646 строки
18 KiB
C
646 строки
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#define UNIPHIER_FI2C_CR 0x00 /* control register */
|
|
#define UNIPHIER_FI2C_CR_MST BIT(3) /* master mode */
|
|
#define UNIPHIER_FI2C_CR_STA BIT(2) /* start condition */
|
|
#define UNIPHIER_FI2C_CR_STO BIT(1) /* stop condition */
|
|
#define UNIPHIER_FI2C_CR_NACK BIT(0) /* do not return ACK */
|
|
#define UNIPHIER_FI2C_DTTX 0x04 /* TX FIFO */
|
|
#define UNIPHIER_FI2C_DTTX_CMD BIT(8) /* send command (slave addr) */
|
|
#define UNIPHIER_FI2C_DTTX_RD BIT(0) /* read transaction */
|
|
#define UNIPHIER_FI2C_DTRX 0x04 /* RX FIFO */
|
|
#define UNIPHIER_FI2C_SLAD 0x0c /* slave address */
|
|
#define UNIPHIER_FI2C_CYC 0x10 /* clock cycle control */
|
|
#define UNIPHIER_FI2C_LCTL 0x14 /* clock low period control */
|
|
#define UNIPHIER_FI2C_SSUT 0x18 /* restart/stop setup time control */
|
|
#define UNIPHIER_FI2C_DSUT 0x1c /* data setup time control */
|
|
#define UNIPHIER_FI2C_INT 0x20 /* interrupt status */
|
|
#define UNIPHIER_FI2C_IE 0x24 /* interrupt enable */
|
|
#define UNIPHIER_FI2C_IC 0x28 /* interrupt clear */
|
|
#define UNIPHIER_FI2C_INT_TE BIT(9) /* TX FIFO empty */
|
|
#define UNIPHIER_FI2C_INT_RF BIT(8) /* RX FIFO full */
|
|
#define UNIPHIER_FI2C_INT_TC BIT(7) /* send complete (STOP) */
|
|
#define UNIPHIER_FI2C_INT_RC BIT(6) /* receive complete (STOP) */
|
|
#define UNIPHIER_FI2C_INT_TB BIT(5) /* sent specified bytes */
|
|
#define UNIPHIER_FI2C_INT_RB BIT(4) /* received specified bytes */
|
|
#define UNIPHIER_FI2C_INT_NA BIT(2) /* no ACK */
|
|
#define UNIPHIER_FI2C_INT_AL BIT(1) /* arbitration lost */
|
|
#define UNIPHIER_FI2C_SR 0x2c /* status register */
|
|
#define UNIPHIER_FI2C_SR_DB BIT(12) /* device busy */
|
|
#define UNIPHIER_FI2C_SR_STS BIT(11) /* stop condition detected */
|
|
#define UNIPHIER_FI2C_SR_BB BIT(8) /* bus busy */
|
|
#define UNIPHIER_FI2C_SR_RFF BIT(3) /* RX FIFO full */
|
|
#define UNIPHIER_FI2C_SR_RNE BIT(2) /* RX FIFO not empty */
|
|
#define UNIPHIER_FI2C_SR_TNF BIT(1) /* TX FIFO not full */
|
|
#define UNIPHIER_FI2C_SR_TFE BIT(0) /* TX FIFO empty */
|
|
#define UNIPHIER_FI2C_RST 0x34 /* reset control */
|
|
#define UNIPHIER_FI2C_RST_TBRST BIT(2) /* clear TX FIFO */
|
|
#define UNIPHIER_FI2C_RST_RBRST BIT(1) /* clear RX FIFO */
