WSL2-Linux-Kernel/drivers/infiniband/core/cma.c

5191 строка
135 KiB
C
Исходник Постоянная ссылка Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
*/
#include <linux/completion.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/mutex.h>
#include <linux/random.h>
#include <linux/igmp.h>
#include <linux/xarray.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <net/route.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <net/tcp.h>
#include <net/ipv6.h>
#include <net/ip_fib.h>
#include <net/ip6_route.h>
#include <rdma/rdma_cm.h>
#include <rdma/rdma_cm_ib.h>
#include <rdma/rdma_netlink.h>
#include <rdma/ib.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_cm.h>
#include <rdma/ib_sa.h>
#include <rdma/iw_cm.h>
#include "core_priv.h"
#include "cma_priv.h"
#include "cma_trace.h"
MODULE_AUTHOR("Sean Hefty");
MODULE_DESCRIPTION("Generic RDMA CM Agent");
MODULE_LICENSE("Dual BSD/GPL");
#define CMA_CM_RESPONSE_TIMEOUT 20
#define CMA_MAX_CM_RETRIES 15
#define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
#define CMA_IBOE_PACKET_LIFETIME 18
#define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
static const char * const cma_events[] = {
[RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved",
[RDMA_CM_EVENT_ADDR_ERROR] = "address error",
[RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ",
[RDMA_CM_EVENT_ROUTE_ERROR] = "route error",
[RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request",
[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
[RDMA_CM_EVENT_CONNECT_ERROR] = "connect error",
[RDMA_CM_EVENT_UNREACHABLE] = "unreachable",
[RDMA_CM_EVENT_REJECTED] = "rejected",
[RDMA_CM_EVENT_ESTABLISHED] = "established",
[RDMA_CM_EVENT_DISCONNECTED] = "disconnected",
[RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal",
[RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join",
[RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error",
[RDMA_CM_EVENT_ADDR_CHANGE] = "address change",
[RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit",
};
static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
enum ib_gid_type gid_type);
const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
{
size_t index = event;
return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
cma_events[index] : "unrecognized event";
}
EXPORT_SYMBOL(rdma_event_msg);
const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
int reason)
{
if (rdma_ib_or_roce(id->device, id->port_num))
return ibcm_reject_msg(reason);
if (rdma_protocol_iwarp(id->device, id->port_num))
return iwcm_reject_msg(reason);
WARN_ON_ONCE(1);
return "unrecognized transport";
}
EXPORT_SYMBOL(rdma_reject_msg);
/**
* rdma_is_consumer_reject - return true if the consumer rejected the connect
* request.
* @id: Communication identifier that received the REJECT event.
* @reason: Value returned in the REJECT event status field.
*/
static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
{
if (rdma_ib_or_roce(id->device, id->port_num))
return reason == IB_CM_REJ_CONSUMER_DEFINED;
if (rdma_protocol_iwarp(id->device, id->port_num))
return reason == -ECONNREFUSED;
WARN_ON_ONCE(1);
return false;
}
const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
struct rdma_cm_event *ev, u8 *data_len)
{
const void *p;
if (rdma_is_consumer_reject(id, ev->status)) {
*data_len = ev->param.conn.private_data_len;
p = ev->param.conn.private_data;
} else {
*data_len = 0;
p = NULL;
}
return p;
}
EXPORT_SYMBOL(rdma_consumer_reject_data);
/**
* rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
* @id: Communication Identifier
*/
struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
if (id->device->node_type == RDMA_NODE_RNIC)
return id_priv->cm_id.iw;
return NULL;
}
EXPORT_SYMBOL(rdma_iw_cm_id);
/**
* rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
* @res: rdma resource tracking entry pointer
*/
struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
{
struct rdma_id_private *id_priv =
container_of(res, struct rdma_id_private, res);
return &id_priv->id;
}
EXPORT_SYMBOL(rdma_res_to_id);
static int cma_add_one(struct ib_device *device);
static void cma_remove_one(struct ib_device *device, void *client_data);
static struct ib_client cma_client = {
.name = "cma",
.add = cma_add_one,
.remove = cma_remove_one
};
static struct ib_sa_client sa_client;
static LIST_HEAD(dev_list);
static LIST_HEAD(listen_any_list);
static DEFINE_MUTEX(lock);
static struct workqueue_struct *cma_wq;
static unsigned int cma_pernet_id;
struct cma_pernet {
struct xarray tcp_ps;
struct xarray udp_ps;
struct xarray ipoib_ps;
struct xarray ib_ps;
};
