// SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/swapfile.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static bool swap_count_continued(struct swap_info_struct *, pgoff_t, unsigned char); static void free_swap_count_continuations(struct swap_info_struct *); DEFINE_SPINLOCK(swap_lock); static unsigned int nr_swapfiles; atomic_long_t nr_swap_pages; /* * Some modules use swappable objects and may try to swap them out under * memory pressure (via the shrinker). Before doing so, they may wish to * check to see if any swap space is available. */ EXPORT_SYMBOL_GPL(nr_swap_pages); /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ long total_swap_pages; static int least_priority = -1; static const char Bad_file[] = "Bad swap file entry "; static const char Unused_file[] = "Unused swap file entry "; static const char Bad_offset[] = "Bad swap offset entry "; static const char Unused_offset[] = "Unused swap offset entry "; /* * all active swap_info_structs * protected with swap_lock, and ordered by priority. */ PLIST_HEAD(swap_active_head); /* * all available (active, not full) swap_info_structs * protected with swap_avail_lock, ordered by priority. * This is used by get_swap_page() instead of swap_active_head * because swap_active_head includes all swap_info_structs, * but get_swap_page() doesn't need to look at full ones. * This uses its own lock instead of swap_lock because when a * swap_info_struct changes between not-full/full, it needs to * add/remove itself to/from this list, but the swap_info_struct->lock * is held and the locking order requires swap_lock to be taken * before any swap_info_struct->lock. */ static struct plist_head *swap_avail_heads; static DEFINE_SPINLOCK(swap_avail_lock); struct swap_info_struct *swap_info[MAX_SWAPFILES]; static DEFINE_MUTEX(swapon_mutex); static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); /* Activity counter to indicate that a swapon or swapoff has occurred */ static atomic_t proc_poll_event = ATOMIC_INIT(0); atomic_t nr_rotate_swap = ATOMIC_INIT(0); static struct swap_info_struct *swap_type_to_swap_info(int type) { if (type >= MAX_SWAPFILES) return NULL; return READ_ONCE(swap_info[type]); /* rcu_dereference() */ } static inline unsigned char swap_count(unsigned char ent) { return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ } /* Reclaim the swap entry anyway if possible */ #define TTRS_ANYWAY 0x1 /* * Reclaim the swap entry if there are no more mappings of the * corresponding page */ #define TTRS_UNMAPPED 0x2 /* Reclaim the swap entry if swap is getting full*/ #define TTRS_FULL 0x4 /* returns 1 if swap entry is freed */ static int __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset, unsigned long flags) { swp_entry_t entry = swp_entry(si->type, offset); struct page *page; int ret = 0; page = find_get_page(swap_address_space(entry), offset); if (!page) return 0; /* * When this function is called from scan_swap_map_slots() and it's * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, * here. We have to use trylock for avoiding deadlock. This is a special * case and you should use try_to_free_swap() with explicit lock_page() * in usual operations. */ if (trylock_page(page)) { if ((flags & TTRS_ANYWAY) || ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) ret = try_to_free_swap(page); unlock_page(page); } put_page(page); return ret; } static inline struct swap_extent *first_se(struct swap_info_struct *sis) { struct rb_node *rb = rb_first(&sis->swap_extent_root); return rb_entry(rb, struct swap_extent, rb_node); } static inline struct swap_extent *next_se(struct swap_extent *se) { struct rb_node *rb = rb_next(&se->rb_node); return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; } /* * swapon tell device that all the old swap contents can be discarded, * to allow the swap device to optimize its wear-levelling. */ static int discard_swap(struct swap_info_struct *si) { struct swap_extent *se; sector_t start_block; sector_t nr_blocks; int err = 0; /* Do not discard the swap header page! */ se = first_se(si); start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); if (nr_blocks) { err = blkdev_issue_discard(si->bdev, start_block, nr_blocks, GFP_KERNEL, 0); if (err) return err; cond_resched(); } for (se = next_se(se); se; se = next_se(se)) { start_block = se->start_block << (PAGE_SHIFT - 9); nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); err = blkdev_issue_discard(si->bdev, start_block, nr_blocks, GFP_KERNEL, 0); if (err) break; cond_resched(); } return err; /* That will often be -EOPNOTSUPP */ } static struct swap_extent * offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) { struct swap_extent *se; struct rb_node *rb; rb = sis->swap_extent_root.rb_node; while (rb) { se = rb_entry(rb, struct swap_extent, rb_node); if (offset < se->start_page) rb = rb->rb_left; else if (offset >= se->start_page + se->nr_pages) rb = rb->rb_right; else return se; } /* It *must* be present */ BUG(); } sector_t swap_page_sector(struct page *page) { struct swap_info_struct *sis = page_swap_info(page); struct swap_extent *se; sector_t sector; pgoff_t offset; offset = __page_file_index(page); se = offset_to_swap_extent(sis, offset); sector = se->start_block + (offset - se->start_page); return sector << (PAGE_SHIFT - 9); } /* * swap allocation tell device that a cluster of swap can now be discarded, * to allow the swap device to optimize its wear-levelling. */ static void discard_swap_cluster(struct swap_info_struct *si, pgoff_t start_page, pgoff_t nr_pages) { struct swap_extent *se = offset_to_swap_extent(si, start_page); while (nr_pages) { pgoff_t offset = start_page - se->start_page; sector_t start_block = se->start_block + offset; sector_t nr_blocks = se->nr_pages - offset; if (nr_blocks > nr_pages) nr_blocks = nr_pages; start_page += nr_blocks; nr_pages -= nr_blocks; start_block <<= PAGE_SHIFT - 9; nr_blocks <<= PAGE_SHIFT - 9; if (blkdev_issue_discard(si->bdev, start_block, nr_blocks, GFP_NOIO, 0)) break; se = next_se(se); } } #ifdef CONFIG_THP_SWAP #define SWAPFILE_CLUSTER HPAGE_PMD_NR #define swap_entry_size(size) (size) #else #define SWAPFILE_CLUSTER 256 /* * Define swap_entry_size() as constant to let compiler to optimize * out some code if !CONFIG_THP_SWAP */ #define swap_entry_size(size) 1 #endif #define LATENCY_LIMIT 256 static inline void cluster_set_flag(struct swap_cluster_info *info, unsigned int flag) { info->flags = flag; } static inline unsigned int cluster_count(struct swap_cluster_info *info) { return info->data; } static inline void cluster_set_count(struct swap_cluster_info *info, unsigned int c) { info->data = c; } static inline void cluster_set_count_flag(struct swap_cluster_info *info, unsigned int c, unsigned int f) { info->flags = f; info->data = c; } static inline unsigned int cluster_next(struct swap_cluster_info *info) { return info->data; } static inline void cluster_set_next(struct swap_cluster_info *info, unsigned int n) { info->data = n; } static inline void cluster_set_next_flag(struct swap_cluster_info *info, unsigned int n, unsigned int f) { info->flags = f; info->data = n; } static inline bool cluster_is_free(struct swap_cluster_info *info) { return info->flags & CLUSTER_FLAG_FREE; } static inline bool cluster_is_null(struct swap_cluster_info *info) { return info->flags & CLUSTER_FLAG_NEXT_NULL; } static inline void cluster_set_null(struct swap_cluster_info *info) { info->flags = CLUSTER_FLAG_NEXT_NULL; info->data = 0; } static inline bool cluster_is_huge(struct swap_cluster_info *info) { if (IS_ENABLED(CONFIG_THP_SWAP)) return info->flags & CLUSTER_FLAG_HUGE; return false; } static inline void cluster_clear_huge(struct swap_cluster_info *info) { info->flags &= ~CLUSTER_FLAG_HUGE; } static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, unsigned long offset) { struct swap_cluster_info *ci; ci = si->cluster_info; if (ci) { ci += offset / SWAPFILE_CLUSTER; spin_lock(&ci->lock); } return ci; } static inline void unlock_cluster(struct swap_cluster_info *ci) { if (ci) spin_unlock(&ci->lock); } /* * Determine the locking method in use for this device. Return * swap_cluster_info if SSD-style cluster-based locking is in place. */ static inline struct swap_cluster_info *lock_cluster_or_swap_info( struct swap_info_struct *si, unsigned long offset) { struct swap_cluster_info *ci; /* Try to use fine-grained SSD-style locking if available: */ ci = lock_cluster(si, offset); /* Otherwise, fall back to traditional, coarse locking: */ if (!ci) spin_lock(&si->lock); return ci; } static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, struct swap_cluster_info *ci) { if (ci) unlock_cluster(ci); else spin_unlock(&si->lock); } static inline bool cluster_list_empty(struct swap_cluster_list *list) { return cluster_is_null(&list->head); } static inline unsigned int cluster_list_first(struct swap_cluster_list *list) { return cluster_next(&list->head); } static void cluster_list_init(struct swap_cluster_list *list) { cluster_set_null(&list->head); cluster_set_null(&list->tail); } static void cluster_list_add_tail(struct swap_cluster_list *list, struct swap_cluster_info *ci, unsigned int idx) { if (cluster_list_empty(list)) { cluster_set_next_flag(&list->head, idx, 0); cluster_set_next_flag(&list->tail, idx, 0); } else { struct swap_cluster_info *ci_tail; unsigned int tail = cluster_next(&list->tail); /* * Nested cluster lock, but both cluster locks are * only acquired when we held swap_info_struct->lock */ ci_tail = ci + tail; spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); cluster_set_next(ci_tail, idx); spin_unlock(&ci_tail->lock); cluster_set_next_flag(&list->tail, idx, 0); } } static unsigned int cluster_list_del_first(struct swap_cluster_list *list, struct swap_cluster_info *ci) { unsigned int idx; idx = cluster_next(&list->head); if (cluster_next(&list->tail) == idx) { cluster_set_null(&list->head); cluster_set_null(&list->tail); } else cluster_set_next_flag(&list->head, cluster_next(&ci[idx]), 0); return idx; } /* Add a cluster to discard list and schedule it to do discard */ static void swap_cluster_schedule_discard(struct swap_info_struct *si, unsigned int idx) { /* * If scan_swap_map_slots() can't find a free cluster, it will check * si->swap_map directly. To make sure the discarding cluster isn't * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). * It will be cleared after discard */ memset(si->swap_map + idx * SWAPFILE_CLUSTER, SWAP_MAP_BAD, SWAPFILE_CLUSTER); cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); schedule_work(&si->discard_work); } static void __free_cluster(struct swap_info_struct *si, unsigned long idx) { struct swap_cluster_info *ci = si->cluster_info; cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); cluster_list_add_tail(&si->free_clusters, ci, idx); } /* * Doing discard actually. After a cluster discard is finished, the cluster * will be added to free cluster list. caller should hold si->lock. */ static void swap_do_scheduled_discard(struct swap_info_struct *si) { struct swap_cluster_info *info, *ci; unsigned int idx; info = si->cluster_info; while (!cluster_list_empty(&si->discard_clusters)) { idx = cluster_list_del_first(&si->discard_clusters, info); spin_unlock(&si->lock); discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, SWAPFILE_CLUSTER); spin_lock(&si->lock); ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); __free_cluster(si, idx); memset(si->swap_map + idx * SWAPFILE_CLUSTER, 0, SWAPFILE_CLUSTER); unlock_cluster(ci); } } static void swap_discard_work(struct work_struct *work) { struct swap_info_struct *si; si = container_of(work, struct swap_info_struct, discard_work); spin_lock(&si->lock); swap_do_scheduled_discard(si); spin_unlock(&si->lock); } static void swap_users_ref_free(struct percpu_ref *ref) { struct swap_info_struct *si; si = container_of(ref, struct swap_info_struct, users); complete(&si->comp); } static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) { struct swap_cluster_info *ci = si->cluster_info; VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); cluster_list_del_first(&si->free_clusters, ci); cluster_set_count_flag(ci + idx, 0, 0); } static void free_cluster(struct swap_info_struct *si, unsigned long idx) { struct swap_cluster_info *ci = si->cluster_info + idx; VM_BUG_ON(cluster_count(ci) != 0); /* * If the swap is discardable, prepare discard the cluster * instead of free it immediately. The cluster will be freed * after discard. */ if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == (SWP_WRITEOK | SWP_PAGE_DISCARD)) { swap_cluster_schedule_discard(si, idx); return; } __free_cluster(si, idx); } /* * The cluster corresponding to page_nr will be used. The cluster will be * removed from free cluster list and its usage counter will be increased. */ static void inc_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr) { unsigned long idx = page_nr / SWAPFILE_CLUSTER; if (!cluster_info) return; if (cluster_is_free(&cluster_info[idx])) alloc_cluster(p, idx); VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); cluster_set_count(&cluster_info[idx], cluster_count(&cluster_info[idx]) + 1); } /* * The cluster corresponding to page_nr decreases one usage. If the usage * counter becomes 0, which means no page in the cluster is in using, we can * optionally discard the cluster and add it to free cluster list. */ static void dec_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr) { unsigned long idx = page_nr / SWAPFILE_CLUSTER; if (!cluster_info) return; VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); cluster_set_count(&cluster_info[idx], cluster_count(&cluster_info[idx]) - 1); if (cluster_count(&cluster_info[idx]) == 0) free_cluster(p, idx); } /* * It's possible scan_swap_map_slots() uses a free cluster in the middle of free * cluster list. Avoiding such abuse to avoid list corruption. */ static bool scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, unsigned long offset) { struct percpu_cluster *percpu_cluster; bool conflict; offset /= SWAPFILE_CLUSTER; conflict = !cluster_list_empty(&si->free_clusters) && offset != cluster_list_first(&si->free_clusters) && cluster_is_free(&si->cluster_info[offset]); if (!conflict) return false; percpu_cluster = this_cpu_ptr(si->percpu_cluster); cluster_set_null(&percpu_cluster->index); return true; } /* * Try to get a swap entry from current cpu's swap entry pool (a cluster). This * might involve allocating a new cluster for current CPU too. */ static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, unsigned long *offset, unsigned long *scan_base) { struct percpu_cluster *cluster; struct swap_cluster_info *ci; unsigned long tmp, max; new_cluster: cluster = this_cpu_ptr(si->percpu_cluster); if (cluster_is_null(&cluster->index)) { if (!cluster_list_empty(&si->free_clusters)) { cluster->index = si->free_clusters.head; cluster->next = cluster_next(&cluster->index) * SWAPFILE_CLUSTER; } else if (!cluster_list_empty(&si->discard_clusters)) { /* * we don't have free cluster but have some clusters in * discarding, do discard now and reclaim them, then * reread cluster_next_cpu since we dropped si->lock */ swap_do_scheduled_discard(si); *scan_base = this_cpu_read(*si->cluster_next_cpu); *offset = *scan_base; goto new_cluster; } else return false; } /* * Other CPUs can use our cluster if they can't find a free cluster, * check if there is still free entry in the cluster */ tmp = cluster->next; max = min_t(unsigned long, si->max, (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); if (tmp < max) { ci = lock_cluster(si, tmp); while (tmp < max) { if (!si->swap_map[tmp]) break; tmp++; } unlock_cluster(ci); } if (tmp >= max) { cluster_set_null(&cluster->index); goto new_cluster; } cluster->next = tmp + 1; *offset = tmp; *scan_base = tmp; return true; } static void __del_from_avail_list(struct swap_info_struct *p) { int nid; assert_spin_locked(&p->lock); for_each_node(nid) plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); } static void del_from_avail_list(struct swap_info_struct *p) { spin_lock(&swap_avail_lock); __del_from_avail_list(p); spin_unlock(&swap_avail_lock); } static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries) { unsigned int end = offset + nr_entries - 1; if (offset == si->lowest_bit) si->lowest_bit += nr_entries; if (end == si->highest_bit) WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); si->inuse_pages += nr_entries; if (si->inuse_pages == si->pages) { si->lowest_bit = si->max; si->highest_bit = 0; del_from_avail_list(si); } } static void add_to_avail_list(struct swap_info_struct *p) { int nid; spin_lock(&swap_avail_lock); for_each_node(nid) { WARN_ON(!plist_node_empty(&p->avail_lists[nid])); plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); } spin_unlock(&swap_avail_lock); } static void swap_range_free(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries) { unsigned long begin = offset; unsigned long end = offset + nr_entries - 1; void (*swap_slot_free_notify)(struct block_device *, unsigned long); if (offset < si->lowest_bit) si->lowest_bit = offset; if (end > si->highest_bit) { bool was_full = !si->highest_bit; WRITE_ONCE(si->highest_bit, end); if (was_full && (si->flags & SWP_WRITEOK)) add_to_avail_list(si); } atomic_long_add(nr_entries, &nr_swap_pages); si->inuse_pages -= nr_entries; if (si->flags & SWP_BLKDEV) swap_slot_free_notify = si->bdev->bd_disk->fops->swap_slot_free_notify; else swap_slot_free_notify = NULL; while (offset <= end) { arch_swap_invalidate_page(si->type, offset); frontswap_invalidate_page(si->type, offset); if (swap_slot_free_notify) swap_slot_free_notify(si->bdev, offset); offset++; } clear_shadow_from_swap_cache(si->type, begin, end); } static void set_cluster_next(struct swap_info_struct *si, unsigned long next) { unsigned long prev; if (!(si->flags & SWP_SOLIDSTATE)) { si->cluster_next = next; return; } prev = this_cpu_read(*si->cluster_next_cpu); /* * Cross the swap address space size aligned trunk, choose * another trunk randomly to avoid lock contention on swap * address space if possible. */ if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != (next >> SWAP_ADDRESS_SPACE_SHIFT)) { /* No free swap slots available */ if (si->highest_bit <= si->lowest_bit) return; next = si->lowest_bit + prandom_u32_max(si->highest_bit - si->lowest_bit + 1); next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); next = max_t(unsigned int, next, si->lowest_bit); } this_cpu_write(*si->cluster_next_cpu, next); } static int scan_swap_map_slots(struct swap_info_struct *si, unsigned char usage, int nr, swp_entry_t slots[]) { struct swap_cluster_info *ci; unsigned long offset; unsigned long scan_base; unsigned long last_in_cluster = 0; int latency_ration = LATENCY_LIMIT; int n_ret = 0; bool scanned_many = false; /* * We try to cluster swap pages by allocating them sequentially * in swap. Once we've allocated SWAPFILE_CLUSTER pages this * way, however, we resort to first-free allocation, starting * a new cluster. This prevents us from scattering swap pages * all over the entire swap partition, so that we reduce * overall disk seek times between swap pages. -- sct * But we do now try to find an empty cluster. -Andrea * And we let swap pages go all over an SSD partition. Hugh */ si->flags += SWP_SCANNING; /* * Use percpu scan base for SSD to reduce lock contention on * cluster and swap cache. For HDD, sequential access is more * important. */ if (si->flags & SWP_SOLIDSTATE) scan_base = this_cpu_read(*si->cluster_next_cpu); else scan_base = si->cluster_next; offset = scan_base; /* SSD algorithm */ if (si->cluster_info) { if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) goto scan; } else if (unlikely(!si->cluster_nr--)) { if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { si->cluster_nr = SWAPFILE_CLUSTER - 1; goto checks; } spin_unlock(&si->lock); /* * If seek is expensive, start searching for new cluster from * start of partition, to minimize the span of allocated swap. * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info * case, just handled by scan_swap_map_try_ssd_cluster() above. */ scan_base = offset = si->lowest_bit; last_in_cluster = offset + SWAPFILE_CLUSTER - 1; /* Locate the first empty (unaligned) cluster */ for (; last_in_cluster <= si->highest_bit; offset++) { if (si->swap_map[offset]) last_in_cluster = offset + SWAPFILE_CLUSTER; else if (offset == last_in_cluster) { spin_lock(&si->lock); offset -= SWAPFILE_CLUSTER - 1; si->cluster_next = offset; si->cluster_nr = SWAPFILE_CLUSTER - 1; goto checks; } if (unlikely(--latency_ration < 0)) { cond_resched(); latency_ration = LATENCY_LIMIT; } } offset = scan_base; spin_lock(&si->lock); si->cluster_nr = SWAPFILE_CLUSTER - 1; } checks: if (si->cluster_info) { while (scan_swap_map_ssd_cluster_conflict(si, offset)) { /* take a break if we already got some slots */ if (n_ret) goto done; if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) goto scan; } } if (!