|
|
#define UNIPHIER_FI2C_RST_RST BIT(0) /* forcible bus reset */
|
|
#define UNIPHIER_FI2C_BM 0x38 /* bus monitor */
|
|
#define UNIPHIER_FI2C_BM_SDAO BIT(3) /* output for SDA line */
|
|
#define UNIPHIER_FI2C_BM_SDAS BIT(2) /* readback of SDA line */
|
|
#define UNIPHIER_FI2C_BM_SCLO BIT(1) /* output for SCL line */
|
|
#define UNIPHIER_FI2C_BM_SCLS BIT(0) /* readback of SCL line */
|
|
#define UNIPHIER_FI2C_NOISE 0x3c /* noise filter control */
|
|
#define UNIPHIER_FI2C_TBC 0x40 /* TX byte count setting */
|
|
#define UNIPHIER_FI2C_RBC 0x44 /* RX byte count setting */
|
|
#define UNIPHIER_FI2C_TBCM 0x48 /* TX byte count monitor */
|
|
#define UNIPHIER_FI2C_RBCM 0x4c /* RX byte count monitor */
|
|
#define UNIPHIER_FI2C_BRST 0x50 /* bus reset */
|
|
#define UNIPHIER_FI2C_BRST_FOEN BIT(1) /* normal operation */
|
|
#define UNIPHIER_FI2C_BRST_RSCL BIT(0) /* release SCL */
|
|
|
|
#define UNIPHIER_FI2C_INT_FAULTS \
|
|
(UNIPHIER_FI2C_INT_NA | UNIPHIER_FI2C_INT_AL)
|
|
#define UNIPHIER_FI2C_INT_STOP \
|
|
(UNIPHIER_FI2C_INT_TC | UNIPHIER_FI2C_INT_RC)
|
|
|
|
#define UNIPHIER_FI2C_RD BIT(0)
|
|
#define UNIPHIER_FI2C_STOP BIT(1)
|
|
#define UNIPHIER_FI2C_MANUAL_NACK BIT(2)
|
|
#define UNIPHIER_FI2C_BYTE_WISE BIT(3)
|
|
#define UNIPHIER_FI2C_DEFER_STOP_COMP BIT(4)
|
|
|
|
#define UNIPHIER_FI2C_FIFO_SIZE 8
|
|
|
|
struct uniphier_fi2c_priv {
|
|
struct completion comp;
|
|
struct i2c_adapter adap;
|
|
void __iomem *membase;
|
|
struct clk *clk;
|
|
unsigned int len;
|
|
u8 *buf;
|
|
u32 enabled_irqs;
|
|
int error;
|
|
unsigned int flags;
|
|
unsigned int busy_cnt;
|
|
unsigned int clk_cycle;
|
|
spinlock_t lock; /* IRQ synchronization */
|
|
};
|
|
|
|
static void uniphier_fi2c_fill_txfifo(struct uniphier_fi2c_priv *priv,
|
|
bool first)
|
|
{
|
|
int fifo_space = UNIPHIER_FI2C_FIFO_SIZE;
|
|
|
|
/*
|
|
* TX-FIFO stores slave address in it for the first access.
|
|
* Decrement the counter.
|
|
*/
|
|
if (first)
|
|
fifo_space--;
|
|
|
|
while (priv->len) {
|
|
if (fifo_space-- <= 0)
|
|
break;
|
|
|
|
writel(*priv->buf++, priv->membase + UNIPHIER_FI2C_DTTX);
|
|
priv->len--;
|
|
}
|
|
}
|
|
|
|
static void uniphier_fi2c_drain_rxfifo(struct uniphier_fi2c_priv *priv)
|
|
{
|
|
int fifo_left = priv->flags & UNIPHIER_FI2C_BYTE_WISE ?