static struct cma_pernet *cma_pernet(struct net *net)
{
return net_generic(net, cma_pernet_id);
}
static
struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
{
struct cma_pernet *pernet = cma_pernet(net);
switch (ps) {
case RDMA_PS_TCP:
return &pernet->tcp_ps;
case RDMA_PS_UDP:
return &pernet->udp_ps;
case RDMA_PS_IPOIB:
return &pernet->ipoib_ps;
case RDMA_PS_IB:
return &pernet->ib_ps;
default:
return NULL;
}
}
struct cma_device {
struct list_head list;
struct ib_device *device;
struct completion comp;
refcount_t refcount;
struct list_head id_list;
enum ib_gid_type *default_gid_type;
u8 *default_roce_tos;
};
struct rdma_bind_list {
enum rdma_ucm_port_space ps;
struct hlist_head owners;
unsigned short port;
};
static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
struct rdma_bind_list *bind_list, int snum)
{
struct xarray *xa = cma_pernet_xa(net, ps);
return xa_insert(xa, snum, bind_list, GFP_KERNEL);
}
static struct rdma_bind_list *cma_ps_find(struct net *net,
enum rdma_ucm_port_space ps, int snum)
{
struct xarray *xa = cma_pernet_xa(net, ps);
return xa_load(xa, snum);
}
static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
int snum)
{
struct xarray *xa = cma_pernet_xa(net, ps);
xa_erase(xa, snum);
}
enum {
CMA_OPTION_AFONLY,
};
void cma_dev_get(struct cma_device *cma_dev)
{
refcount_inc(&cma_dev->refcount);
}
void cma_dev_put(struct cma_device *cma_dev)
{
if (refcount_dec_and_test(&cma_dev->refcount))
complete(&cma_dev->comp);
}
struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,
void *cookie)
{
struct cma_device *cma_dev;
struct cma_device *found_cma_dev = NULL;
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list)
if (filter(cma_dev->device, cookie)) {
found_cma_dev = cma_dev;
break;
}
if (found_cma_dev)
cma_dev_get(found_cma_dev);
mutex_unlock(&lock);
return found_cma_dev;
}
int cma_get_default_gid_type(struct cma_device *cma_dev,
u32 port)
{
if (!rdma_is_port_valid(cma_dev->device, port))
return -EINVAL;
return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
}
int cma_set_default_gid_type(struct cma_device *cma_dev,
u32 port,
enum ib_gid_type default_gid_type)
{
unsigned long supported_gids;
if (!rdma_is_port_valid(cma_dev->device, port))
return -EINVAL;
if (default_gid_type == IB_GID_TYPE_IB &&
rdma_protocol_roce_eth_encap(cma_dev->device, port))
default_gid_type = IB_GID_TYPE_ROCE;
supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
if (!(supported_gids & 1 << default_gid_type))
return -EINVAL;
cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
default_gid_type;
return 0;
}
int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
{
if (!rdma_is_port_valid(cma_dev->device, port))
return -EINVAL;
return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
}
int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
u8 default_roce_tos)
{
if (!rdma_is_port_valid(cma_dev->device, port))
return -EINVAL;
cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
default_roce_tos;
return 0;
}
struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
{
return cma_dev->device;
}
/*
* Device removal can occur at anytime, so we need extra handling to
* serialize notifying the user of device removal with other callbacks.
* We do this by disabling removal notification while a callback is in process,
* and reporting it after the callback completes.
*/
struct cma_multicast {
struct rdma_id_private *id_priv;
union {
struct ib_sa_multicast *sa_mc;
struct {
struct work_struct work;
struct rdma_cm_event event;
} iboe_join;
};
struct list_head list;
void *context;
struct sockaddr_storage addr;
u8 join_state;
};
struct cma_work {
struct work_struct work;
struct rdma_id_private *id;
enum rdma_cm_state old_state;
enum rdma_cm_state new_state;
struct rdma_cm_event event;
};
union cma_ip_addr {
struct in6_addr ip6;
struct {
__be32 pad[3];
__be32 addr;
} ip4;
};
struct cma_hdr {
u8 cma_version;
u8 ip_version; /* IP version: 7:4 */
__be16 port;
union cma_ip_addr src_addr;
union cma_ip_addr dst_addr;
};
#define CMA_VERSION 0x00
struct cma_req_info {
struct sockaddr_storage listen_addr_storage;
struct sockaddr_storage src_addr_storage;
struct ib_device *device;
union ib_gid local_gid;
__be64 service_id;
int port;
bool has_gid;
u16 pkey;
};
static int cma_comp_exch(struct rdma_id_private *id_priv,
enum rdma_cm_state comp, enum rdma_cm_state exch)
{
unsigned long flags;
int ret;
/*
* The FSM uses a funny double locking where state is protected by both
* the handler_mutex and the spinlock. State is not allowed to change
* to/from a handler_mutex protected value without also holding
* handler_mutex.
