// SPDX-License-Identifier: GPL-2.0-only /* * This file contians vfs address (mmap) ops for 9P2000. * * Copyright (C) 2005 by Eric Van Hensbergen * Copyright (C) 2002 by Ron Minnich */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "v9fs.h" #include "v9fs_vfs.h" #include "cache.h" #include "fid.h" /** * v9fs_req_issue_op - Issue a read from 9P * @subreq: The read to make */ static void v9fs_req_issue_op(struct netfs_read_subrequest *subreq) { struct netfs_read_request *rreq = subreq->rreq; struct p9_fid *fid = rreq->netfs_priv; struct iov_iter to; loff_t pos = subreq->start + subreq->transferred; size_t len = subreq->len - subreq->transferred; int total, err; iov_iter_xarray(&to, READ, &rreq->mapping->i_pages, pos, len); total = p9_client_read(fid, pos, &to, &err); netfs_subreq_terminated(subreq, err ?: total, false); } /** * v9fs_init_rreq - Initialise a read request * @rreq: The read request * @file: The file being read from */ static void v9fs_init_rreq(struct netfs_read_request *rreq, struct file *file) { struct p9_fid *fid = file->private_data; refcount_inc(&fid->count); rreq->netfs_priv = fid; } /** * v9fs_req_cleanup - Cleanup request initialized by v9fs_init_rreq * @mapping: unused mapping of request to cleanup * @priv: private data to cleanup, a fid, guaranted non-null. */ static void v9fs_req_cleanup(struct address_space *mapping, void *priv) { struct p9_fid *fid = priv; p9_client_clunk(fid); } /** * v9fs_is_cache_enabled - Determine if caching is enabled for an inode * @inode: The inode to check */ static bool v9fs_is_cache_enabled(struct inode *inode) { struct fscache_cookie *cookie = v9fs_inode_cookie(V9FS_I(inode)); return fscache_cookie_enabled(cookie) && cookie->cache_priv; } /** * v9fs_begin_cache_operation - Begin a cache operation for a read * @rreq: The read request */ static int v9fs_begin_cache_operation(struct netfs_read_request *rreq) { #ifdef CONFIG_9P_FSCACHE struct fscache_cookie *cookie = v9fs_inode_cookie(V9FS_I(rreq->inode)); return fscache_begin_read_operation(&rreq->cache_resources, cookie); #else return -ENOBUFS; #endif } static const struct netfs_read_request_ops v9fs_req_ops = { .init_rreq = v9fs_init_rreq, .is_cache_enabled = v9fs_is_cache_enabled, .begin_cache_operation = v9fs_begin_cache_operation, .issue_op = v9fs_req_issue_op, .cleanup = v9fs_req_cleanup, }; /** * v9fs_vfs_readpage - read an entire page in from 9P * @file: file being read * @page: structure to page * */ static int v9fs_vfs_readpage(struct file *file, struct page *page) { struct folio *folio = page_folio(page); return netfs_readpage(file, folio, &v9fs_req_ops, NULL); } /** * v9fs_vfs_readahead - read a set of pages from 9P * @ractl: The readahead parameters */ static void v9fs_vfs_readahead(struct readahead_control *ractl) { netfs_readahead(ractl, &v9fs_req_ops, NULL); } /** * v9fs_release_page - release the private state associated with a page * @page: The page to be released * @gfp: The caller's allocation restrictions * * Returns 1 if the page can be released, false otherwise. */ static int v9fs_release_page(struct page *page, gfp_t gfp) { struct folio *folio = page_folio(page); struct inode *inode = folio_inode(folio); if (folio_test_private(folio)) return 0; #ifdef CONFIG_9P_FSCACHE if (folio_test_fscache(folio)) { if (!gfpflags_allow_blocking(gfp) || !(gfp & __GFP_FS)) return 0; folio_wait_fscache(folio); } #endif fscache_note_page_release(v9fs_inode_cookie(V9FS_I(inode))); return 1; } /** * v9fs_invalidate_page - Invalidate a page completely or partially * @page: The page to be invalidated * @offset: offset of the invalidated region * @length: length of the invalidated region */ static void v9fs_invalidate_page(struct page *page, unsigned int offset, unsigned int length) { struct folio *folio = page_folio(page); folio_wait_fscache(folio); } static void v9fs_write_to_cache_done(void *priv, ssize_t transferred_or_error, bool was_async) { struct v9fs_inode *v9inode = priv; __le32 version; if (IS_ERR_VALUE(transferred_or_error) && transferred_or_error != -ENOBUFS) { version = cpu_to_le32(v9inode->qid.version); fscache_invalidate(v9fs_inode_cookie(v9inode), &version, i_size_read(&v9inode->vfs_inode), 0); } } static int v9fs_vfs_write_folio_locked(struct folio *folio) { struct inode *inode = folio_inode(folio); struct v9fs_inode *v9inode = V9FS_I(inode); struct fscache_cookie *cookie = v9fs_inode_cookie(v9inode); loff_t start = folio_pos(folio); loff_t i_size = i_size_read(inode); struct iov_iter from; size_t len = folio_size(folio); int err; if (start >= i_size) return 0; /* Simultaneous truncation occurred */ len = min_t(loff_t, i_size - start, len); iov_iter_xarray(&from, WRITE, &folio_mapping(folio)->i_pages, start, len); /* We should