|
|
1 : UNIPHIER_FI2C_FIFO_SIZE;
|
|
|
|
while (priv->len) {
|
|
if (fifo_left-- <= 0)
|
|
break;
|
|
|
|
*priv->buf++ = readl(priv->membase + UNIPHIER_FI2C_DTRX);
|
|
priv->len--;
|
|
}
|
|
}
|
|
|
|
static void uniphier_fi2c_set_irqs(struct uniphier_fi2c_priv *priv)
|
|
{
|
|
writel(priv->enabled_irqs, priv->membase + UNIPHIER_FI2C_IE);
|
|
}
|
|
|
|
static void uniphier_fi2c_clear_irqs(struct uniphier_fi2c_priv *priv,
|
|
u32 mask)
|
|
{
|
|
writel(mask, priv->membase + UNIPHIER_FI2C_IC);
|
|
}
|
|
|
|
static void uniphier_fi2c_stop(struct uniphier_fi2c_priv *priv)
|
|
{
|
|
priv->enabled_irqs |= UNIPHIER_FI2C_INT_STOP;
|
|
uniphier_fi2c_set_irqs(priv);
|
|
writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STO,
|
|
priv->membase + UNIPHIER_FI2C_CR);
|
|
}
|
|
|
|
static irqreturn_t uniphier_fi2c_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = dev_id;
|
|
u32 irq_status;
|
|
|
|
spin_lock(&priv->lock);
|
|
|
|
irq_status = readl(priv->membase + UNIPHIER_FI2C_INT);
|
|
irq_status &= priv->enabled_irqs;
|
|
|
|
if (irq_status & UNIPHIER_FI2C_INT_STOP)
|
|
goto complete;
|
|
|
|
if (unlikely(irq_status & UNIPHIER_FI2C_INT_AL)) {
|
|
priv->error = -EAGAIN;
|
|
goto complete;
|
|
}
|
|
|
|
if (unlikely(irq_status & UNIPHIER_FI2C_INT_NA)) {
|
|
priv->error = -ENXIO;
|
|
if (priv->flags & UNIPHIER_FI2C_RD) {
|
|
/*
|
|
* work around a hardware bug:
|
|
* The receive-completed interrupt is never set even if
|
|
* STOP condition is detected after the address phase
|
|
* of read transaction fails to get ACK.
|
|
* To avoid time-out error, we issue STOP here,
|
|
* but do not wait for its completion.
|
|
* It should be checked after exiting this handler.
|
|
*/
|
|
uniphier_fi2c_stop(priv);
|
|
priv->flags |= UNIPHIER_FI2C_DEFER_STOP_COMP;
|
|
goto complete;
|
|
}
|
|
goto stop;
|
|
}
|
|
|
|
if (irq_status & UNIPHIER_FI2C_INT_TE) {
|
|
if (!priv->len)
|
|
goto data_done;
|
|
|
|
uniphier_fi2c_fill_txfifo(priv, false);
|
|
goto handled;
|
|
}
|
|
|
|
if (irq_status & (UNIPHIER_FI2C_INT_RF | UNIPHIER_FI2C_INT_RB)) {
|
|
uniphier_fi2c_drain_rxfifo(priv);
|
|
/*
|
|
* If the number of bytes to read is multiple of the FIFO size
|
|
* (msg->len == 8, 16, 24, ...), the INT_RF bit is set a little
|
|
* earlier than INT_RB. We wait for INT_RB to confirm the
|
|
* completion of the current message.
|
|
*/
|
|
if (!priv->len && (irq_status & UNIPHIER_FI2C_INT_RB))
|
|
goto data_done;
|
|
|
|
if (unlikely(priv->flags & UNIPHIER_FI2C_MANUAL_NACK)) {
|
|
if (priv->len <= UNIPHIER_FI2C_FIFO_SIZE &&
|
|
!(priv->flags & UNIPHIER_FI2C_BYTE_WISE)) {
|
|
priv->enabled_irqs |= UNIPHIER_FI2C_INT_RB;
|
|
uniphier_fi2c_set_irqs(priv);
|
|
priv->flags |= UNIPHIER_FI2C_BYTE_WISE;
|
|
}
|
|
if (priv->len <= 1)
|
|
writel(UNIPHIER_FI2C_CR_MST |
|
|
UNIPHIER_FI2C_CR_NACK,
|
|
priv->membase + UNIPHIER_FI2C_CR);
|
|
}
|
|
|
|
goto handled;
|
|
}
|
|
|
|
spin_unlock(&priv->lock);
|
|
|
|
return IRQ_NONE;
|
|
|
|
data_done:
|
|
if (priv->flags & UNIPHIER_FI2C_STOP) {
|
|
stop:
|
|
uniphier_fi2c_stop(priv);
|
|
} else {
|
|
complete:
|
|
priv->enabled_irqs = 0;
|
|
uniphier_fi2c_set_irqs(priv);
|
|
complete(&priv->comp);
|
|
}
|
|
|
|
handled:
|
|
/*
|
|
* This controller makes a pause while any bit of the IRQ status is
|
|
* asserted. Clear the asserted bit to kick the controller just before
|
|
* exiting the handler.