*/
if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
lockdep_assert_held(&id_priv->handler_mutex);
spin_lock_irqsave(&id_priv->lock, flags);
if ((ret = (id_priv->state == comp)))
id_priv->state = exch;
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
{
return hdr->ip_version >> 4;
}
static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
{
hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
}
static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
{
struct in_device *in_dev = NULL;
if (ndev) {
rtnl_lock();
in_dev = __in_dev_get_rtnl(ndev);
if (in_dev) {
if (join)
ip_mc_inc_group(in_dev,
*(__be32 *)(mgid->raw + 12));
else
ip_mc_dec_group(in_dev,
*(__be32 *)(mgid->raw + 12));
}
rtnl_unlock();
}
return (in_dev) ? 0 : -ENODEV;
}
static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
cma_dev_get(cma_dev);
id_priv->cma_dev = cma_dev;
id_priv->id.device = cma_dev->device;
id_priv->id.route.addr.dev_addr.transport =
rdma_node_get_transport(cma_dev->device->node_type);
list_add_tail(&id_priv->list, &cma_dev->id_list);
trace_cm_id_attach(id_priv, cma_dev->device);
}
static void cma_attach_to_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
_cma_attach_to_dev(id_priv, cma_dev);
id_priv->gid_type =
cma_dev->default_gid_type[id_priv->id.port_num -
rdma_start_port(cma_dev->device)];
}
static void cma_release_dev(struct rdma_id_private *id_priv)
{
mutex_lock(&lock);
list_del(&id_priv->list);
cma_dev_put(id_priv->cma_dev);
id_priv->cma_dev = NULL;
id_priv->id.device = NULL;
if (id_priv->id.route.addr.dev_addr.sgid_attr) {
rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
}
mutex_unlock(&lock);
}
static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
{
return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
}
static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
{
return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
}
static inline unsigned short cma_family(struct rdma_id_private *id_priv)
{
return id_priv->id.route.addr.src_addr.ss_family;
}
static int cma_set_default_qkey(struct rdma_id_private *id_priv)
{
struct ib_sa_mcmember_rec rec;
int ret = 0;
switch (id_priv->id.ps) {
case RDMA_PS_UDP:
case RDMA_PS_IB:
id_priv->qkey = RDMA_UDP_QKEY;
break;
case RDMA_PS_IPOIB:
ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device,
id_priv->id.port_num, &rec.mgid,
&rec);
if (!ret)
id_priv->qkey = be32_to_cpu(rec.qkey);
break;
default:
break;
}
return ret;
}
static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
{
if (!qkey ||
(id_priv->qkey && (id_priv->qkey != qkey)))
return -EINVAL;
id_priv->qkey = qkey;
return 0;
}
static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
{
dev_addr->dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
}
static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
{
int ret;
if (addr->sa_family != AF_IB) {
ret = rdma_translate_ip(addr, dev_addr);
} else {
cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
ret = 0;
}
return ret;
}
static const struct ib_gid_attr *
cma_validate_port(struct ib_device *device, u32 port,
enum ib_gid_type gid_type,
union ib_gid *gid,
struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int bound_if_index = dev_addr->bound_dev_if;
const struct ib_gid_attr *sgid_attr;
int dev_type = dev_addr->dev_type;
struct net_device *ndev = NULL;
if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
return ERR_PTR(-ENODEV);
if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
return ERR_PTR(-ENODEV);
if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
return ERR_PTR(-ENODEV);
if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
ndev = dev_get_by_index(dev_addr->net, bound_if_index);
if (!ndev)
return ERR_PTR(-ENODEV);
} else {
gid_type = IB_GID_TYPE_IB;
}
sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
if (ndev)
dev_put(ndev);
return sgid_attr;
}
static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
const struct ib_gid_attr *sgid_attr)
{
WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
}
/**
* cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
* based on source ip address.
* @id_priv: cm_id which should be bound to cma device
*
* cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
* based on source IP address. It returns 0 on success or error code otherwise.
* It is applicable to active and passive side cm_id.
*/
static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
const struct ib_gid_attr *sgid_attr;
union ib_gid gid, iboe_gid, *gidp;
struct cma_device *cma_dev;
enum ib_gid_type gid_type;
int ret = -ENODEV;
u32 port;
if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&iboe_gid);
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof(gid));
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list) {
rdma_for_each_port (cma_dev->device, port) {
gidp = rdma_protocol_roce(cma_dev->device, port) ?
&iboe_gid : &gid;
gid_type = cma_dev->default_gid_type[port - 1];
sgid_attr = cma_validate_port(cma_dev->device, port,
gid_type, gidp, id_priv);
if (!IS_ERR(sgid_attr)) {
id_priv->id.port_num = port;
cma_bind_sgid_attr(id_priv, sgid_attr);
cma_attach_to_dev(id_priv, cma_dev);
ret = 0;
goto out;
}
}
}
out:
mutex_unlock(&lock);
return ret;
}
/**
* cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
* @id_priv: cm id to bind to cma device
* @listen_id_priv: listener cm id to match against
* @req: Pointer to req structure containaining incoming
* request information
* cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
* rdma device matches for listen_id and incoming request. It also verifies
* that a GID table entry is present for the source address.
* Returns 0 on success, or returns error code otherwise.
*/
static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
const struct rdma_id_private *listen_id_priv,
struct cma_req_info *req)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
const struct ib_gid_attr *sgid_attr;
enum ib_gid_type gid_type;
union ib_gid gid;
if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
if (rdma_protocol_roce(req->device, req->port))
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&gid);
else
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof(gid));
gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
sgid_attr = cma_validate_port(req->device, req->port,
gid_type, &gid, id_priv);
if (IS_ERR(sgid_attr))
return PTR_ERR(sgid_attr);
id_priv->id.port_num = req->port;
cma_bind_sgid_attr(id_priv, sgid_attr);
/* Need to acquire lock to protect against reader
* of cma_dev->id_list such as cma_netdev_callback() and
* cma_process_remove().
