/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2007 Oracle. All rights reserved. */ #ifndef BTRFS_INODE_H #define BTRFS_INODE_H #include #include #include "extent_map.h" #include "extent_io.h" #include "ordered-data.h" #include "delayed-inode.h" /* * ordered_data_close is set by truncate when a file that used * to have good data has been truncated to zero. When it is set * the btrfs file release call will add this inode to the * ordered operations list so that we make sure to flush out any * new data the application may have written before commit. */ enum { BTRFS_INODE_ORDERED_DATA_CLOSE, BTRFS_INODE_DUMMY, BTRFS_INODE_IN_DEFRAG, BTRFS_INODE_HAS_ASYNC_EXTENT, BTRFS_INODE_NEEDS_FULL_SYNC, BTRFS_INODE_COPY_EVERYTHING, BTRFS_INODE_IN_DELALLOC_LIST, BTRFS_INODE_READDIO_NEED_LOCK, BTRFS_INODE_HAS_PROPS, BTRFS_INODE_SNAPSHOT_FLUSH, }; /* in memory btrfs inode */ struct btrfs_inode { /* which subvolume this inode belongs to */ struct btrfs_root *root; /* key used to find this inode on disk. This is used by the code * to read in roots of subvolumes */ struct btrfs_key location; /* * Lock for counters and all fields used to determine if the inode is in * the log or not (last_trans, last_sub_trans, last_log_commit, * logged_trans). */ spinlock_t lock; /* the extent_tree has caches of all the extent mappings to disk */ struct extent_map_tree extent_tree; /* the io_tree does range state (DIRTY, LOCKED etc) */ struct extent_io_tree io_tree; /* special utility tree used to record which mirrors have already been * tried when checksums fail for a given block */ struct extent_io_tree io_failure_tree; /* * Keep track of where the inode has extent items mapped in order to * make sure the i_size adjustments are accurate */ struct extent_io_tree file_extent_tree; /* held while logging the inode in tree-log.c */ struct mutex log_mutex; /* used to order data wrt metadata */ struct btrfs_ordered_inode_tree ordered_tree; /* list of all the delalloc inodes in the FS. There are times we need * to write all the delalloc pages to disk, and this list is used * to walk them all. */ struct list_head delalloc_inodes; /* node for the red-black tree that links inodes in subvolume root */ struct rb_node rb_node; unsigned long runtime_flags; /* Keep track of who's O_SYNC/fsyncing currently */ atomic_t sync_writers; /* full 64 bit generation number, struct vfs_inode doesn't have a big * enough field for this. */ u64 generation; /* * transid of the trans_handle that last modified this inode */ u64 last_trans; /* * transid that last logged this inode */ u64 logged_trans; /* * log transid when this inode was last modified */ int last_sub_trans; /* a local copy of root's last_log_commit */ int last_log_commit; /* total number of bytes pending delalloc, used by stat to calc the * real block usage of the file */ u64 delalloc_bytes; /* * Total number of bytes pending delalloc that fall within a file * range that is either a hole or beyond EOF (and no prealloc extent * exists in the range). This is always <= delalloc_bytes. */ u64 new_delalloc_bytes; /* * total number of bytes pending defrag, used by stat to check whether * it needs COW. */ u64 defrag_bytes; /* * the size of the file stored in the metadata on disk. data=ordered * means the in-memory i_size might be larger than the size on disk * because not all the blocks are written yet. */ u64 disk_i_size; /* * if this is a directory then index_cnt is the counter for the index * number for new files that are created */ u64 index_cnt; /* Cache the directory index number to speed the dir/file remove */ u64 dir_index; /* the fsync log has some corner cases that mean we have to check * directories to see if any unlinks have been done before * the directory was logged. See tree-log.c for all the * details */ u64 last_unlink_trans; /* * Number of bytes outstanding that are going to need csums. This is * used in ENOSPC accounting. */ u64 csum_bytes; /* flags field from the on disk inode */ u32 flags; /* * Counters to keep track of the number of extent item's we may use due * to delalloc and such. outstanding_extents is the number of extent * items we think we'll end up using, and reserved_extents is the number * of extent items we've reserved metadata for. */ unsigned outstanding_extents; struct btrfs_block_rsv block_rsv; /* * Cached values of inode properties */ unsigned prop_compress; /* per-file compression algorithm */ /* * Force compression on the file using the defrag ioctl, could be * different from prop_compress and takes precedence if set */ unsigned defrag_compress; struct btrfs_delayed_node *delayed_node; /* File creation time. */ struct timespec64 i_otime; /* Hook into fs_info->delayed_iputs */ struct list_head