|
|
*/
|
|
uniphier_fi2c_clear_irqs(priv, irq_status);
|
|
|
|
spin_unlock(&priv->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void uniphier_fi2c_tx_init(struct uniphier_fi2c_priv *priv, u16 addr,
|
|
bool repeat)
|
|
{
|
|
priv->enabled_irqs |= UNIPHIER_FI2C_INT_TE;
|
|
uniphier_fi2c_set_irqs(priv);
|
|
|
|
/* do not use TX byte counter */
|
|
writel(0, priv->membase + UNIPHIER_FI2C_TBC);
|
|
/* set slave address */
|
|
writel(UNIPHIER_FI2C_DTTX_CMD | addr << 1,
|
|
priv->membase + UNIPHIER_FI2C_DTTX);
|
|
/*
|
|
* First chunk of data. For a repeated START condition, do not write
|
|
* data to the TX fifo here to avoid the timing issue.
|
|
*/
|
|
if (!repeat)
|
|
uniphier_fi2c_fill_txfifo(priv, true);
|
|
}
|
|
|
|
static void uniphier_fi2c_rx_init(struct uniphier_fi2c_priv *priv, u16 addr)
|
|
{
|
|
priv->flags |= UNIPHIER_FI2C_RD;
|
|
|
|
if (likely(priv->len < 256)) {
|
|
/*
|
|
* If possible, use RX byte counter.
|
|
* It can automatically handle NACK for the last byte.
|
|
*/
|
|
writel(priv->len, priv->membase + UNIPHIER_FI2C_RBC);
|
|
priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF |
|
|
UNIPHIER_FI2C_INT_RB;
|
|
} else {
|
|
/*
|
|
* The byte counter can not count over 256. In this case,
|
|
* do not use it at all. Drain data when FIFO gets full,
|
|
* but treat the last portion as a special case.
|
|
*/
|
|
writel(0, priv->membase + UNIPHIER_FI2C_RBC);
|
|
priv->flags |= UNIPHIER_FI2C_MANUAL_NACK;
|
|
priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF;
|
|
}
|
|
|
|
uniphier_fi2c_set_irqs(priv);
|
|
|
|
/* set slave address with RD bit */
|
|
writel(UNIPHIER_FI2C_DTTX_CMD | UNIPHIER_FI2C_DTTX_RD | addr << 1,
|
|
priv->membase + UNIPHIER_FI2C_DTTX);
|
|
}
|
|
|
|
static void uniphier_fi2c_reset(struct uniphier_fi2c_priv *priv)
|
|
{
|
|
writel(UNIPHIER_FI2C_RST_RST, priv->membase + UNIPHIER_FI2C_RST);
|
|
}
|
|
|
|
static void uniphier_fi2c_prepare_operation(struct uniphier_fi2c_priv *priv)
|
|
{
|
|
writel(UNIPHIER_FI2C_BRST_FOEN | UNIPHIER_FI2C_BRST_RSCL,
|
|
priv->membase + UNIPHIER_FI2C_BRST);
|
|
}
|
|
|
|
static void uniphier_fi2c_recover(struct uniphier_fi2c_priv *priv)
|
|
{
|
|
uniphier_fi2c_reset(priv);
|
|
i2c_recover_bus(&priv->adap);
|
|
}
|
|
|
|
static int uniphier_fi2c_master_xfer_one(struct i2c_adapter *adap,
|
|
struct i2c_msg *msg, bool repeat,