*/
mutex_lock(&lock);
cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
mutex_unlock(&lock);
rdma_restrack_add(&id_priv->res);
return 0;
}
static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
const struct rdma_id_private *listen_id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
const struct ib_gid_attr *sgid_attr;
struct cma_device *cma_dev;
enum ib_gid_type gid_type;
int ret = -ENODEV;
union ib_gid gid;
u32 port;
if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof(gid));
mutex_lock(&lock);
cma_dev = listen_id_priv->cma_dev;
port = listen_id_priv->id.port_num;
gid_type = listen_id_priv->gid_type;
sgid_attr = cma_validate_port(cma_dev->device, port,
gid_type, &gid, id_priv);
if (!IS_ERR(sgid_attr)) {
id_priv->id.port_num = port;
cma_bind_sgid_attr(id_priv, sgid_attr);
ret = 0;
goto out;
}
list_for_each_entry(cma_dev, &dev_list, list) {
rdma_for_each_port (cma_dev->device, port) {
if (listen_id_priv->cma_dev == cma_dev &&
listen_id_priv->id.port_num == port)
continue;
gid_type = cma_dev->default_gid_type[port - 1];
sgid_attr = cma_validate_port(cma_dev->device, port,
gid_type, &gid, id_priv);
if (!IS_ERR(sgid_attr)) {
id_priv->id.port_num = port;
cma_bind_sgid_attr(id_priv, sgid_attr);
ret = 0;
goto out;
}
}
}
out:
if (!ret) {
cma_attach_to_dev(id_priv, cma_dev);
rdma_restrack_add(&id_priv->res);
}
mutex_unlock(&lock);
return ret;
}
/*
* Select the source IB device and address to reach the destination IB address.
*/
static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev, *cur_dev;
struct sockaddr_ib *addr;
union ib_gid gid, sgid, *dgid;
unsigned int p;
u16 pkey, index;
enum ib_port_state port_state;
int ret;
int i;
cma_dev = NULL;
addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
dgid = (union ib_gid *) &addr->sib_addr;
pkey = ntohs(addr->sib_pkey);
mutex_lock(&lock);
list_for_each_entry(cur_dev, &dev_list, list) {
rdma_for_each_port (cur_dev->device, p) {
if (!rdma_cap_af_ib(cur_dev->device, p))
continue;
if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
continue;
if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
continue;
for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
++i) {
ret = rdma_query_gid(cur_dev->device, p, i,
&gid);
if (ret)
continue;
if (!memcmp(&gid, dgid, sizeof(gid))) {
cma_dev = cur_dev;
sgid = gid;
id_priv->id.port_num = p;
goto found;
}
if (!cma_dev && (gid.global.subnet_prefix ==
dgid->global.subnet_prefix) &&
port_state == IB_PORT_ACTIVE) {
cma_dev = cur_dev;
sgid = gid;
id_priv->id.port_num = p;
goto found;
}
}
}
}
mutex_unlock(&lock);
return -ENODEV;
found:
cma_attach_to_dev(id_priv, cma_dev);
rdma_restrack_add(&id_priv->res);
mutex_unlock(&lock);
addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
return 0;
}
static void cma_id_get(struct rdma_id_private *id_priv)
{
refcount_inc(&id_priv->refcount);
}
static void cma_id_put(struct rdma_id_private *id_priv)
{
if (refcount_dec_and_test(&id_priv->refcount))
complete(&id_priv->comp);
}
static struct rdma_id_private *
__rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
void *context, enum rdma_ucm_port_space ps,
enum ib_qp_type qp_type, const struct rdma_id_private *parent)
{
struct rdma_id_private *id_priv;
id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
if (!id_priv)
return ERR_PTR(-ENOMEM);
id_priv->state = RDMA_CM_IDLE;
id_priv->id.context = context;
id_priv->id.event_handler = event_handler;
id_priv->id.ps = ps;
id_priv->id.qp_type = qp_type;
id_priv->tos_set = false;
id_priv->timeout_set = false;
id_priv->min_rnr_timer_set = false;
id_priv->gid_type = IB_GID_TYPE_IB;
spin_lock_init(&id_priv->lock);
mutex_init(&id_priv->qp_mutex);
init_completion(&id_priv->comp);
refcount_set(&id_priv->refcount, 1);
mutex_init(&id_priv->handler_mutex);
INIT_LIST_HEAD(&id_priv->listen_list);
INIT_LIST_HEAD(&id_priv->mc_list);
get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
id_priv->id.route.addr.dev_addr.net = get_net(net);
id_priv->seq_num &= 0x00ffffff;
rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
if (parent)
rdma_restrack_parent_name(&id_priv->res, &parent->res);
return id_priv;
}
struct rdma_cm_id *
__rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
void *context, enum rdma_ucm_port_space ps,
enum ib_qp_type qp_type, const char *caller)
{
struct rdma_id_private *ret;
ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
if (IS_ERR(ret))
return ERR_CAST(ret);
rdma_restrack_set_name(&ret->res, caller);
return &ret->id;
}
EXPORT_SYMBOL(__rdma_create_kernel_id);
struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
void *context,
enum rdma_ucm_port_space ps,
enum ib_qp_type qp_type)
{
struct rdma_id_private *ret;
ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
ps, qp_type, NULL);
if (IS_ERR(ret))
return ERR_CAST(ret);
rdma_restrack_set_name(&ret->res, NULL);
return &ret->id;
}
EXPORT_SYMBOL(rdma_create_user_id);
static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTR;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTS;
qp_attr.sq_psn = 0;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
return ret;
}
static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
}
int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr)
{
struct rdma_id_private *id_priv;