(si->flags & SWP_WRITEOK)) goto no_page; if (!si->highest_bit) goto no_page; if (offset > si->highest_bit) scan_base = offset = si->lowest_bit; ci = lock_cluster(si, offset); /* reuse swap entry of cache-only swap if not busy. */ if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { int swap_was_freed; unlock_cluster(ci); spin_unlock(&si->lock); swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); spin_lock(&si->lock); /* entry was freed successfully, try to use this again */ if (swap_was_freed) goto checks; goto scan; /* check next one */ } if (si->swap_map[offset]) { unlock_cluster(ci); if (!n_ret) goto scan; else goto done; } WRITE_ONCE(si->swap_map[offset], usage); inc_cluster_info_page(si, si->cluster_info, offset); unlock_cluster(ci); swap_range_alloc(si, offset, 1); slots[n_ret++] = swp_entry(si->type, offset); /* got enough slots or reach max slots? */ if ((n_ret == nr) || (offset >= si->highest_bit)) goto done; /* search for next available slot */ /* time to take a break? */ if (unlikely(--latency_ration < 0)) { if (n_ret) goto done; spin_unlock(&si->lock); cond_resched(); spin_lock(&si->lock); latency_ration = LATENCY_LIMIT; } /* try to get more slots in cluster */ if (si->cluster_info) { if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) goto checks; } else if (si->cluster_nr && !si->swap_map[++offset]) { /* non-ssd case, still more slots in cluster? */ --si->cluster_nr; goto checks; } /* * Even if there's no free clusters available (fragmented), * try to scan a little more quickly with lock held unless we * have scanned too many slots already. */ if (!scanned_many) { unsigned long scan_limit; if (offset < scan_base) scan_limit = scan_base; else scan_limit = si->highest_bit; for (; offset <= scan_limit && --latency_ration > 0; offset++) { if (!si->swap_map[offset]) goto checks; } } done: set_cluster_next(si, offset + 1); si->flags -= SWP_SCANNING; return n_ret; scan: spin_unlock(&si->lock); while (++offset <= READ_ONCE(si->highest_bit)) { if (data_race(!si->swap_map[offset])) { spin_lock(&si->lock); goto checks; } if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { spin_lock(&si->lock); goto checks; } if (unlikely(--latency_ration < 0)) { cond_resched(); latency_ration = LATENCY_LIMIT; scanned_many = true; } } offset = si->lowest_bit; while (offset < scan_base) { if (data_race(!si->swap_map[offset])) { spin_lock(&si->lock); goto checks; } if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { spin_lock(&si->lock); goto checks; } if (unlikely(--latency_ration < 0)) { cond_resched(); latency_ration = LATENCY_LIMIT; scanned_many = true; } offset++; } spin_lock(&si->lock); no_page: si->flags -= SWP_SCANNING; return n_ret; } static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) { unsigned long idx; struct swap_cluster_info *ci; unsigned long offset; /* * Should not even be attempting cluster allocations when huge * page swap is disabled. Warn and fail the allocation. */ if (!IS_ENABLED(CONFIG_THP_SWAP)) { VM_WARN_ON_ONCE(1); return 0; } if (cluster_list_empty(&si->free_clusters)) return 0; idx = cluster_list_first(&si->free_clusters); offset = idx * SWAPFILE_CLUSTER; ci = lock_cluster(si, offset); alloc_cluster(si, idx); cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); unlock_cluster(ci); swap_range_alloc(si, offset, SWAPFILE_CLUSTER); *slot = swp_entry(si->type, offset); return 1; } static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) { unsigned long offset = idx * SWAPFILE_CLUSTER; struct swap_cluster_info *ci; ci = lock_cluster(si, offset); memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); cluster_set_count_flag(ci, 0, 0); free_cluster(si, idx); unlock_cluster(ci); swap_range_free(si, offset, SWAPFILE_CLUSTER); } int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) { unsigned long size = swap_entry_size(entry_size); struct swap_info_struct *si, *next; long avail_pgs; int n_ret = 0; int node; /* Only single cluster request supported */ WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); spin_lock(&swap_avail_lock); avail_pgs = atomic_long_read(&nr_swap_pages) / size; if (avail_pgs <= 0) { spin_unlock(&swap_avail_lock); goto noswap; } n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); atomic_long_sub(n_goal * size, &nr_swap_pages); start_over: node = numa_node_id(); plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { /* requeue si to after same-priority siblings */ plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); spin_unlock(&swap_avail_lock); spin_lock(&si->lock); if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { spin_lock(&swap_avail_lock); if (plist_node_empty(&si->avail_lists[node])) { spin_unlock(&si->lock); goto nextsi; } WARN(!si->highest_bit, "swap_info %d in list but !highest_bit\n", si->type); WARN(!(si->flags & SWP_WRITEOK), "swap_info %d in list but !SWP_WRITEOK\n", si->type); __del_from_avail_list(si); spin_unlock(&si->lock); goto nextsi; } if (size == SWAPFILE_CLUSTER) { if (si->flags & SWP_BLKDEV) n_ret = swap_alloc_cluster(si, swp_entries); } else n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, n_goal, swp_entries); spin_unlock(&si->lock); if (n_ret || size == SWAPFILE_CLUSTER) goto check_out; pr_debug("scan_swap_map of si %d failed to find offset\n", si->type); cond_resched(); spin_lock(&swap_avail_lock); nextsi: /* * if we got here, it's likely that si was almost full before, * and since scan_swap_map_slots() can drop the si->lock, * multiple callers probably all tried to get a page from the * same si and it filled up before we could get one; or, the si * filled up between us dropping swap_avail_lock and taking * si->lock. Since we dropped the swap_avail_lock, the * swap_avail_head list may have been modified; so if next is * still in the swap_avail_head list then try it, otherwise * start over if we have not gotten any slots. */ if (plist_node_empty(&next->avail_lists[node])) goto start_over; } spin_unlock(&swap_avail_lock); check_out: if (n_ret < n_goal) atomic_long_add((long)(n_goal - n_ret) * size, &nr_swap_pages); noswap: return n_ret; } static struct swap_info_struct *__swap_info_get(swp_entry_t entry) { struct swap_info_struct *p; unsigned long offset; if (!entry.val) goto out; p = swp_swap_info(entry); if (!p) goto bad_nofile; if (data_race(!(p->flags & SWP_USED))) goto bad_device; offset = swp_offset(entry); if (offset >= p->max) goto bad_offset; return p; bad_offset: pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); goto out; bad_device: pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); goto out; bad_nofile: pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); out: return NULL; } static struct swap_info_struct *_swap_info_get(swp_entry_t entry) { struct swap_info_struct *p; p = __swap_info_get(entry); if (!p) goto out; if (data_race(!p->swap_map[swp_offset(entry)])) goto bad_free; return p; bad_free: pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); out: return NULL; } static struct swap_info_struct *swap_info_get(swp_entry_t entry) { struct swap_info_struct *p; p = _swap_info_get(entry); if (p) spin_lock(&p->lock); return p; } static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, struct swap_info_struct *q) { struct swap_info_struct *p; p = _swap_info_get(entry); if (p != q) { if (q != NULL) spin_unlock(&q->lock); if (p != NULL) spin_lock(&p->lock); } return p; } static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, unsigned long offset, unsigned char usage) { unsigned char count; unsigned char has_cache; count = p->swap_map[offset]; has_cache = count & SWAP_HAS_CACHE; count &= ~SWAP_HAS_CACHE; if (usage == SWAP_HAS_CACHE) { VM_BUG_ON(!has_cache); has_cache = 0; } else if (count == SWAP_MAP_SHMEM) { /* * Or we could insist on shmem.c using a special * swap_shmem_free() and free_shmem_swap_and_cache()... */ count = 0; } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { if (count == COUNT_CONTINUED) { if (swap_count_continued(p, offset, count)) count = SWAP_MAP_MAX | COUNT_CONTINUED; else count = SWAP_MAP_MAX; } else count--; } usage = count | has_cache; if (usage) WRITE_ONCE(p->swap_map[offset], usage); else WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); return usage; } /* * When we get a swap entry, if there aren't some other ways to * prevent swapoff, such as the folio in swap cache is locked, page * table lock is held, etc., the swap entry may become invalid because * of swapoff. Then, we need to enclose all swap related functions * with get_swap_device() and put_swap_device(), unless the swap * functions call get/put_swap_device() by themselves. * * Note that when only holding the PTL, swapoff might succeed immediately * after freeing a swap entry. Therefore, immediately after * __swap_entry_free(), the swap info might become stale and should not * be touched without a prior get_swap_device(). * * Check whether swap entry is valid in the swap device. If so, * return pointer to swap_info_struct, and keep the swap entry valid * via preventing the swap device from being swapoff, until * put_swap_device() is called. Otherwise return NULL. * * Notice that swapoff or swapoff+swapon can still happen before the * percpu_ref_tryget_live() in get_swap_device() or after the * percpu_ref_put() in put_swap_device() if there isn't any other way * to prevent swapoff. The caller must be prepared for that. For * example, the following situation is possible. * * CPU1 CPU2 * do_swap_page() * ... swapoff+swapon * __read_swap_cache_async() * swapcache_prepare() * __swap_duplicate() * // check swap_map * // verify PTE not changed * * In __swap_duplicate(), the swap_map need to be checked before * changing partly because the specified swap entry may be for another * swap device which has been swapoff. And in do_swap_page(), after * the page is read from the swap device, the PTE is verified not * changed with the page table locked to check whether the swap device * has been swapoff or swapoff+swapon. */ struct swap_info_struct *get_swap_device(swp_entry_t entry) { struct swap_info_struct *si; unsigned long offset; if (!entry.val) goto out; si = swp_swap_info(entry); if (!si) goto bad_nofile; if (!percpu_ref_tryget_live(&si->users)) goto out; /* * Guarantee the si->users are checked before accessing other * fields of swap_info_struct. * * Paired with the spin_unlock() after setup_swap_info() in * enable_swap_info(). */ smp_rmb(); offset = swp_offset(entry); if (offset >= si->max) goto put_out; return si; bad_nofile: pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); out: return NULL; put_out: percpu_ref_put(&si->users); return NULL; } static unsigned char __swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) { struct swap_cluster_info *ci; unsigned long offset = swp_offset(entry); unsigned char usage; ci = lock_cluster_or_swap_info(p, offset); usage = __swap_entry_free_locked(p, offset, 1); unlock_cluster_or_swap_info(p, ci); if (!usage) free_swap_slot(entry); return usage; } static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) { struct swap_cluster_info *ci; unsigned long offset = swp_offset(entry); unsigned char count; ci = lock_cluster(p, offset); count = p->swap_map[offset]; VM_BUG_ON(count != SWAP_HAS_CACHE); p->swap_map[offset] = 0; dec_cluster_info_page(p, p->cluster_info, offset); unlock_cluster(ci); mem_cgroup_uncharge_swap(entry, 1); swap_range_free(p, offset, 1); } /* * Caller has made sure that the swap device corresponding to entry * is still around or has not been recycled. */ void swap_free(swp_entry_t entry) { struct swap_info_struct *p; p = _swap_info_get(entry); if (p) __swap_entry_free(p, entry); } /* * Called after dropping swapcache to decrease refcnt to swap entries. */ void put_swap_page(struct page *page, swp_entry_t entry) { unsigned long offset = swp_offset(entry); unsigned long idx = offset / SWAPFILE_CLUSTER; struct swap_cluster_info *ci; struct swap_info_struct *si; unsigned char *map; unsigned int i, free_entries = 0; unsigned char val; int size = swap_entry_size(thp_nr_pages(page)); si = _swap_info_get(entry); if (!si) return; ci = lock_cluster_or_swap_info(si, offset); if (size == SWAPFILE_CLUSTER) { VM_BUG_ON(!cluster_is_huge(ci)); map = si->swap_map + offset; for (i = 0; i < SWAPFILE_CLUSTER; i++) { val = map[i]; VM_BUG_ON(!