|
|
bool stop)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
|
|
bool is_read = msg->flags & I2C_M_RD;
|
|
unsigned long time_left, flags;
|
|
|
|
priv->len = msg->len;
|
|
priv->buf = msg->buf;
|
|
priv->enabled_irqs = UNIPHIER_FI2C_INT_FAULTS;
|
|
priv->error = 0;
|
|
priv->flags = 0;
|
|
|
|
if (stop)
|
|
priv->flags |= UNIPHIER_FI2C_STOP;
|
|
|
|
reinit_completion(&priv->comp);
|
|
uniphier_fi2c_clear_irqs(priv, U32_MAX);
|
|
writel(UNIPHIER_FI2C_RST_TBRST | UNIPHIER_FI2C_RST_RBRST,
|
|
priv->membase + UNIPHIER_FI2C_RST); /* reset TX/RX FIFO */
|
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
|
|
|
if (is_read)
|
|
uniphier_fi2c_rx_init(priv, msg->addr);
|
|
else
|
|
uniphier_fi2c_tx_init(priv, msg->addr, repeat);
|
|
|
|
/*
|
|
* For a repeated START condition, writing a slave address to the FIFO
|
|
* kicks the controller. So, the UNIPHIER_FI2C_CR register should be
|
|
* written only for a non-repeated START condition.
|
|
*/
|
|
if (!repeat)
|
|
writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STA,
|
|
priv->membase + UNIPHIER_FI2C_CR);
|
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
|
|
|
time_left = wait_for_completion_timeout(&priv->comp, adap->timeout);
|
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
|
priv->enabled_irqs = 0;
|
|
uniphier_fi2c_set_irqs(priv);
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
|
|
|
if (!time_left) {
|
|
dev_err(&adap->dev, "transaction timeout.\n");
|
|
uniphier_fi2c_recover(priv);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (unlikely(priv->flags & UNIPHIER_FI2C_DEFER_STOP_COMP)) {
|
|
u32 status;
|
|
int ret;
|
|
|
|
ret = readl_poll_timeout(priv->membase + UNIPHIER_FI2C_SR,
|
|
status,
|
|
(status & UNIPHIER_FI2C_SR_STS) &&
|
|
!(status & UNIPHIER_FI2C_SR_BB),
|
|
1, 20);
|
|
if (ret) {
|
|
dev_err(&adap->dev,
|
|
"stop condition was not completed.\n");
|
|
uniphier_fi2c_recover(priv);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return priv->error;
|
|
}
|
|
|
|
static int uniphier_fi2c_check_bus_busy(struct i2c_adapter *adap)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
|
|
|
|
if (readl(priv->membase + UNIPHIER_FI2C_SR) & UNIPHIER_FI2C_SR_DB) {
|
|
if (priv->busy_cnt++ > 3) {
|
|
/*
|
|
* If bus busy continues too long, it is probably
|
|
* in a wrong state. Try bus recovery.