delayed_iput; /* * To avoid races between lockless (i_mutex not held) direct IO writes * and concurrent fsync requests. Direct IO writes must acquire read * access on this semaphore for creating an extent map and its * corresponding ordered extent. The fast fsync path must acquire write * access on this semaphore before it collects ordered extents and * extent maps. */ struct rw_semaphore dio_sem; struct inode vfs_inode; }; static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) { return container_of(inode, struct btrfs_inode, vfs_inode); } static inline unsigned long btrfs_inode_hash(u64 objectid, const struct btrfs_root *root) { u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); #if BITS_PER_LONG == 32 h = (h >> 32) ^ (h & 0xffffffff); #endif return (unsigned long)h; } static inline void btrfs_insert_inode_hash(struct inode *inode) { unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root); __insert_inode_hash(inode, h); } static inline u64 btrfs_ino(const struct btrfs_inode *inode) { u64 ino = inode->location.objectid; /* * !ino: btree_inode * type == BTRFS_ROOT_ITEM_KEY: subvol dir */ if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY) ino = inode->vfs_inode.i_ino; return ino; } static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) { i_size_write(&inode->vfs_inode, size); inode->disk_i_size = size; } static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) { struct btrfs_root *root = inode->root; if (root == root->fs_info->tree_root && btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID) return true; if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID) return true; return false; } static inline bool is_data_inode(struct inode *inode) { return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; } static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, int mod) { lockdep_assert_held(&inode->lock); inode->outstanding_extents += mod; if (btrfs_is_free_space_inode(inode)) return; trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), mod); } static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) { int ret = 0; spin_lock(&inode->lock); if (inode->logged_trans == generation && inode->last_sub_trans <= inode->last_log_commit && inode->last_sub_trans <= inode->root->last_log_commit) { /* * After a ranged fsync we might have left some extent maps * (that fall outside the fsync's range). So return false * here if the list isn't empty, to make sure btrfs_log_inode() * will be called and process those extent maps. */ smp_mb(); if (list_empty(&inode->extent_tree.modified_extents)) ret = 1; } spin_unlock(&inode->lock); return ret; } #define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1 struct btrfs_dio_private { struct inode *inode; unsigned long flags; u64 logical_offset; u64 disk_bytenr; u64 bytes; /* * References to this structure. There is one reference per in-flight * bio plus one while we're still setting up. */ refcount_t refs; /* IO errors */ int errors; /* orig_bio is our btrfs_io_bio */ struct bio *orig_bio; /* dio_bio came from fs/direct-io.c */ struct bio *dio_bio; /* * The original bio may be split to several sub-bios, this is * done during endio of sub-bios */ blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *, blk_status_t); }; /* * Disable DIO read nolock optimization, so new dio readers will be forced * to grab i_mutex. It is used to avoid the endless truncate due to * nonlocked dio read. */ static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode) { set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); smp_mb(); } static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode) { smp_mb__before_atomic(); clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); } /* Array of bytes with variable length, hexadecimal format 0x1234 */ #define CSUM_FMT "0x%*phN" #define CSUM_FMT_VALUE(size, bytes) size, bytes static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode, u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) { struct btrfs_root *root = inode->root; struct btrfs_super_block *sb = root->fs_info->super_copy; const u16 csum_size = btrfs_super_csum_size(sb); /* Output minus objectid, which is more meaningful */ if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) btrfs_warn_rl(root->fs_info, "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", root->root_key.objectid, btrfs_ino(inode), logical_start, CSUM_FMT_VALUE(csum_size, csum), CSUM_FMT_VALUE(csum_size, csum_expected), mirror_num); else btrfs_warn_rl(root->fs_info, "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", root->root_key.objectid, btrfs_ino(inode), logical_start, CSUM_FMT_VALUE(csum_size, csum), CSUM_FMT_VALUE(csum_size, csum_expected), mirror_num); } #endif