struct ib_qp *qp;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id->device != pd->device) {
ret = -EINVAL;
goto out_err;
}
qp_init_attr->port_num = id->port_num;
qp = ib_create_qp(pd, qp_init_attr);
if (IS_ERR(qp)) {
ret = PTR_ERR(qp);
goto out_err;
}
if (id->qp_type == IB_QPT_UD)
ret = cma_init_ud_qp(id_priv, qp);
else
ret = cma_init_conn_qp(id_priv, qp);
if (ret)
goto out_destroy;
id->qp = qp;
id_priv->qp_num = qp->qp_num;
id_priv->srq = (qp->srq != NULL);
trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
return 0;
out_destroy:
ib_destroy_qp(qp);
out_err:
trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
return ret;
}
EXPORT_SYMBOL(rdma_create_qp);
void rdma_destroy_qp(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
trace_cm_qp_destroy(id_priv);
mutex_lock(&id_priv->qp_mutex);
ib_destroy_qp(id_priv->id.qp);
id_priv->id.qp = NULL;
mutex_unlock(&id_priv->qp_mutex);
}
EXPORT_SYMBOL(rdma_destroy_qp);
static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
/* Need to update QP attributes from default values. */
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
if (ret)
goto out;
qp_attr.qp_state = IB_QPS_RTR;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
if (conn_param)
qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_RTS;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
if (conn_param)
qp_attr.max_rd_atomic = conn_param->initiator_depth;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_err(struct rdma_id_private *id_priv)
{
struct ib_qp_attr qp_attr;
int ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_ERR;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
struct ib_qp_attr *qp_attr, int *qp_attr_mask)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int ret;
u16 pkey;
if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
pkey = 0xffff;
else
pkey = ib_addr_get_pkey(dev_addr);
ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
pkey, &qp_attr->pkey_index);
if (ret)
return ret;
qp_attr->port_num = id_priv->id.port_num;
*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
if (id_priv->id.qp_type == IB_QPT_UD) {
ret = cma_set_default_qkey(id_priv);
if (ret)
return ret;
qp_attr->qkey = id_priv->qkey;
*qp_attr_mask |= IB_QP_QKEY;
} else {
qp_attr->qp_access_flags = 0;
*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
}
return 0;
}
int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
int *qp_attr_mask)
{
struct rdma_id_private *id_priv;
int ret = 0;
id_priv = container_of(id, struct rdma_id_private, id);
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
else
ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
qp_attr_mask);
if (qp_attr->qp_state == IB_QPS_RTR)
qp_attr->rq_psn = id_priv->seq_num;
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
if (!id_priv->cm_id.iw) {
qp_attr->qp_access_flags = 0;
*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
} else
ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
qp_attr_mask);
qp_attr->port_num = id_priv->id.port_num;
*qp_attr_mask |= IB_QP_PORT;
} else {
ret = -ENOSYS;
}
if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
qp_attr->timeout = id_priv->timeout;
if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
return ret;
}
EXPORT_SYMBOL(rdma_init_qp_attr);
static inline bool cma_zero_addr(const struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
case AF_INET6:
return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
case AF_IB:
return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
default:
return false;
}
}
static inline bool cma_loopback_addr(const struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return ipv4_is_loopback(
((struct sockaddr_in *)addr)->sin_addr.s_addr);
case AF_INET6:
return ipv6_addr_loopback(
&((struct sockaddr_in6 *)addr)->sin6_addr);
case AF_IB:
return ib_addr_loopback(
&((struct sockaddr_ib *)addr)->sib_addr);
default:
return false;
}
}
static inline bool cma_any_addr(const struct sockaddr *addr)
{
return cma_zero_addr(addr) || cma_loopback_addr(addr);
}
static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
{
if (src->sa_family != dst->sa_family)
return -1;
switch (src->sa_family) {
case AF_INET:
return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
((struct sockaddr_in *)dst)->sin_addr.s_addr;
case AF_INET6: {
struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
bool link_local;
if (ipv6_addr_cmp(&src_addr6->sin6_addr,
&dst_addr6->sin6_addr))
return 1;
link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
IPV6_ADDR_LINKLOCAL;
/* Link local must match their scope_ids */
return link_local ? (src_addr6->sin6_scope_id !=
dst_addr6->sin6_scope_id) :
0;
}
default:
return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
&((struct sockaddr_ib *) dst)->sib_addr);
}
}
static __be16 cma_port(const struct sockaddr *addr)
{
struct sockaddr_ib *sib;
switch (addr->sa_family) {
case AF_INET:
return ((struct sockaddr_in *) addr)->sin_port;
case AF_INET6:
return ((struct sockaddr_in6 *) addr)->sin6_port;
case AF_IB:
sib = (struct sockaddr_ib *) addr;
return htons((u16) (be64_to_cpu(sib->sib_sid) &
be64_to_cpu(sib->sib_sid_mask)));
default:
return 0;
}
}
static inline int cma_any_port(const struct sockaddr *addr)
{
return !cma_port(addr);
}
static void cma_save_ib_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