|
|
*/
|
|
uniphier_fi2c_recover(priv);
|
|
priv->busy_cnt = 0;
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
priv->busy_cnt = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int uniphier_fi2c_master_xfer(struct i2c_adapter *adap,
|
|
struct i2c_msg *msgs, int num)
|
|
{
|
|
struct i2c_msg *msg, *emsg = msgs + num;
|
|
bool repeat = false;
|
|
int ret;
|
|
|
|
ret = uniphier_fi2c_check_bus_busy(adap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (msg = msgs; msg < emsg; msg++) {
|
|
/* Emit STOP if it is the last message or I2C_M_STOP is set. */
|
|
bool stop = (msg + 1 == emsg) || (msg->flags & I2C_M_STOP);
|
|
|
|
ret = uniphier_fi2c_master_xfer_one(adap, msg, repeat, stop);
|
|
if (ret)
|
|
return ret;
|
|
|
|
repeat = !stop;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
static u32 uniphier_fi2c_functionality(struct i2c_adapter *adap)
|
|
{
|
|
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
|
|
}
|
|
|
|
static const struct i2c_algorithm uniphier_fi2c_algo = {
|
|
.master_xfer = uniphier_fi2c_master_xfer,
|
|
.functionality = uniphier_fi2c_functionality,
|
|
};
|
|
|
|
static int uniphier_fi2c_get_scl(struct i2c_adapter *adap)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
|
|
|
|
return !!(readl(priv->membase + UNIPHIER_FI2C_BM) &
|
|
UNIPHIER_FI2C_BM_SCLS);
|
|
}
|
|
|
|
static void uniphier_fi2c_set_scl(struct i2c_adapter *adap, int val)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
|
|
|
|
writel(val ? UNIPHIER_FI2C_BRST_RSCL : 0,
|
|
priv->membase + UNIPHIER_FI2C_BRST);
|
|
}
|
|
|
|
static int uniphier_fi2c_get_sda(struct i2c_adapter *adap)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
|
|
|
|
return !!(readl(priv->membase + UNIPHIER_FI2C_BM) &
|
|
UNIPHIER_FI2C_BM_SDAS);
|
|
}
|
|
|
|
static void uniphier_fi2c_unprepare_recovery(struct i2c_adapter *adap)
|
|
{
|
|
uniphier_fi2c_prepare_operation(i2c_get_adapdata(adap));
|
|
}
|
|
|
|
static struct i2c_bus_recovery_info uniphier_fi2c_bus_recovery_info = {
|
|
.recover_bus = i2c_generic_scl_recovery,
|
|
.get_scl = uniphier_fi2c_get_scl,
|
|
.set_scl = uniphier_fi2c_set_scl,
|
|
.get_sda = uniphier_fi2c_get_sda,
|
|
.unprepare_recovery = uniphier_fi2c_unprepare_recovery,
|
|
};
|
|
|
|
static void uniphier_fi2c_hw_init(struct uniphier_fi2c_priv *priv)
|
|
{
|
|
unsigned int cyc = priv->clk_cycle;
|
|
u32 tmp;
|
|
|
|
tmp = readl(priv->membase + UNIPHIER_FI2C_CR);
|
|
tmp |= UNIPHIER_FI2C_CR_MST;
|
|
writel(tmp, priv->membase + UNIPHIER_FI2C_CR);
|
|
|
|
uniphier_fi2c_reset(priv);
|
|
|
|
/*
|
|
* Standard-mode: tLOW + tHIGH = 10 us
|
|
* Fast-mode: tLOW + tHIGH = 2.5 us
|
|
*/
|
|
writel(cyc, priv->membase + UNIPHIER_FI2C_CYC);
|
|
/*
|
|
* Standard-mode: tLOW = 4.7 us, tHIGH = 4.0 us, tBUF = 4.7 us
|
|
* Fast-mode: tLOW = 1.3 us, tHIGH = 0.6 us, tBUF = 1.3 us
|
|
* "tLow/tHIGH = 5/4" meets both.
