_users(filp, arg); case FS_IOC_GET_ENCRYPTION_KEY_STATUS: return f2fs_ioc_get_encryption_key_status(filp, arg); case FS_IOC_GET_ENCRYPTION_NONCE: return f2fs_ioc_get_encryption_nonce(filp, arg); case F2FS_IOC_GARBAGE_COLLECT: return f2fs_ioc_gc(filp, arg); case F2FS_IOC_GARBAGE_COLLECT_RANGE: return f2fs_ioc_gc_range(filp, arg); case F2FS_IOC_WRITE_CHECKPOINT: return f2fs_ioc_write_checkpoint(filp, arg); case F2FS_IOC_DEFRAGMENT: return f2fs_ioc_defragment(filp, arg); case F2FS_IOC_MOVE_RANGE: return f2fs_ioc_move_range(filp, arg); case F2FS_IOC_FLUSH_DEVICE: return f2fs_ioc_flush_device(filp, arg); case F2FS_IOC_GET_FEATURES: return f2fs_ioc_get_features(filp, arg); case F2FS_IOC_FSGETXATTR: return f2fs_ioc_fsgetxattr(filp, arg); case F2FS_IOC_FSSETXATTR: return f2fs_ioc_fssetxattr(filp, arg); case F2FS_IOC_GET_PIN_FILE: return f2fs_ioc_get_pin_file(filp, arg); case F2FS_IOC_SET_PIN_FILE: return f2fs_ioc_set_pin_file(filp, arg); case F2FS_IOC_PRECACHE_EXTENTS: return f2fs_ioc_precache_extents(filp, arg); case F2FS_IOC_RESIZE_FS: return f2fs_ioc_resize_fs(filp, arg); case FS_IOC_ENABLE_VERITY: return f2fs_ioc_enable_verity(filp, arg); case FS_IOC_MEASURE_VERITY: return f2fs_ioc_measure_verity(filp, arg); case F2FS_IOC_GET_VOLUME_NAME: return f2fs_get_volume_name(filp, arg); case F2FS_IOC_SET_VOLUME_NAME: return f2fs_set_volume_name(filp, arg); case F2FS_IOC_GET_COMPRESS_BLOCKS: return f2fs_get_compress_blocks(filp, arg); case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: return f2fs_release_compress_blocks(filp, arg); case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: return f2fs_reserve_compress_blocks(filp, arg); default: return -ENOTTY; } } static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); int ret; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; ret = generic_file_read_iter(iocb, iter); if (ret > 0) f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret); return ret; } static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); ssize_t ret; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { ret = -EIO; goto out; } if (!f2fs_is_compress_backend_ready(inode)) { ret = -EOPNOTSUPP; goto out; } if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock(inode)) { ret = -EAGAIN; goto out; } } else { inode_lock(inode); } ret = generic_write_checks(iocb, from); if (ret > 0) { bool preallocated = false; size_t target_size = 0; int err; if (iov_iter_fault_in_readable(from, iov_iter_count(from))) set_inode_flag(inode, FI_NO_PREALLOC); if ((iocb->ki_flags & IOCB_NOWAIT)) { if (!f2fs_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)) || f2fs_has_inline_data(inode) || f2fs_force_buffered_io(inode, iocb, from)) { clear_inode_flag(inode, FI_NO_PREALLOC); inode_unlock(inode); ret = -EAGAIN; goto out; } goto write; } if (is_inode_flag_set(inode, FI_NO_PREALLOC)) goto write; if (iocb->ki_flags & IOCB_DIRECT) { /* * Convert inline data for Direct I/O before entering * f2fs_direct_IO(). */ err = f2fs_convert_inline_inode(inode); if (err) goto out_err; /* * If force_buffere_io() is true, we have to allocate * blocks all the time, since f2fs_direct_IO will fall * back to buffered IO. */ if (!f2fs_force_buffered_io(inode, iocb, from) && allow_outplace_dio(inode, iocb, from)) goto write; } preallocated = true; target_size = iocb->ki_pos + iov_iter_count(from); err = f2fs_preallocate_blocks(iocb, from); if (err) { out_err: clear_inode_flag(inode, FI_NO_PREALLOC); inode_unlock(inode); ret = err; goto out; } write: ret = __generic_file_write_iter(iocb, from); clear_inode_flag(inode, FI_NO_PREALLOC); /* if we couldn't write data, we should deallocate blocks. */ if (preallocated && i_size_read(inode) < target_size) f2fs_truncate(inode); if (ret > 0) f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); } inode_unlock(inode); out: trace_f2fs_file_write_iter(inode, iocb->ki_pos, iov_iter_count(from), ret); if (ret > 0) ret = generic_write_sync(iocb, ret); return ret; } #ifdef CONFIG_COMPAT long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case F2FS_IOC32_GETFLAGS: cmd = F2FS_IOC_GETFLAGS; break; case F2FS_IOC32_SETFLAGS: cmd = F2FS_IOC_SETFLAGS; break; case F2FS_IOC32_GETVERSION: cmd = F2FS_IOC_GETVERSION; break; case F2FS_IOC_START_ATOMIC_WRITE: case F2FS_IOC_COMMIT_ATOMIC_WRITE: case F2FS_IOC_START_VOLATILE_WRITE: case F2FS_IOC_RELEASE_VOLATILE_WRITE: case F2FS_IOC_ABORT_VOLATILE_WRITE: case F2FS_IOC_SHUTDOWN: case FITRIM: case F2FS_IOC_SET_ENCRYPTION_POLICY: case F2FS_IOC_GET_ENCRYPTION_PWSALT: case F2FS_IOC_GET_ENCRYPTION_POLICY: case FS_IOC_GET_ENCRYPTION_POLICY_EX: case FS_IOC_ADD_ENCRYPTION_KEY: case FS_IOC_REMOVE_ENCRYPTION_KEY: case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: case FS_IOC_GET_ENCRYPTION_KEY_STATUS: case FS_IOC_GET_ENCRYPTION_NONCE: case F2FS_IOC_GARBAGE_COLLECT: case F2FS_IOC_GARBAGE_COLLECT_RANGE: case F2FS_IOC_WRITE_CHECKPOINT: case F2FS_IOC_DEFRAGMENT: case F2FS_IOC_MOVE_RANGE: case F2FS_IOC_FLUSH_DEVICE: case F2FS_IOC_GET_FEATURES: case F2FS_IOC_FSGETXATTR: case F2FS_IOC_FSSETXATTR: case F2FS_IOC_GET_PIN_FILE: case F2FS_IOC_SET_PIN_FILE: case F2FS_IOC_PRECACHE_EXTENTS: case F2FS_IOC_RESIZE_FS: case FS_IOC_ENABLE_VERITY: case FS_IOC_MEASURE_VERITY: case F2FS_IOC_GET_VOLUME_NAME: case F2FS_IOC_SET_VOLUME_NAME: case F2FS_IOC_GET_COMPRESS_BLOCKS: case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: break; default: return -ENOIOCTLCMD; } return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); } #endif const struct file_operations f2fs_file_operations = { .llseek = f2fs_llseek, .read_iter = f2fs_file_read_iter, .write_iter = f2fs_file_write_iter, .open = f2fs_file_open, .release = f2fs_release_file, .mmap = f2fs_file_mmap, .flush = f2fs_file_flush, .fsync = f2fs_sync_file, .fallocate = f2fs_fallocate, .unlocked_ioctl = f2fs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = f2fs_compat_ioctl, #endif .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, };