have writeback_fid always set */ BUG_ON(!v9inode->writeback_fid); folio_wait_fscache(folio); folio_start_writeback(folio); p9_client_write(v9inode->writeback_fid, start, &from, &err); if (err == 0 && fscache_cookie_enabled(cookie) && test_bit(FSCACHE_COOKIE_IS_CACHING, &cookie->flags)) { folio_start_fscache(folio); fscache_write_to_cache(v9fs_inode_cookie(v9inode), folio_mapping(folio), start, len, i_size, v9fs_write_to_cache_done, v9inode, true); } folio_end_writeback(folio); return err; } static int v9fs_vfs_writepage(struct page *page, struct writeback_control *wbc) { struct folio *folio = page_folio(page); int retval; p9_debug(P9_DEBUG_VFS, "folio %p\n", folio); retval = v9fs_vfs_write_folio_locked(folio); if (retval < 0) { if (retval == -EAGAIN) { folio_redirty_for_writepage(wbc, folio); retval = 0; } else { mapping_set_error(folio_mapping(folio), retval); } } else retval = 0; folio_unlock(folio); return retval; } /** * v9fs_launder_page - Writeback a dirty page * @page: The page to be cleaned up * * Returns 0 on success. */ static int v9fs_launder_page(struct page *page) { struct folio *folio = page_folio(page); int retval; if (folio_clear_dirty_for_io(folio)) { retval = v9fs_vfs_write_folio_locked(folio); if (retval) return retval; } folio_wait_fscache(folio); return 0; } /** * v9fs_direct_IO - 9P address space operation for direct I/O * @iocb: target I/O control block * @iter: The data/buffer to use * * The presence of v9fs_direct_IO() in the address space ops vector * allowes open() O_DIRECT flags which would have failed otherwise. * * In the non-cached mode, we shunt off direct read and write requests before * the VFS gets them, so this method should never be called. * * Direct IO is not 'yet' supported in the cached mode. Hence when * this routine is called through generic_file_aio_read(), the read/write fails * with an error. * */ static ssize_t v9fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; loff_t pos = iocb->ki_pos; ssize_t n; int err = 0; if (iov_iter_rw(iter) == WRITE) { n = p9_client_write(file->private_data, pos, iter, &err); if (n) { struct inode *inode = file_inode(file); loff_t i_size = i_size_read(inode); if (pos + n > i_size) inode_add_bytes(inode, pos + n - i_size); } } else { n = p9_client_read(file->private_data, pos, iter, &err); } return n ? n : err; } static int v9fs_write_begin(struct file *filp, struct address_space *mapping, loff_t pos, unsigned int len, unsigned int flags, struct page **subpagep, void **fsdata) { int retval; struct folio *folio; struct v9fs_inode *v9inode = V9FS_I(mapping->host); p9_debug(P9_DEBUG_VFS, "filp %p, mapping %p\n", filp, mapping); BUG_ON(!v9inode->writeback_fid); /* Prefetch area to be written into the cache if we're caching this * file. We need to do this before we get a lock on the page in case * there's more than one writer competing for the same cache block. */ retval = netfs_write_begin(filp, mapping, pos, len, flags, &folio, fsdata, &v9fs_req_ops, NULL); if (retval < 0) return retval; *subpagep = &folio->page; return retval; } static int v9fs_write_end(struct file *filp, struct address_space *mapping, loff_t pos, unsigned int len, unsigned int copied, struct page *subpage, void *fsdata) { loff_t last_pos = pos + copied; struct folio *folio = page_folio(subpage); struct inode *inode = mapping->host; struct v9fs_inode *v9inode = V9FS_I(inode); p9_debug(P9_DEBUG_VFS, "filp %p, mapping %p\n", filp, mapping); if (!folio_test_uptodate(folio)) { if (unlikely(copied < len)) { copied = 0; goto out; } folio_mark_uptodate(folio); } /* * No need to use i_size_read() here, the i_size * cannot change under us because we hold the i_mutex. */ if (last_pos > inode->i_size) { inode_add_bytes(inode, last_pos - inode->i_size); i_size_write(inode, last_pos); fscache_update_cookie(v9fs_inode_cookie(v9inode), NULL, &last_pos); } folio_mark_dirty(folio); out: folio_unlock(folio); folio_put(folio); return copied; } #ifdef CONFIG_9P_FSCACHE /* * Mark a page as having been made dirty and thus needing writeback. We also * need to pin the cache object to write back to. */ static int v9fs_set_page_dirty(struct page *page) { struct v9fs_inode *v9inode = V9FS_I(page->mapping->host); return fscache_set_page_dirty(page, v9fs_inode_cookie(v9inode)); } #else #define v9fs_set_page_dirty __set_page_dirty_nobuffers #endif const struct address_space_operations v9fs_addr_operations = { .readpage = v9fs_vfs_readpage, .readahead = v9fs_vfs_readahead, .set_page_dirty = v9fs_set_page_dirty, .writepage = v9fs_vfs_writepage, .write_begin = v9fs_write_begin, .write_end = v9fs_write_end, .releasepage = v9fs_release_page, .invalidatepage = v9fs_invalidate_page, .launder_page = v9fs_launder_page, .direct_IO = v9fs_direct_IO, };