(val & SWAP_HAS_CACHE)); if (val == SWAP_HAS_CACHE) free_entries++; } cluster_clear_huge(ci); if (free_entries == SWAPFILE_CLUSTER) { unlock_cluster_or_swap_info(si, ci); spin_lock(&si->lock); mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); swap_free_cluster(si, idx); spin_unlock(&si->lock); return; } } for (i = 0; i < size; i++, entry.val++) { if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { unlock_cluster_or_swap_info(si, ci); free_swap_slot(entry); if (i == size - 1) return; lock_cluster_or_swap_info(si, offset); } } unlock_cluster_or_swap_info(si, ci); } #ifdef CONFIG_THP_SWAP int split_swap_cluster(swp_entry_t entry) { struct swap_info_struct *si; struct swap_cluster_info *ci; unsigned long offset = swp_offset(entry); si = _swap_info_get(entry); if (!si) return -EBUSY; ci = lock_cluster(si, offset); cluster_clear_huge(ci); unlock_cluster(ci); return 0; } #endif static int swp_entry_cmp(const void *ent1, const void *ent2) { const swp_entry_t *e1 = ent1, *e2 = ent2; return (int)swp_type(*e1) - (int)swp_type(*e2); } void swapcache_free_entries(swp_entry_t *entries, int n) { struct swap_info_struct *p, *prev; int i; if (n <= 0) return; prev = NULL; p = NULL; /* * Sort swap entries by swap device, so each lock is only taken once. * nr_swapfiles isn't absolutely correct, but the overhead of sort() is * so low that it isn't necessary to optimize further. */ if (nr_swapfiles > 1) sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); for (i = 0; i < n; ++i) { p = swap_info_get_cont(entries[i], prev); if (p) swap_entry_free(p, entries[i]); prev = p; } if (p) spin_unlock(&p->lock); } /* * How many references to page are currently swapped out? * This does not give an exact answer when swap count is continued, * but does include the high COUNT_CONTINUED flag to allow for that. */ int page_swapcount(struct page *page) { int count = 0; struct swap_info_struct *p; struct swap_cluster_info *ci; swp_entry_t entry; unsigned long offset; entry.val = page_private(page); p = _swap_info_get(entry); if (p) { offset = swp_offset(entry); ci = lock_cluster_or_swap_info(p, offset); count = swap_count(p->swap_map[offset]); unlock_cluster_or_swap_info(p, ci); } return count; } int __swap_count(swp_entry_t entry) { struct swap_info_struct *si; pgoff_t offset = swp_offset(entry); int count = 0; si = get_swap_device(entry); if (si) { count = swap_count(si->swap_map[offset]); put_swap_device(si); } return count; } static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) { int count = 0; pgoff_t offset = swp_offset(entry); struct swap_cluster_info *ci; ci = lock_cluster_or_swap_info(si, offset); count = swap_count(si->swap_map[offset]); unlock_cluster_or_swap_info(si, ci); return count; } /* * How many references to @entry are currently swapped out? * This does not give an exact answer when swap count is continued, * but does include the high COUNT_CONTINUED flag to allow for that. */ int __swp_swapcount(swp_entry_t entry) { int count = 0; struct swap_info_struct *si; si = get_swap_device(entry); if (si) { count = swap_swapcount(si, entry); put_swap_device(si); } return count; } /* * How many references to @entry are currently swapped out? * This considers COUNT_CONTINUED so it returns exact answer. */ int swp_swapcount(swp_entry_t entry) { int count, tmp_count, n; struct swap_info_struct *p; struct swap_cluster_info *ci; struct page *page; pgoff_t offset; unsigned char *map; p = _swap_info_get(entry); if (!p) return 0; offset = swp_offset(entry); ci = lock_cluster_or_swap_info(p, offset); count = swap_count(p->swap_map[offset]); if (!(count & COUNT_CONTINUED)) goto out; count &= ~COUNT_CONTINUED; n = SWAP_MAP_MAX + 1; page = vmalloc_to_page(p->swap_map + offset); offset &= ~PAGE_MASK; VM_BUG_ON(page_private(page) != SWP_CONTINUED); do { page = list_next_entry(page, lru); map = kmap_atomic(page); tmp_count = map[offset]; kunmap_atomic(map); count += (tmp_count & ~COUNT_CONTINUED) * n; n *= (SWAP_CONT_MAX + 1); } while (tmp_count & COUNT_CONTINUED); out: unlock_cluster_or_swap_info(p, ci); return count; } static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, swp_entry_t entry) { struct swap_cluster_info *ci; unsigned char *map = si->swap_map; unsigned long roffset = swp_offset(entry); unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); int i; bool ret = false; ci = lock_cluster_or_swap_info(si, offset); if (!ci || !cluster_is_huge(ci)) { if (swap_count(map[roffset])) ret = true; goto unlock_out; } for (i = 0; i < SWAPFILE_CLUSTER; i++) { if (swap_count(map[offset + i])) { ret = true; break; } } unlock_out: unlock_cluster_or_swap_info(si, ci); return ret; } static bool page_swapped(struct page *page) { swp_entry_t entry; struct swap_info_struct *si; if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) return page_swapcount(page) != 0; page = compound_head(page); entry.val = page_private(page); si = _swap_info_get(entry); if (si) return swap_page_trans_huge_swapped(si, entry); return false; } static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, int *total_swapcount) { int i, map_swapcount, _total_mapcount, _total_swapcount; unsigned long offset = 0; struct swap_info_struct *si; struct swap_cluster_info *ci = NULL; unsigned char *map = NULL; int mapcount, swapcount = 0; /* hugetlbfs shouldn't call it */ VM_BUG_ON_PAGE(PageHuge(page), page); if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { mapcount = page_trans_huge_mapcount(page, total_mapcount); if (PageSwapCache(page)) swapcount = page_swapcount(page); if (total_swapcount) *total_swapcount = swapcount; return mapcount + swapcount; } page = compound_head(page); _total_mapcount = _total_swapcount = map_swapcount = 0; if (PageSwapCache(page)) { swp_entry_t entry; entry.val = page_private(page); si = _swap_info_get(entry); if (si) { map = si->swap_map; offset = swp_offset(entry); } } if (map) ci = lock_cluster(si, offset); for (i = 0; i < HPAGE_PMD_NR; i++) { mapcount = atomic_read(&page[i]._mapcount) + 1; _total_mapcount += mapcount; if (map) { swapcount = swap_count(map[offset + i]); _total_swapcount += swapcount; } map_swapcount = max(map_swapcount, mapcount + swapcount); } unlock_cluster(ci); if (PageDoubleMap(page)) { map_swapcount -= 1; _total_mapcount -= HPAGE_PMD_NR; } mapcount = compound_mapcount(page); map_swapcount += mapcount; _total_mapcount += mapcount; if (total_mapcount) *total_mapcount = _total_mapcount; if (total_swapcount) *total_swapcount = _total_swapcount; return map_swapcount; } /* * We can write to an anon page without COW if there are no other references * to it. And as a side-effect, free up its swap: because the old content * on disk will never be read, and seeking back there to write new content * later would only waste time away from clustering. * * NOTE: total_map_swapcount should not be relied upon by the caller if * reuse_swap_page() returns false, but it may be always overwritten * (see the other implementation for CONFIG_SWAP=n). */ bool reuse_swap_page(struct page *page, int *total_map_swapcount) { int count, total_mapcount, total_swapcount; VM_BUG_ON_PAGE(!PageLocked(page), page); if (unlikely(PageKsm(page))) return false; count = page_trans_huge_map_swapcount(page, &total_mapcount, &total_swapcount); if (total_map_swapcount) *total_map_swapcount = total_mapcount + total_swapcount; if (count == 1 && PageSwapCache(page) && (likely(!PageTransCompound(page)) || /* The remaining swap count will be freed soon */ total_swapcount == page_swapcount(page))) { if (!PageWriteback(page)) { page = compound_head(page); delete_from_swap_cache(page); SetPageDirty(page); } else { swp_entry_t entry; struct swap_info_struct *p; entry.val = page_private(page); p = swap_info_get(entry); if (p->flags & SWP_STABLE_WRITES) { spin_unlock(&p->lock); return false; } spin_unlock(&p->lock); } } return count <= 1; } /* * If swap is getting full, or if there are no more mappings of this page, * then try_to_free_swap is called to free its swap space. */ int try_to_free_swap(struct page *page) { VM_BUG_ON_PAGE(!PageLocked(page), page); if (!PageSwapCache(page)) return 0; if (PageWriteback(page)) return 0; if (page_swapped(page)) return 0; /* * Once hibernation has begun to create its image of memory, * there's a danger that one of the calls to try_to_free_swap() * - most probably a call from __try_to_reclaim_swap() while * hibernation is allocating its own swap pages for the image, * but conceivably even a call from memory reclaim - will free * the swap from a page which has already been recorded in the * image as a clean swapcache page, and then reuse its swap for * another page of the image. On waking from hibernation, the * original page might be freed under memory pressure, then * later read back in from swap, now with the wrong data. * * Hibernation suspends storage while it is writing the image * to disk so check that here. */ if (pm_suspended_storage()) return 0; page = compound_head(page); delete_from_swap_cache(page); SetPageDirty(page); return 1; } /* * Free the swap entry like above, but also try to * free the page cache entry if it is the last user. */ int free_swap_and_cache(swp_entry_t entry) { struct swap_info_struct *p; unsigned char count; if (non_swap_entry(entry)) return 1; p = get_swap_device(entry); if (p) { if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) { put_swap_device(p); return 0; } count = __swap_entry_free(p, entry); if (count == SWAP_HAS_CACHE && !swap_page_trans_huge_swapped(p, entry)) __try_to_reclaim_swap(p, swp_offset(entry), TTRS_UNMAPPED | TTRS_FULL); put_swap_device(p); } return p != NULL; } #ifdef CONFIG_HIBERNATION swp_entry_t get_swap_page_of_type(int type) { struct swap_info_struct *si = swap_type_to_swap_info(type); swp_entry_t entry = {0}; if (!si) goto fail; /* This is called for allocating swap entry, not cache */ spin_lock(&si->lock); if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) atomic_long_dec(&nr_swap_pages); spin_unlock(&si->lock); fail: return entry; } /* * Find the swap type that corresponds to given device (if any). * * @offset - number of the PAGE_SIZE-sized block of the device, starting * from 0, in which the swap header is expected to be located. * * This is needed for the suspend to disk (aka swsusp). */ int swap_type_of(dev_t device, sector_t offset) { int type; if (!device) return -1; spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { struct swap_info_struct *sis = swap_info[type]; if (!(sis->flags & SWP_WRITEOK)) continue; if (device == sis->bdev->bd_dev) { struct swap_extent *se = first_se(sis); if (se->start_block == offset) { spin_unlock(&swap_lock); return type; } } } spin_unlock(&swap_lock); return -ENODEV; } int find_first_swap(dev_t *device) { int type; spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { struct swap_info_struct *sis = swap_info[type]; if (!(sis->flags & SWP_WRITEOK)) continue; *device = sis->bdev->bd_dev; spin_unlock(&swap_lock); return type; } spin_unlock(&swap_lock); return -ENODEV; } /* * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev * corresponding to given index in swap_info (swap type). */ sector_t swapdev_block(int type, pgoff_t offset) { struct swap_info_struct *si = swap_type_to_swap_info(type); struct swap_extent *se; if (!si || !