const struct rdma_cm_id *listen_id,
const struct sa_path_rec *path)
{
struct sockaddr_ib *listen_ib, *ib;
listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
if (src_addr) {
ib = (struct sockaddr_ib *)src_addr;
ib->sib_family = AF_IB;
if (path) {
ib->sib_pkey = path->pkey;
ib->sib_flowinfo = path->flow_label;
memcpy(&ib->sib_addr, &path->sgid, 16);
ib->sib_sid = path->service_id;
ib->sib_scope_id = 0;
} else {
ib->sib_pkey = listen_ib->sib_pkey;
ib->sib_flowinfo = listen_ib->sib_flowinfo;
ib->sib_addr = listen_ib->sib_addr;
ib->sib_sid = listen_ib->sib_sid;
ib->sib_scope_id = listen_ib->sib_scope_id;
}
ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
}
if (dst_addr) {
ib = (struct sockaddr_ib *)dst_addr;
ib->sib_family = AF_IB;
if (path) {
ib->sib_pkey = path->pkey;
ib->sib_flowinfo = path->flow_label;
memcpy(&ib->sib_addr, &path->dgid, 16);
}
}
}
static void cma_save_ip4_info(struct sockaddr_in *src_addr,
struct sockaddr_in *dst_addr,
struct cma_hdr *hdr,
__be16 local_port)
{
if (src_addr) {
*src_addr = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
.sin_port = local_port,
};
}
if (dst_addr) {
*dst_addr = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_addr.s_addr = hdr->src_addr.ip4.addr,
.sin_port = hdr->port,
};
}
}
static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
struct sockaddr_in6 *dst_addr,
struct cma_hdr *hdr,
__be16 local_port)
{
if (src_addr) {
*src_addr = (struct sockaddr_in6) {
.sin6_family = AF_INET6,
.sin6_addr = hdr->dst_addr.ip6,
.sin6_port = local_port,
};
}
if (dst_addr) {
*dst_addr = (struct sockaddr_in6) {
.sin6_family = AF_INET6,
.sin6_addr = hdr->src_addr.ip6,
.sin6_port = hdr->port,
};
}
}
static u16 cma_port_from_service_id(__be64 service_id)
{
return (u16)be64_to_cpu(service_id);
}
static int cma_save_ip_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
const struct ib_cm_event *ib_event,
__be64 service_id)
{
struct cma_hdr *hdr;
__be16 port;
hdr = ib_event->private_data;
if (hdr->cma_version != CMA_VERSION)
return -EINVAL;
port = htons(cma_port_from_service_id(service_id));
switch (cma_get_ip_ver(hdr)) {
case 4:
cma_save_ip4_info((struct sockaddr_in *)src_addr,
(struct sockaddr_in *)dst_addr, hdr, port);
break;
case 6:
cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
(struct sockaddr_in6 *)dst_addr, hdr, port);
break;
default:
return -EAFNOSUPPORT;
}
return 0;
}
static int cma_save_net_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
const struct rdma_cm_id *listen_id,
const struct ib_cm_event *ib_event,
sa_family_t sa_family, __be64 service_id)
{
if (sa_family == AF_IB) {
if (ib_event->event == IB_CM_REQ_RECEIVED)
cma_save_ib_info(src_addr, dst_addr, listen_id,
ib_event->param.req_rcvd.primary_path);
else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
return 0;
}
return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
}
static int cma_save_req_info(const struct ib_cm_event *ib_event,
struct cma_req_info *req)
{
const struct ib_cm_req_event_param *req_param =
&ib_event->param.req_rcvd;
const struct ib_cm_sidr_req_event_param *sidr_param =
&ib_event->param.sidr_req_rcvd;
switch (ib_event->event) {
case IB_CM_REQ_RECEIVED:
req->device = req_param->listen_id->device;
req->port = req_param->port;
memcpy(&req->local_gid, &req_param->primary_path->sgid,
sizeof(req->local_gid));
req->has_gid = true;
req->service_id = req_param->primary_path->service_id;
req->pkey = be16_to_cpu(req_param->primary_path->pkey);
if (req->pkey != req_param->bth_pkey)
pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
"RDMA CMA: in the future this may cause the request to be dropped\n",
req_param->bth_pkey, req->pkey);
break;
case IB_CM_SIDR_REQ_RECEIVED:
req->device = sidr_param->listen_id->device;
req->port = sidr_param->port;
req->has_gid = false;
req->service_id = sidr_param->service_id;
req->pkey = sidr_param->pkey;
if (req->pkey != sidr_param->bth_pkey)
pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
"RDMA CMA: in the future this may cause the request to be dropped\n",
sidr_param->bth_pkey, req->pkey);
break;
default:
return -EINVAL;
}
return 0;
}
static bool validate_ipv4_net_dev(struct net_device *net_dev,
const struct sockaddr_in *dst_addr,
const struct sockaddr_in *src_addr)
{
__be32 daddr = dst_addr->sin_addr.s_addr,
saddr = src_addr->sin_addr.s_addr;
struct fib_result res;
struct flowi4 fl4;
int err;
bool ret;
if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
ipv4_is_loopback(saddr))
return false;
memset(&fl4, 0, sizeof(fl4));
fl4.flowi4_oif = net_dev->ifindex;
fl4.daddr = daddr;
fl4.saddr = saddr;
rcu_read_lock();
err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
ret = err == 0 && FIB_RES_DEV(res) == net_dev;
rcu_read_unlock();
return ret;
}
static bool validate_ipv6_net_dev(struct net_device *net_dev,
const struct sockaddr_in6 *dst_addr,
const struct sockaddr_in6 *src_addr)
{
#if IS_ENABLED(CONFIG_IPV6)
const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
IPV6_ADDR_LINKLOCAL;
struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
&src_addr->sin6_addr, net_dev->ifindex,
NULL, strict);
bool ret;
if (!rt)
return false;
ret = rt->rt6i_idev->dev == net_dev;
ip6_rt_put(rt);
return ret;
#else
return false;
#endif
}