|
|
*/
|
|
writel(cyc * 5 / 9, priv->membase + UNIPHIER_FI2C_LCTL);
|
|
/*
|
|
* Standard-mode: tHD;STA = 4.0 us, tSU;STA = 4.7 us, tSU;STO = 4.0 us
|
|
* Fast-mode: tHD;STA = 0.6 us, tSU;STA = 0.6 us, tSU;STO = 0.6 us
|
|
*/
|
|
writel(cyc / 2, priv->membase + UNIPHIER_FI2C_SSUT);
|
|
/*
|
|
* Standard-mode: tSU;DAT = 250 ns
|
|
* Fast-mode: tSU;DAT = 100 ns
|
|
*/
|
|
writel(cyc / 16, priv->membase + UNIPHIER_FI2C_DSUT);
|
|
|
|
uniphier_fi2c_prepare_operation(priv);
|
|
}
|
|
|
|
static int uniphier_fi2c_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct uniphier_fi2c_priv *priv;
|
|
u32 bus_speed;
|
|
unsigned long clk_rate;
|
|
int irq, ret;
|
|
|
|
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
priv->membase = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(priv->membase))
|
|
return PTR_ERR(priv->membase);
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
if (of_property_read_u32(dev->of_node, "clock-frequency", &bus_speed))
|
|
bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
|
|
|
|
if (!bus_speed || bus_speed > I2C_MAX_FAST_MODE_FREQ) {
|
|
dev_err(dev, "invalid clock-frequency %d\n", bus_speed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
priv->clk = devm_clk_get(dev, NULL);
|
|
if (IS_ERR(priv->clk)) {
|
|
dev_err(dev, "failed to get clock\n");
|
|
return PTR_ERR(priv->clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(priv->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
clk_rate = clk_get_rate(priv->clk);
|
|
if (!clk_rate) {
|
|
dev_err(dev, "input clock rate should not be zero\n");
|
|
ret = -EINVAL;
|
|
goto disable_clk;
|
|
}
|
|
|
|
priv->clk_cycle = clk_rate / bus_speed;
|
|
init_completion(&priv->comp);
|
|
spin_lock_init(&priv->lock);
|
|
priv->adap.owner = THIS_MODULE;
|
|
priv->adap.algo = &uniphier_fi2c_algo;
|
|
priv->adap.dev.parent = dev;
|
|
priv->adap.dev.of_node = dev->of_node;
|
|
strlcpy(priv->adap.name, "UniPhier FI2C", sizeof(priv->adap.name));
|
|
priv->adap.bus_recovery_info = &uniphier_fi2c_bus_recovery_info;
|
|
i2c_set_adapdata(&priv->adap, priv);
|
|
platform_set_drvdata(pdev, priv);
|
|
|
|
uniphier_fi2c_hw_init(priv);
|
|
|
|
ret = devm_request_irq(dev, irq, uniphier_fi2c_interrupt, 0,
|
|
pdev->name, priv);
|
|
if (ret) {
|
|
dev_err(dev, "failed to request irq %d\n", irq);
|
|
goto disable_clk;
|
|
}
|
|
|
|
ret = i2c_add_adapter(&priv->adap);
|
|
disable_clk:
|
|
if (ret)
|
|
clk_disable_unprepare(priv->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int uniphier_fi2c_remove(struct platform_device *pdev)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = platform_get_drvdata(pdev);
|
|
|
|
i2c_del_adapter(&priv->adap);
|
|
clk_disable_unprepare(priv->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused uniphier_fi2c_suspend(struct device *dev)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(priv->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused uniphier_fi2c_resume(struct device *dev)
|
|
{
|
|
struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(priv->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
uniphier_fi2c_hw_init(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops uniphier_fi2c_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(uniphier_fi2c_suspend, uniphier_fi2c_resume)
|
|
};
|
|
|
|
static const struct of_device_id uniphier_fi2c_match[] = {
|
|
{ .compatible = "socionext,uniphier-fi2c" },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, uniphier_fi2c_match);
|
|
|
|
static struct platform_driver uniphier_fi2c_drv = {
|
|
.probe = uniphier_fi2c_probe,
|
|
.remove = uniphier_fi2c_remove,
|
|
.driver = {
|
|
.name = "uniphier-fi2c",
|
|
.of_match_table = uniphier_fi2c_match,
|
|
.pm = &uniphier_fi2c_pm_ops,
|
|
},
|
|
};
|
|
module_platform_driver(uniphier_fi2c_drv);
|
|
|
|
MODULE_AUTHOR("Masahiro Yamada <yamada.masahiro@socionext.com>");
|
|
MODULE_DESCRIPTION("UniPhier FIFO-builtin I2C bus driver");
|
|
MODULE_LICENSE("GPL");
|