(si->flags & SWP_WRITEOK)) return 0; se = offset_to_swap_extent(si, offset); return se->start_block + (offset - se->start_page); } /* * Return either the total number of swap pages of given type, or the number * of free pages of that type (depending on @free) * * This is needed for software suspend */ unsigned int count_swap_pages(int type, int free) { unsigned int n = 0; spin_lock(&swap_lock); if ((unsigned int)type < nr_swapfiles) { struct swap_info_struct *sis = swap_info[type]; spin_lock(&sis->lock); if (sis->flags & SWP_WRITEOK) { n = sis->pages; if (free) n -= sis->inuse_pages; } spin_unlock(&sis->lock); } spin_unlock(&swap_lock); return n; } #endif /* CONFIG_HIBERNATION */ static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) { return pte_same(pte_swp_clear_flags(pte), swp_pte); } /* * No need to decide whether this PTE shares the swap entry with others, * just let do_wp_page work it out if a write is requested later - to * force COW, vm_page_prot omits write permission from any private vma. */ static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, swp_entry_t entry, struct page *page) { struct page *swapcache; spinlock_t *ptl; pte_t *pte; int ret = 1; swapcache = page; page = ksm_might_need_to_copy(page, vma, addr); if (unlikely(!page)) return -ENOMEM; pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { ret = 0; goto out; } dec_mm_counter(vma->vm_mm, MM_SWAPENTS); inc_mm_counter(vma->vm_mm, MM_ANONPAGES); get_page(page); set_pte_at(vma->vm_mm, addr, pte, pte_mkold(mk_pte(page, vma->vm_page_prot))); if (page == swapcache) { page_add_anon_rmap(page, vma, addr, false); } else { /* ksm created a completely new copy */ page_add_new_anon_rmap(page, vma, addr, false); lru_cache_add_inactive_or_unevictable(page, vma); } swap_free(entry); out: pte_unmap_unlock(pte, ptl); if (page != swapcache) { unlock_page(page); put_page(page); } return ret; } static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct page *page; swp_entry_t entry; pte_t *pte; struct swap_info_struct *si; unsigned long offset; int ret = 0; volatile unsigned char *swap_map; si = swap_info[type]; pte = pte_offset_map(pmd, addr); do { if (!is_swap_pte(*pte)) continue; entry = pte_to_swp_entry(*pte); if (swp_type(entry) != type) continue; offset = swp_offset(entry); if (frontswap && !frontswap_test(si, offset)) continue; pte_unmap(pte); swap_map = &si->swap_map[offset]; page = lookup_swap_cache(entry, vma, addr); if (!page) { struct vm_fault vmf = { .vma = vma, .address = addr, .pmd = pmd, }; page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf); } if (!page) { if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) goto try_next; return -ENOMEM; } lock_page(page); wait_on_page_writeback(page); ret = unuse_pte(vma, pmd, addr, entry, page); if (ret < 0) { unlock_page(page); put_page(page); goto out; } try_to_free_swap(page); unlock_page(page); put_page(page); if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { ret = FRONTSWAP_PAGES_UNUSED; goto out; } try_next: pte = pte_offset_map(pmd, addr); } while (pte++, addr += PAGE_SIZE, addr != end); pte_unmap(pte - 1); ret = 0; out: return ret; } static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { pmd_t *pmd; unsigned long next; int ret; pmd = pmd_offset(pud, addr); do { cond_resched(); next = pmd_addr_end(addr, end); if (pmd_none_or_trans_huge_or_clear_bad(pmd)) continue; ret = unuse_pte_range(vma, pmd, addr, next, type, frontswap, fs_pages_to_unuse); if (ret) return ret; } while (pmd++, addr = next, addr != end); return 0; } static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { pud_t *pud; unsigned long next; int ret; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; ret = unuse_pmd_range(vma, pud, addr, next, type, frontswap, fs_pages_to_unuse); if (ret) return ret; } while (pud++, addr = next, addr != end); return 0; } static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { p4d_t *p4d; unsigned long next; int ret; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; ret = unuse_pud_range(vma, p4d, addr, next, type, frontswap, fs_pages_to_unuse); if (ret) return ret; } while (p4d++, addr = next, addr != end); return 0; } static int unuse_vma(struct vm_area_struct *vma, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { pgd_t *pgd; unsigned long addr, end, next; int ret; addr = vma->vm_start; end = vma->vm_end; pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; ret = unuse_p4d_range(vma, pgd, addr, next, type, frontswap, fs_pages_to_unuse); if (ret) return ret; } while (pgd++, addr = next, addr != end); return 0; } static int unuse_mm(struct mm_struct *mm, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct vm_area_struct *vma; int ret = 0; mmap_read_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) { if (vma->anon_vma) { ret = unuse_vma(vma, type, frontswap, fs_pages_to_unuse); if (ret) break; } cond_resched(); } mmap_read_unlock(mm); return ret; } /* * Scan swap_map (or frontswap_map if frontswap parameter is true) * from current position to next entry still in use. Return 0 * if there are no inuse entries after prev till end of the map. */ static unsigned int find_next_to_unuse(struct swap_info_struct *si, unsigned int prev, bool frontswap) { unsigned int i; unsigned char count; /* * No need for swap_lock here: we're just looking * for whether an entry is in use, not modifying it; false * hits are okay, and sys_swapoff() has already prevented new * allocations from this area (while holding swap_lock). */ for (i = prev + 1; i < si->max; i++) { count = READ_ONCE(si->swap_map[i]); if (count && swap_count(count) != SWAP_MAP_BAD) if (!frontswap || frontswap_test(si, i)) break; if ((i % LATENCY_LIMIT) == 0) cond_resched(); } if (i == si->max) i = 0; return i; } /* * If the boolean frontswap is true, only unuse pages_to_unuse pages; * pages_to_unuse==0 means all pages; ignored if frontswap is false */ int try_to_unuse(unsigned int type, bool frontswap, unsigned long pages_to_unuse) { struct mm_struct *prev_mm; struct mm_struct *mm; struct list_head *p; int retval = 0; struct swap_info_struct *si = swap_info[type]; struct page *page; swp_entry_t entry; unsigned int i; if (!READ_ONCE(si->inuse_pages)) return 0; if (!frontswap) pages_to_unuse = 0; retry: retval = shmem_unuse(type, frontswap, &pages_to_unuse); if (retval) goto out; prev_mm = &init_mm; mmget(prev_mm); spin_lock(&mmlist_lock); p = &init_mm.mmlist; while (READ_ONCE(si->inuse_pages) && !signal_pending(current) && (p = p->next) != &init_mm.mmlist) { mm = list_entry(p, struct mm_struct, mmlist); if (!mmget_not_zero(mm)) continue; spin_unlock(&mmlist_lock); mmput(prev_mm); prev_mm = mm; retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); if (retval) { mmput(prev_mm); goto out; } /* * Make sure that we aren't completely killing * interactive performance. */ cond_resched(); spin_lock(&mmlist_lock); } spin_unlock(&mmlist_lock); mmput(prev_mm); i = 0; while (READ_ONCE(si->inuse_pages) && !signal_pending(current) && (i = find_next_to_unuse(si, i, frontswap)) != 0) { entry = swp_entry(type, i); page = find_get_page(swap_address_space(entry), i); if (!page) continue; /* * It is conceivable that a racing task removed this page from * swap cache just before we acquired the page lock. The page * might even be back in swap cache on another swap area. But * that is okay, try_to_free_swap() only removes stale pages. */ lock_page(page); wait_on_page_writeback(page); try_to_free_swap(page); unlock_page(page); put_page(page); /* * For frontswap, we just need to unuse pages_to_unuse, if * it was specified. Need not check frontswap again here as * we already zeroed out pages_to_unuse if not frontswap. */ if (pages_to_unuse && --pages_to_unuse == 0) goto out; } /* * Lets check again to see if there are still swap entries in the map. * If yes, we would need to do retry the unuse logic again. * Under global memory pressure, swap entries can be reinserted back * into process space after the mmlist loop above passes over them. * * Limit the number of retries? No: when mmget_not_zero() above fails, * that mm is likely to be freeing swap from exit_mmap(), which proceeds * at its own independent pace; and even shmem_writepage() could have * been preempted after get_swap_page(), temporarily hiding that swap. * It's easy and robust (though cpu-intensive) just to keep retrying. */ if (READ_ONCE(si->inuse_pages)) { if (!signal_pending(current)) goto retry; retval = -EINTR; } out: return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; } /* * After a successful try_to_unuse, if no swap is now in use, we know * we can empty the mmlist. swap_lock must be held on entry and exit. * Note that mmlist_lock nests inside swap_lock, and an mm must be * added to the mmlist just after page_duplicate - before would be racy. */ static void drain_mmlist(void) { struct list_head *p, *next; unsigned int type; for (type = 0; type < nr_swapfiles; type++) if (swap_info[type]->inuse_pages) return; spin_lock(&mmlist_lock); list_for_each_safe(p, next, &init_mm.mmlist) list_del_init(p); spin_unlock(&mmlist_lock); } /* * Free all of a swapdev's extent information */ static void destroy_swap_extents(struct swap_info_struct *sis) { while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { struct rb_node *rb = sis->swap_extent_root.rb_node; struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); rb_erase(rb, &sis->swap_extent_root); kfree(se); } if (sis->flags & SWP_ACTIVATED) { struct file *swap_file = sis->swap_file; struct address_space *mapping = swap_file->f_mapping; sis->flags &= ~SWP_ACTIVATED; if (mapping->a_ops->swap_deactivate) mapping->a_ops->swap_deactivate(swap_file); } } /* * Add a block range (and the corresponding page range) into this swapdev's * extent tree. * * This function rather assumes that it is called in ascending page order. */ int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block) { struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; struct swap_extent *se; struct swap_extent *new_se; /* * place the new node at the right most since the * function is called in ascending page order. */ while (*link) { parent = *link; link = &parent->rb_right; } if (parent) { se = rb_entry(parent, struct swap_extent, rb_node); BUG_ON(se->start_page + se->nr_pages != start_page); if (se->start_block + se->nr_pages == start_block) { /* Merge it */ se->nr_pages += nr_pages; return 0; } } /* No merge, insert a new extent. */ new_se = kmalloc(sizeof(*se), GFP_KERNEL); if (new_se == NULL) return -ENOMEM; new_se->start_page = start_page; new_se->nr_pages = nr_pages; new_se->start_block = start_block; rb_link_node(&new_se->rb_node, parent, link); rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); return 1; } EXPORT_SYMBOL_GPL(add_swap_extent); /* * A `swap extent' is a simple thing which maps a contiguous range of pages * onto a contiguous range of disk blocks. An ordered list of swap extents * is built at swapon time and is then used at swap_writepage/swap_readpage * time for locating where on disk a page belongs. * * If the swapfile is an S_ISBLK block device, a single extent is installed. * This is done so that the main operating code can treat S_ISBLK and S_ISREG * swap files identically. * * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK * swapfiles are handled *identically* after swapon time. * * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If * some stray blocks are found which do not fall within the PAGE_SIZE alignment * requirements, they are simply tossed out - we will never use those blocks * for swapping. * * For all swap devices we set S_SWAPFILE across the life of the swapon. This * prevents users from writing to the swap device, which will corrupt memory. * * The amount of disk space which a single swap extent represents varies. * Typically it is in the 1-4 