static bool validate_net_dev(struct net_device *net_dev,
const struct sockaddr *daddr,
const struct sockaddr *saddr)
{
const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
switch (daddr->sa_family) {
case AF_INET:
return saddr->sa_family == AF_INET &&
validate_ipv4_net_dev(net_dev, daddr4, saddr4);
case AF_INET6:
return saddr->sa_family == AF_INET6 &&
validate_ipv6_net_dev(net_dev, daddr6, saddr6);
default:
return false;
}
}
static struct net_device *
roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
{
const struct ib_gid_attr *sgid_attr = NULL;
struct net_device *ndev;
if (ib_event->event == IB_CM_REQ_RECEIVED)
sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
if (!sgid_attr)
return NULL;
rcu_read_lock();
ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
if (IS_ERR(ndev))
ndev = NULL;
else
dev_hold(ndev);
rcu_read_unlock();
return ndev;
}
static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
struct cma_req_info *req)
{
struct sockaddr *listen_addr =
(struct sockaddr *)&req->listen_addr_storage;
struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
struct net_device *net_dev;
const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
int err;
err = cma_save_ip_info(listen_addr, src_addr, ib_event,
req->service_id);
if (err)
return ERR_PTR(err);
if (rdma_protocol_roce(req->device, req->port))
net_dev = roce_get_net_dev_by_cm_event(ib_event);
else
net_dev = ib_get_net_dev_by_params(req->device, req->port,
req->pkey,
gid, listen_addr);
if (!net_dev)
return ERR_PTR(-ENODEV);
return net_dev;
}
static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
{
return (be64_to_cpu(service_id) >> 16) & 0xffff;
}
static bool cma_match_private_data(struct rdma_id_private *id_priv,
const struct cma_hdr *hdr)
{
struct sockaddr *addr = cma_src_addr(id_priv);
__be32 ip4_addr;
struct in6_addr ip6_addr;
if (cma_any_addr(addr) && !id_priv->afonly)
return true;
switch (addr->sa_family) {
case AF_INET:
ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (cma_get_ip_ver(hdr) != 4)
return false;
if (!cma_any_addr(addr) &&
hdr->dst_addr.ip4.addr != ip4_addr)
return false;
break;
case AF_INET6:
ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
if (cma_get_ip_ver(hdr) != 6)
return false;
if (!cma_any_addr(addr) &&
memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
return false;
break;
case AF_IB:
return true;
default:
return false;
}
return true;
}
static bool cma_protocol_roce(const struct rdma_cm_id *id)
{
struct ib_device *device = id->device;
const u32 port_num = id->port_num ?: rdma_start_port(device);
return rdma_protocol_roce(device, port_num);
}
static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
{
const struct sockaddr *daddr =
(const struct sockaddr *)&req->listen_addr_storage;
const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
/* Returns true if the req is for IPv6 link local */
return (daddr->sa_family == AF_INET6 &&
(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
}
static bool cma_match_net_dev(const struct rdma_cm_id *id,
const struct net_device *net_dev,
const struct cma_req_info *req)
{
const struct rdma_addr *addr = &id->route.addr;
if (!net_dev)
/* This request is an AF_IB request */
return (!id->port_num || id->port_num == req->port) &&
(addr->src_addr.ss_family == AF_IB);
/*
* If the request is not for IPv6 link local, allow matching
* request to any netdevice of the one or multiport rdma device.
*/
if (!cma_is_req_ipv6_ll(req))
return true;
/*
* Net namespaces must match, and if the listner is listening
* on a specific netdevice than netdevice must match as well.
*/
if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
(!!addr->dev_addr.bound_dev_if ==
(addr->dev_addr.bound_dev_if == net_dev->ifindex)))
return true;
else
return false;
}
static struct rdma_id_private *cma_find_listener(
const struct rdma_bind_list *bind_list,
const struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event,
const struct cma_req_info *req,
const struct net_device *net_dev)
{
struct rdma_id_private *id_priv, *id_priv_dev;
lockdep_assert_held(&lock);
if (!bind_list)
return ERR_PTR(-EINVAL);
hlist_for_each_entry(id_priv, &bind_list->owners, node) {
if (cma_match_private_data(id_priv, ib_event->private_data)) {
if (id_priv->id.device == cm_id->device &&
cma_match_net_dev(&id_priv->id, net_dev, req))
return id_priv;
list_for_each_entry(id_priv_dev,
&id_priv->listen_list,
listen_list) {
if (id_priv_dev->id.device == cm_id->device &&
cma_match_net_dev(&id_priv_dev->id,
net_dev, req))
return id_priv_dev;
}
}
}
return ERR_PTR(-EINVAL);
}
static struct rdma_id_private *
cma_ib_id_from_event(struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event,
struct cma_req_info *req,
struct net_device **net_dev)
{
struct rdma_bind_list *bind_list;
struct rdma_id_private *id_priv;
int err;
err = cma_save_req_info(ib_event, req);
if (err)
return ERR_PTR(err);
*net_dev = cma_get_net_dev(ib_event, req);
if (IS_ERR(*net_dev)) {
if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
/* Assuming the protocol is AF_IB */
*net_dev = NULL;
} else {
return ERR_CAST(*net_dev);
}
}
mutex_lock(&lock);
/*
* Net namespace might be getting deleted while route lookup,
* cm_id lookup is in progress. Therefore, perform netdevice
* validation, cm_id lookup under rcu lock.