megabyte range. So we can have hundreds of * extents in the list. To avoid much list walking, we cache the previous * search location in `curr_swap_extent', and start new searches from there. * This is extremely effective. The average number of iterations in * map_swap_page() has been measured at about 0.3 per page. - akpm. */ static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) { struct file *swap_file = sis->swap_file; struct address_space *mapping = swap_file->f_mapping; struct inode *inode = mapping->host; int ret; if (S_ISBLK(inode->i_mode)) { ret = add_swap_extent(sis, 0, sis->max, 0); *span = sis->pages; return ret; } if (mapping->a_ops->swap_activate) { ret = mapping->a_ops->swap_activate(sis, swap_file, span); if (ret >= 0) sis->flags |= SWP_ACTIVATED; if (!ret) { sis->flags |= SWP_FS_OPS; ret = add_swap_extent(sis, 0, sis->max, 0); *span = sis->pages; } return ret; } return generic_swapfile_activate(sis, swap_file, span); } static int swap_node(struct swap_info_struct *p) { struct block_device *bdev; if (p->bdev) bdev = p->bdev; else bdev = p->swap_file->f_inode->i_sb->s_bdev; return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; } static void setup_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info) { int i; if (prio >= 0) p->prio = prio; else p->prio = --least_priority; /* * the plist prio is negated because plist ordering is * low-to-high, while swap ordering is high-to-low */ p->list.prio = -p->prio; for_each_node(i) { if (p->prio >= 0) p->avail_lists[i].prio = -p->prio; else { if (swap_node(p) == i) p->avail_lists[i].prio = 1; else p->avail_lists[i].prio = -p->prio; } } p->swap_map = swap_map; p->cluster_info = cluster_info; } static void _enable_swap_info(struct swap_info_struct *p) { p->flags |= SWP_WRITEOK; atomic_long_add(p->pages, &nr_swap_pages); total_swap_pages += p->pages; assert_spin_locked(&swap_lock); /* * both lists are plists, and thus priority ordered. * swap_active_head needs to be priority ordered for swapoff(), * which on removal of any swap_info_struct with an auto-assigned * (i.e. negative) priority increments the auto-assigned priority * of any lower-priority swap_info_structs. * swap_avail_head needs to be priority ordered for get_swap_page(), * which allocates swap pages from the highest available priority * swap_info_struct. */ plist_add(&p->list, &swap_active_head); add_to_avail_list(p); } static void enable_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info, unsigned long *frontswap_map) { frontswap_init(p->type, frontswap_map); spin_lock(&swap_lock); spin_lock(&p->lock); setup_swap_info(p, prio, swap_map, cluster_info); spin_unlock(&p->lock); spin_unlock(&swap_lock); /* * Finished initializing swap device, now it's safe to reference it. */ percpu_ref_resurrect(&p->users); spin_lock(&swap_lock); spin_lock(&p->lock); _enable_swap_info(p); spin_unlock(&p->lock); spin_unlock(&swap_lock); } static void reinsert_swap_info(struct swap_info_struct *p) { spin_lock(&swap_lock); spin_lock(&p->lock); setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); _enable_swap_info(p); spin_unlock(&p->lock); spin_unlock(&swap_lock); } bool has_usable_swap(void) { bool ret = true; spin_lock(&swap_lock); if (plist_head_empty(&swap_active_head)) ret = false; spin_unlock(&swap_lock); return ret; } SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) { struct swap_info_struct *p = NULL; unsigned char *swap_map; struct swap_cluster_info *cluster_info; unsigned long *frontswap_map; struct file *swap_file, *victim; struct address_space *mapping; struct inode *inode; struct filename *pathname; int err, found = 0; unsigned int old_block_size; if (!capable(CAP_SYS_ADMIN)) return -EPERM; BUG_ON(!current->mm); pathname = getname(specialfile); if (IS_ERR(pathname)) return PTR_ERR(pathname); victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); err = PTR_ERR(victim); if (IS_ERR(victim)) goto out; mapping = victim->f_mapping; spin_lock(&swap_lock); plist_for_each_entry(p, &swap_active_head, list) { if (p->flags & SWP_WRITEOK) { if (p->swap_file->f_mapping == mapping) { found = 1; break; } } } if (!found) { err = -EINVAL; spin_unlock(&swap_lock); goto out_dput; } if (!security_vm_enough_memory_mm(current->mm, p->pages)) vm_unacct_memory(p->pages); else { err = -ENOMEM; spin_unlock(&swap_lock); goto out_dput; } spin_lock(&p->lock); del_from_avail_list(p); if (p->prio < 0) { struct swap_info_struct *si = p; int nid; plist_for_each_entry_continue(si, &swap_active_head, list) { si->prio++; si->list.prio--; for_each_node(nid) { if (si->avail_lists[nid].prio != 1) si->avail_lists[nid].prio--; } } least_priority++; } plist_del(&p->list, &swap_active_head); atomic_long_sub(p->pages, &nr_swap_pages); total_swap_pages -= p->pages; p->flags &= ~SWP_WRITEOK; spin_unlock(&p->lock); spin_unlock(&swap_lock); disable_swap_slots_cache_lock(); set_current_oom_origin(); err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ clear_current_oom_origin(); if (err) { /* re-insert swap space back into swap_list */ reinsert_swap_info(p); reenable_swap_slots_cache_unlock(); goto out_dput; } reenable_swap_slots_cache_unlock(); /* * Wait for swap operations protected by get/put_swap_device() * to complete. * * We need synchronize_rcu() here to protect the accessing to * the swap cache data structure. */ percpu_ref_kill(&p->users); synchronize_rcu(); wait_for_completion(&p->comp); flush_work(&p->discard_work); destroy_swap_extents(p); if (p->flags & SWP_CONTINUED) free_swap_count_continuations(p); if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) atomic_dec(&nr_rotate_swap); mutex_lock(&swapon_mutex); spin_lock(&swap_lock); spin_lock(&p->lock); drain_mmlist(); /* wait for anyone still in scan_swap_map_slots */ p->highest_bit = 0; /* cuts scans short */ while (p->flags >= SWP_SCANNING) { spin_unlock(&p->lock); spin_unlock(&swap_lock); schedule_timeout_uninterruptible(1); spin_lock(&swap_lock); spin_lock(&p->lock); } swap_file = p->swap_file; old_block_size = p->old_block_size; p->swap_file = NULL; p->max = 0; swap_map = p->swap_map; p->swap_map = NULL; cluster_info = p->cluster_info; p->cluster_info = NULL; frontswap_map = frontswap_map_get(p); spin_unlock(&p->lock); spin_unlock(&swap_lock); arch_swap_invalidate_area(p->type); frontswap_invalidate_area(p->type); frontswap_map_set(p, NULL); mutex_unlock(&swapon_mutex); free_percpu(p->percpu_cluster); p->percpu_cluster = NULL; free_percpu(p->cluster_next_cpu); p->cluster_next_cpu = NULL; vfree(swap_map); kvfree(cluster_info); kvfree(frontswap_map); /* Destroy swap account information */ swap_cgroup_swapoff(p->type); exit_swap_address_space(p->type); inode = mapping->host; if (S_ISBLK(inode->i_mode)) { struct block_device *bdev = I_BDEV(inode); set_blocksize(bdev, old_block_size); blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); } inode_lock(inode); inode->i_flags &= ~S_SWAPFILE; inode_unlock(inode); filp_close(swap_file, NULL); /* * Clear the SWP_USED flag after all resources are freed so that swapon * can reuse this swap_info in alloc_swap_info() safely. It is ok to * not hold p->lock after we cleared its SWP_WRITEOK. */ spin_lock(&swap_lock); p->flags = 0; spin_unlock(&swap_lock); err = 0; atomic_inc(&proc_poll_event); wake_up_interruptible(&proc_poll_wait); out_dput: filp_close(victim, NULL); out: putname(pathname); return err; } #ifdef CONFIG_PROC_FS static __poll_t swaps_poll(struct file *file, poll_table *wait) { struct seq_file *seq = file->private_data; poll_wait(file, &proc_poll_wait, wait); if (seq->poll_event != atomic_read(&proc_poll_event)) { seq->poll_event = atomic_read(&proc_poll_event); return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; } return EPOLLIN | EPOLLRDNORM; } /* iterator */ static void *swap_start(struct seq_file *swap, loff_t *pos) { struct swap_info_struct *si; int type; loff_t l = *pos; mutex_lock(&swapon_mutex); if (!l) return SEQ_START_TOKEN; for (type = 0; (si = swap_type_to_swap_info(type)); type++) { if (!(si->flags & SWP_USED) || !si->swap_map) continue; if (!--l) return si; } return NULL; } static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) { struct swap_info_struct *si = v; int type; if (v == SEQ_START_TOKEN) type = 0; else type = si->type + 1; ++(*pos); for (; (si = swap_type_to_swap_info(type)); type++) { if (!(si->flags & SWP_USED) || !si->swap_map) continue; return si; } return NULL; } static void swap_stop(struct seq_file *swap, void *v) { mutex_unlock(&swapon_mutex); } static int swap_show(struct seq_file *swap, void *v) { struct swap_info_struct *si = v; struct file *file; int len; unsigned int bytes, inuse; if (si == SEQ_START_TOKEN) { seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); return 0; } bytes = si->pages << (PAGE_SHIFT - 10); inuse = si->inuse_pages << (PAGE_SHIFT - 10); file = si->swap_file; len = seq_file_path(swap, file, " \t\n\\"); seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n", len < 40 ? 40 - len : 1, " ", S_ISBLK(file_inode(file)->i_mode) ? "partition" : "file\t", bytes, bytes < 10000000 ? "\t" : "", inuse, inuse < 10000000 ? "\t" : "", si->prio); return 0; } static const struct seq_operations swaps_op = { .start = swap_start, .next = swap_next, .stop = swap_stop, .show = swap_show }; static int swaps_open(struct inode *inode, struct file *file) { struct seq_file *seq; int ret; ret = seq_open(file, &swaps_op); if (ret) return ret; seq = file->private_data; seq->poll_event = atomic_read(&proc_poll_event); return 0; } static const struct proc_ops swaps_proc_ops = { .proc_flags = PROC_ENTRY_PERMANENT, .proc_open = swaps_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, .proc_poll = swaps_poll, }; static int __init procswaps_init(void) { proc_create("swaps", 0, NULL, &swaps_proc_ops); return 0; } __initcall(procswaps_init); #endif /* CONFIG_PROC_FS */ #ifdef MAX_SWAPFILES_CHECK static int __init max_swapfiles_check(void) { MAX_SWAPFILES_CHECK(); return 0; } late_initcall(max_swapfiles_check); #endif static struct swap_info_struct *alloc_swap_info(void) { struct swap_info_struct *p; struct swap_info_struct *defer = NULL; unsigned int type; int i; p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); if (percpu_ref_init(&p->users, swap_users_ref_free, PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { kvfree(p); return ERR_PTR(-ENOMEM); } spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { if (!(swap_info[type]->flags & SWP_USED)) break; } if (type >= MAX_SWAPFILES) { spin_unlock(&swap_lock); percpu_ref_exit(&p->users); kvfree(p); return ERR_PTR(-EPERM); } if (type >= nr_swapfiles) { p->type = type; /* * Publish the swap_info_struct after initializing it. * Note that kvzalloc() above zeroes all its fields. */ smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ nr_swapfiles++; } else { defer = p; p = swap_info[type]; /* * Do not memset this entry: a racing procfs swap_next() * would be relying on p->type to remain valid. */ } p->swap_extent_root = RB_ROOT; plist_node_init(&p->list, 0); for_each_node(i) plist_node_init(&p->avail_lists[i], 0); p->flags = SWP_USED; spin_unlock(&swap_lock); if (defer) { percpu_ref_exit(&defer->users); kvfree(defer); } spin_lock_init(&p->lock); spin_lock_init(&p->cont_lock); init_completion(&p->comp); return p; } static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) { int error; if (S_ISBLK(inode->i_mode)) { p->bdev = blkdev_get_by_dev(inode->i_rdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); if (IS_ERR(p->bdev)) { error = PTR_ERR(p->bdev); p->bdev = NULL; return error; } p->old_block_size = block_size(p->bdev); error = set_blocksize(p->bdev, PAGE_SIZE); if (error < 0) return error; /* * Zoned block devices contain zones that have a sequential * write only restriction. Hence zoned block devices are not * suitable for swapping. Disallow them here. */ if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) return -EINVAL; p->flags |= SWP_BLKDEV; } else if (S_ISREG(inode->i_mode)) { p->bdev = inode->i_sb->s_bdev; } return 0; } /* * Find out how many pages are allowed for a single swap device. There * are two limiting factors: * 1) the number of bits for the swap offset in the swp_entry_t type, and * 2) the number of bits in the swap pte, as defined by the different * architectures. * * In order to find the largest possible bit mask, a swap entry with * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, * decoded to a swp_entry_t again, and finally the swap offset is * extracted. * * This will mask all the bits from the initial ~0UL mask that can't * be encoded in either the swp_entry_t or the architecture definition * of a swap pte. */ unsigned long generic_max_swapfile_size(void) { return swp_offset(pte_to_swp_entry( swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; } /* Can be overridden by an architecture for additional checks. */ __weak unsigned long max_swapfile_size(void) { return generic_max_swapfile_size(); } static unsigned long read_swap_header(struct swap_info_struct *p, union swap_header *swap_header, struct inode *inode) { int i; unsigned long maxpages; unsigned long swapfilepages; unsigned long last_page; if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { pr_err("Unable to find swap-space signature\n"); return 0; } /* swap partition endianness hack... */ if (swab32(swap_header->info.version) == 1) { swab32s(&swap_header->info.version); swab32s(&swap_header->info.last_page); swab32s(&swap_header->info.nr_badpages); if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) return 0; for (i = 0; i < swap_header->info.nr_badpages; i++) swab32s(&swap_header->info.badpages[i]); } /* Check the swap header's sub-version */ if (swap_header->info.version != 1) { pr_warn("Unable to handle swap header version %d\n", swap_header->info.version); return 0; } p->lowest_bit = 1; p->cluster_next = 1; p->cluster_nr = 0; maxpages = max_swapfile_size(); last_page = swap_header->info.last_page; if (!last_page) { pr_warn("Empty swap-file\n"); return 0; } if (last_page > maxpages) { pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", maxpages << (PAGE_SHIFT - 10), last_page << (PAGE_SHIFT - 10)); } if (maxpages > last_page) { maxpages = last_page + 1; /* p->max is an unsigned int: don't overflow it */ if ((unsigned int)maxpages == 0) maxpages = UINT_MAX; } p->highest_bit = maxpages - 1; if (!maxpages) return 0; swapfilepages = i_size_read(inode) >> PAGE_SHIFT; if (swapfilepages && maxpages > swapfilepages) { pr_warn("Swap area shorter than signature indicates\n"); return 0; } if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) return 0; if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) return 0; return maxpages; } #define SWAP_CLUSTER_INFO_COLS \ DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) #define SWAP_CLUSTER_SPACE_COLS \ DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) #define SWAP_CLUSTER_COLS \ max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) static int setup_swap_map_and_extents(struct swap_info_struct *p, union swap_header *swap_header, unsigned char *swap_map, struct swap_cluster_info *cluster_info, unsigned long maxpages, sector_t *span) { unsigned int j, k; unsigned int nr_good_pages; int nr_extents; unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; unsigned long i, idx; nr_good_pages = maxpages - 1; /* omit header page */ cluster_list_init(&p->free_clusters); cluster_list_init(&p->discard_clusters); for (i = 0; i < swap_header->info.nr_badpages; i++) { unsigned int page_nr = swap_header->info.badpages[i]; if (page_nr == 0 || page_nr > swap_header->info.last_page) return -EINVAL; if (page_nr < maxpages) { swap_map[page_nr] = SWAP_MAP_BAD; nr_good_pages--; /* * Haven't marked the cluster free yet, no list * operation involved */ inc_cluster_info_page(p, cluster_info, page_nr); } } /* Haven't marked the cluster free yet, no list operation involved */ for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) inc_cluster_info_page(p, cluster_info, i); if (nr_good_pages) { swap_map[0] = SWAP_MAP_BAD; /* * Not mark the cluster free yet, no list * operation involved */ inc_cluster_info_page(p, cluster_info, 0); p->max = maxpages; p->pages = nr_good_pages; nr_extents = setup_swap_extents(p, span); if (nr_extents < 0) return nr_extents; nr_good_pages = p->pages; } if (!nr_good_pages) { pr_warn("Empty swap-file\n"); return -EINVAL; } if (!cluster_info) return nr_extents; /* * Reduce false cache line sharing between cluster_info and * sharing same address space. */ for (k = 0; k < SWAP_CLUSTER_COLS; k++) { j = (k + col) % SWAP_CLUSTER_COLS; for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { idx = i * SWAP_CLUSTER_COLS + j; if (idx >= nr_clusters) continue; if (cluster_count(&cluster_info[idx])) continue; cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); cluster_list_add_tail(&p->free_clusters, cluster_info, idx); } } return nr_extents; } /* * Helper to sys_swapon determining if a given swap * backing device queue supports DISCARD operations. */ static bool swap_discardable(struct swap_info_struct *si) { struct request_queue *q = bdev_get_queue(si->bdev); if (!q || !blk_queue_discard(q)) return false; return true; } SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) { struct swap_info_struct *p; struct filename *name; struct file *swap_file = NULL; struct address_space *mapping; struct dentry *dentry; int prio; int error; union swap_header *swap_header; int nr_extents; sector_t span; unsigned long maxpages; unsigned char *swap_map = NULL; struct swap_cluster_info *cluster_info = NULL; unsigned long *frontswap_map = NULL; struct page *page = NULL; struct inode *inode = NULL; bool inced_nr_rotate_swap = false; if (swap_flags & ~SWAP_FLAGS_VALID) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!swap_avail_heads) return -ENOMEM; p = alloc_swap_info(); if (IS_ERR(p)) return PTR_ERR(p); INIT_WORK(&p->discard_work, swap_discard_work); name = getname(specialfile); if (IS_ERR(name)) { error = PTR_ERR(name); name = NULL; goto bad_swap; } swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); if (IS_ERR(swap_file)) { error = PTR_ERR(swap_file); swap_file = NULL; goto bad_swap; } p->swap_file = swap_file; mapping = swap_file->f_mapping; dentry = swap_file->f_path.dentry; inode = mapping->host; error = claim_swapfile(p, inode); if (unlikely(error)) goto bad_swap; inode_lock(inode); if (d_unlinked(dentry) || cant_mount(dentry)) { error = -ENOENT; goto bad_swap_unlock_inode; } if (IS_SWAPFILE(inode)) { error = -EBUSY; goto bad_swap_unlock_inode; } /* * Read the swap header. */ if (!mapping->a_ops->readpage) { error = -EINVAL; goto bad_swap_unlock_inode; } page = read_mapping_page(mapping, 0, swap_file); if (IS_ERR(page)) { error = PTR_ERR(page); goto bad_swap_unlock_inode; } swap_header = kmap(page); maxpages = read_swap_header(p, swap_header, inode); if (unlikely(!maxpages)) { error = -EINVAL; goto bad_swap_unlock_inode; } /* OK, set up the swap map and apply the bad block list */ swap_map = vzalloc(maxpages); if (!swap_map) { error = -ENOMEM; goto bad_swap_unlock_inode; } if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue)) p->flags |= SWP_STABLE_WRITES; if (p->bdev && p->bdev->bd_disk->fops->rw_page) p->flags |= SWP_SYNCHRONOUS_IO; if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { int cpu; unsigned long ci, nr_cluster; p->flags |= SWP_SOLIDSTATE; p->cluster_next_cpu = alloc_percpu(unsigned int); if (!p->cluster_next_cpu) { error = -ENOMEM; goto bad_swap_unlock_inode; } /* * select a random position to start with to help wear leveling * SSD */ for_each_possible_cpu(cpu) { per_cpu(*p->cluster_next_cpu, cpu) = 1 + prandom_u32_max(p->highest_bit); } nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), GFP_KERNEL); if (!cluster_info) { error = -ENOMEM; goto bad_swap_unlock_inode; } for (ci = 0; ci < nr_cluster; ci++) spin_lock_init(&((cluster_info + ci)->lock)); p->percpu_cluster = alloc_percpu(struct percpu_cluster); if (!p->percpu_cluster) { error = -ENOMEM; goto bad_swap_unlock_inode; } for_each_possible_cpu(cpu) { struct percpu_cluster *cluster; cluster = per_cpu_ptr(p->percpu_cluster, cpu); cluster_set_null(&cluster->index); } } else { atomic_inc(&nr_rotate_swap); inced_nr_rotate_swap = true; } error = swap_cgroup_swapon(p->type, maxpages); if (error) goto bad_swap_unlock_inode; nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, cluster_info, maxpages, &span); if (unlikely(nr_extents < 0)) { error = nr_extents; goto bad_swap_unlock_inode; } /* frontswap enabled? set up bit-per-page map for frontswap */ if (IS_ENABLED(CONFIG_FRONTSWAP)) frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), sizeof(long), GFP_KERNEL); if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { /* * When discard is enabled for swap with no particular * policy flagged, we set all swap discard flags here in * order to sustain backward compatibility with older * swapon(8) releases. */ p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | SWP_PAGE_DISCARD); /* * By flagging sys_swapon, a sysadmin can tell us to * either do single-time area discards only, or to just * perform discards for released swap page-clusters. * Now it's time to adjust the p->flags accordingly. */ if (swap_flags & SWAP_FLAG_DISCARD_ONCE) p->flags &= ~SWP_PAGE_DISCARD; else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) p->flags &= ~SWP_AREA_DISCARD; /* issue a swapon-time discard if it's still required */ if (p->flags & SWP_AREA_DISCARD) { int err = discard_swap(p); if (unlikely(err)) pr_err("swapon: discard_swap(%p): %d\n", p, err); } } error = init_swap_address_space(p->type, maxpages); if (error) goto bad_swap_unlock_inode; /* * Flush any pending IO and dirty mappings before we start using this * swap device. */ inode->i_flags |= S_SWAPFILE; error = inode_drain_writes(inode); if (error) { inode->i_flags &= ~S_SWAPFILE; goto free_swap_address_space; } mutex_lock(&swapon_mutex); prio = -1; if (swap_flags & SWAP_FLAG_PREFER) prio = (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", p->pages<<(PAGE_SHIFT-10), name->name, p->prio, nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), (p->flags & SWP_SOLIDSTATE) ? "SS" : "", (p->flags & SWP_DISCARDABLE) ? "D" : "", (p->flags & SWP_AREA_DISCARD) ? "s" : "", (p->flags & SWP_PAGE_DISCARD) ? "c" : "", (frontswap_map) ? "FS" : ""); mutex_unlock(&swapon_mutex); atomic_inc(&proc_poll_event); wake_up_interruptible(&proc_poll_wait); error = 0; goto out; free_swap_address_space: exit_swap_address_space(p->type); bad_swap_unlock_inode: inode_unlock(inode); bad_swap: free_percpu(p->percpu_cluster); p->percpu_cluster = NULL; free_percpu(p->cluster_next_cpu); p->cluster_next_cpu = NULL; if (inode && S_ISBLK(inode->i_mode) && p->bdev) { set_blocksize(p->bdev, p->old_block_size); blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); } inode = NULL; destroy_swap_extents(p); swap_cgroup_swapoff(p->type); spin_lock(&swap_lock); p->swap_file = NULL; p->flags = 0; spin_unlock(&swap_lock); vfree(swap_map); kvfree(cluster_info); kvfree(frontswap_map); if (inced_nr_rotate_swap) atomic_dec(&nr_rotate_swap); if (swap_file) filp_close(swap_file, NULL); out: if (page && !IS_ERR(page)) { kunmap(page); put_page(page); } if (name) putname(name); if (inode) inode_unlock(inode); if (!error) enable_swap_slots_cache(); return error; } void si_swapinfo(struct sysinfo *val) { unsigned int type; unsigned long nr_to_be_unused = 0; spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { struct swap_info_struct *si = swap_info[type]; if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) nr_to_be_unused += si->inuse_pages; } val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; val->totalswap = total_swap_pages + nr_to_be_unused; spin_unlock(&swap_lock); } /* * Verify that a swap entry is valid and increment its swap map count. * * Returns error code in following case. * - success -> 0 * - swp_entry is invalid -> EINVAL * - swp_entry is migration entry -> EINVAL * - swap-cache reference is requested but there is already one. -> EEXIST * - swap-cache reference is requested but the entry is not used. -> ENOENT * - swap-mapped reference requested but needs continued swap count. -> ENOMEM */ static int __swap_duplicate(swp_entry_t entry, unsigned char usage) { struct swap_info_struct *p; struct swap_cluster_info *ci; unsigned long offset; unsigned char count; unsigned char has_cache; int err; p = get_swap_device(entry); if (!p) return -EINVAL; offset = swp_offset(entry); ci = lock_cluster_or_swap_info(p, offset); count = p->swap_map[offset]; /* * swapin_readahead() doesn't check if a swap entry is valid, so the * swap entry could be SWAP_MAP_BAD. Check here with lock held. */ if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { err = -ENOENT; goto unlock_out; } has_cache = count & SWAP_HAS_CACHE; count &= ~SWAP_HAS_CACHE; err = 0; if (usage == SWAP_HAS_CACHE) { /* set SWAP_HAS_CACHE if there is no cache and entry is used */ if (!has_cache && count) has_cache = SWAP_HAS_CACHE; else if (has_cache) /* someone else added cache */ err = -EEXIST; else /* no users remaining */ err = -ENOENT; } else if (count || has_cache) { if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) count += usage; else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) err = -EINVAL; else if (swap_count_continued(p, offset, count)) count = COUNT_CONTINUED; else err = -ENOMEM; } else err = -ENOENT; /* unused swap entry */ WRITE_ONCE(p->swap_map[offset], count | has_cache); unlock_out: unlock_cluster_or_swap_info(p, ci); if (p) put_swap_device(p); return err; } /* * Help swapoff by noting that swap entry belongs to shmem/tmpfs * (in which case its reference count is never incremented). */ void swap_shmem_alloc(swp_entry_t entry) { __swap_duplicate(entry, SWAP_MAP_SHMEM); } /* * Increase reference count of swap entry by 1. * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required * but could not be atomically allocated. Returns 0, just as if it succeeded, * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which * might occur if a page table entry has got corrupted. */ int swap_duplicate(swp_entry_t entry) { int err = 0; while (!err && __swap_duplicate(entry, 1) == -ENOMEM) err = add_swap_count_continuation(entry, GFP_ATOMIC); return err; } /* * @entry: swap entry for which we allocate swap cache. * * Called when allocating swap cache for existing swap entry, * This can return error codes. Returns 0 at success. * -EEXIST means there is a swap cache. * Note: return code is different from swap_duplicate(). */ int swapcache_prepare(swp_entry_t entry) { return __swap_duplicate(entry, SWAP_HAS_CACHE); } struct swap_info_struct *swp_swap_info(swp_entry_t entry) { return swap_type_to_swap_info(swp_type(entry)); } struct swap_info_struct *page_swap_info(struct page *page) { swp_entry_t entry = { .val = page_private(page) }; return swp_swap_info(entry); } /* * out-of-line __page_file_ methods to avoid include hell. */ struct address_space *__page_file_mapping(struct page *page) { return page_swap_info(page)->swap_file->f_mapping; } EXPORT_SYMBOL_GPL(__page_file_mapping); pgoff_t __page_file_index(struct page *page) { swp_entry_t swap = { .val = page_private(page) }; return swp_offset(swap); } EXPORT_SYMBOL_GPL(__page_file_index); /* * add_swap_count_continuation - called when a swap count is duplicated * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's * page of the original vmalloc'ed swap_map, to hold the continuation count * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. * * These continuation pages are seldom referenced: the common paths all work * on the original swap_map, only referring to a continuation page when the * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. * * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) * can be called after dropping locks. */ int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) { struct swap_info_struct *si; struct swap_cluster_info *ci; struct page *head; struct page *page; struct page *list_page; pgoff_t offset; unsigned char count; int ret = 0; /* * When debugging, it's easier to use __GFP_ZERO here; but it's better * for latency not to zero a page while GFP_ATOMIC and holding locks. */ page = alloc_page(gfp_mask | __GFP_HIGHMEM); si = get_swap_device(entry); if (!si) { /* * An acceptable race has occurred since the failing * __swap_duplicate(): the swap device may be swapoff */ goto outer; } spin_lock(&si->lock); offset = swp_offset(entry); ci = lock_cluster(si, offset); count = swap_count(si->swap_map[offset]); if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { /* * The higher the swap count, the more likely it is that tasks * will race to add swap count continuation: we need to avoid * over-provisioning. */ goto out; } if (!page) { ret = -ENOMEM; goto out; } /* * We are fortunate that although vmalloc_to_page uses pte_offset_map, * no architecture is using highmem pages for kernel page tables: so it * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. */ head = vmalloc_to_page(si->swap_map + offset); offset &= ~PAGE_MASK; spin_lock(&si->cont_lock); /* * Page allocation does not initialize the page's lru field, * but it does always reset its private field. */ if (!page_private(head)) { BUG_ON(count & COUNT_CONTINUED); INIT_LIST_HEAD(&head->lru); set_page_private(head, SWP_CONTINUED); si->flags |= SWP_CONTINUED; } list_for_each_entry(list_page, &head->lru, lru) { unsigned char *map; /* * If the previous map said no continuation, but we've found * a continuation page, free our allocation and use this one. */ if (!(count & COUNT_CONTINUED)) goto out_unlock_cont; map = kmap_atomic(list_page) + offset; count = *map; kunmap_atomic(map); /* * If this continuation count now has some space in it, * free our allocation and use this one. */ if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) goto out_unlock_cont; } list_add_tail(&page->lru, &head->lru); page = NULL; /* now it's attached, don't free it */ out_unlock_cont: spin_unlock(&si->cont_lock); out: unlock_cluster(ci); spin_unlock(&si->lock); put_swap_device(si); outer: if (page) __free_page(page); return ret; } /* * swap_count_continued - when the original swap_map count is incremented * from SWAP_MAP_MAX, check if there is already a continuation page to carry * into, carry if so, or else fail until a new continuation page is allocated; * when the original swap_map count is decremented from 0 with continuation, * borrow from the continuation and report whether it still holds more. * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster * lock. */ static bool swap_count_continued(struct swap_info_struct *si, pgoff_t offset, unsigned char count) { struct page *head; struct page *page; unsigned char *map; bool ret; head = vmalloc_to_page(si->swap_map + offset); if (page_private(head) != SWP_CONTINUED) { BUG_ON(count & COUNT_CONTINUED); return false; /* need to add count continuation */ } spin_lock(&si->cont_lock); offset &= ~PAGE_MASK; page = list_next_entry(head, lru); map = kmap_atomic(page) + offset; if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ goto init_map; /* jump over SWAP_CONT_MAX checks */ if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ /* * Think of how you add 1 to 999 */ while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { kunmap_atomic(map); page = list_next_entry(page, lru); BUG_ON(page == head); map = kmap_atomic(page) + offset; } if (*map == SWAP_CONT_MAX) { kunmap_atomic(map); page = list_next_entry(page, lru); if (page == head) { ret = false; /* add count continuation */ goto out; } map = kmap_atomic(page) + offset; init_map: *map = 0; /* we didn't zero the page */ } *map += 1; kunmap_atomic(map); while ((page = list_prev_entry(page, lru)) != head) { map = kmap_atomic(page) + offset; *map = COUNT_CONTINUED; kunmap_atomic(map); } ret = true; /* incremented */ } else { /* decrementing */ /* * Think of how you subtract 1 from 1000 */ BUG_ON(count != COUNT_CONTINUED); while (*map == COUNT_CONTINUED) { kunmap_atomic(map); page = list_next_entry(page, lru); BUG_ON(page == head); map = kmap_atomic(page) + offset; } BUG_ON(*map == 0); *map -= 1; if (*map == 0) count = 0; kunmap_atomic(map); while ((page = list_prev_entry(page, lru)) != head) { map = kmap_atomic(page) + offset; *map = SWAP_CONT_MAX | count; count = COUNT_CONTINUED; kunmap_atomic(map); } ret = count == COUNT_CONTINUED; } out: spin_unlock(&si->cont_lock); return ret; } /* * free_swap_count_continuations - swapoff free all the continuation pages * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. */ static void free_swap_count_continuations(struct swap_info_struct *si) { pgoff_t offset; for (offset = 0; offset < si->max; offset += PAGE_SIZE) { struct page *head; head = vmalloc_to_page(si->swap_map + offset); if (page_private(head)) { struct page *page, *next; list_for_each_entry_safe(page, next, &head->lru, lru) { list_del(&page->lru); __free_page(page); } } } } #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) { struct swap_info_struct *si, *next; int nid = page_to_nid(page); if (!(gfp_mask & __GFP_IO)) return; if (!blk_cgroup_congested()) return; /* * We've already scheduled a throttle, avoid taking the global swap * lock. */ if (current->throttle_queue) return; spin_lock(&swap_avail_lock); plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], avail_lists[nid]) { if (si->bdev) { blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); break; } } spin_unlock(&swap_avail_lock); } #endif static int __init swapfile_init(void) { int nid; swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), GFP_KERNEL); if (!swap_avail_heads) { pr_emerg("Not enough memory for swap heads, swap is disabled\n"); return -ENOMEM; } for_each_node(nid) plist_head_init(&swap_avail_heads[nid]); return 0; } subsys_initcall(swapfile_init);