* RCU lock along with netdevice state check, synchronizes with
* netdevice migrating to different net namespace and also avoids
* case where net namespace doesn't get deleted while lookup is in
* progress.
* If the device state is not IFF_UP, its properties such as ifindex
* and nd_net cannot be trusted to remain valid without rcu lock.
* net/core/dev.c change_net_namespace() ensures to synchronize with
* ongoing operations on net device after device is closed using
* synchronize_net().
*/
rcu_read_lock();
if (*net_dev) {
/*
* If netdevice is down, it is likely that it is administratively
* down or it might be migrating to different namespace.
* In that case avoid further processing, as the net namespace
* or ifindex may change.
*/
if (((*net_dev)->flags & IFF_UP) == 0) {
id_priv = ERR_PTR(-EHOSTUNREACH);
goto err;
}
if (!validate_net_dev(*net_dev,
(struct sockaddr *)&req->src_addr_storage,
(struct sockaddr *)&req->listen_addr_storage)) {
id_priv = ERR_PTR(-EHOSTUNREACH);
goto err;
}
}
bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
rdma_ps_from_service_id(req->service_id),
cma_port_from_service_id(req->service_id));
id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
err:
rcu_read_unlock();
mutex_unlock(&lock);
if (IS_ERR(id_priv) && *net_dev) {
dev_put(*net_dev);
*net_dev = NULL;
}
return id_priv;
}
static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
{
return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
}
static void cma_cancel_route(struct rdma_id_private *id_priv)
{
if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
if (id_priv->query)
ib_sa_cancel_query(id_priv->query_id, id_priv->query);
}
}
static void _cma_cancel_listens(struct rdma_id_private *id_priv)
{
struct rdma_id_private *dev_id_priv;
lockdep_assert_held(&lock);
/*
* Remove from listen_any_list to prevent added devices from spawning
* additional listen requests.
*/
list_del(&id_priv->list);
while (!list_empty(&id_priv->listen_list)) {
dev_id_priv = list_entry(id_priv->listen_list.next,
struct rdma_id_private, listen_list);
/* sync with device removal to avoid duplicate destruction */
list_del_init(&dev_id_priv->list);
list_del(&dev_id_priv->listen_list);
mutex_unlock(&lock);
rdma_destroy_id(&dev_id_priv->id);
mutex_lock(&lock);
}
}
static void cma_cancel_listens(struct rdma_id_private *id_priv)
{
mutex_lock(&lock);
_cma_cancel_listens(id_priv);
mutex_unlock(&lock);
}
static void cma_cancel_operation(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
switch (state) {
case RDMA_CM_ADDR_QUERY:
/*
* We can avoid doing the rdma_addr_cancel() based on state,
* only RDMA_CM_ADDR_QUERY has a work that could still execute.
* Notice that the addr_handler work could still be exiting
* outside this state, however due to the interaction with the
* handler_mutex the work is guaranteed not to touch id_priv
* during exit.
*/
rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
break;
case RDMA_CM_ROUTE_QUERY:
cma_cancel_route(id_priv);
break;
case RDMA_CM_LISTEN:
if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
cma_cancel_listens(id_priv);
break;
default:
break;
}
}
static void cma_release_port(struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list = id_priv->bind_list;
struct net *net = id_priv->id.route.addr.dev_addr.net;
if (!bind_list)
return;
mutex_lock(&lock);
hlist_del(&id_priv->node);
if (hlist_empty(&bind_list->owners)) {
cma_ps_remove(net, bind_list->ps, bind_list->port);
kfree(bind_list);
}
mutex_unlock(&lock);
}
static void destroy_mc(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
ib_sa_free_multicast(mc->sa_mc);
if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
struct rdma_dev_addr *dev_addr =
&id_priv->id.route.addr.dev_addr;
struct net_device *ndev = NULL;
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(dev_addr->net,
dev_addr->bound_dev_if);
if (ndev && !send_only) {
enum ib_gid_type gid_type;
union ib_gid mgid;
gid_type = id_priv->cma_dev->default_gid_type
[id_priv->id.port_num -
rdma_start_port(
id_priv->cma_dev->device)];
cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
gid_type);
cma_igmp_send(ndev, &mgid, false);
}
dev_put(ndev);
cancel_work_sync(&mc->iboe_join.work);
}
kfree(mc);
}
static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
{
struct cma_multicast *mc;
while (!list_empty(&id_priv->mc_list)) {
mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
list);
list_del(&mc->list);
destroy_mc(id_priv, mc);
}
}
static void _destroy_id(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
cma_cancel_operation(id_priv, state);
rdma_restrack_del(&id_priv->res);
if (id_priv->cma_dev) {
if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
if (id_priv->cm_id.ib)
ib_destroy_cm_id(id_priv->cm_id.ib);
} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
if (id_priv->cm_id.iw)
iw_destroy_cm_id(id_priv->cm_id.iw);
}
cma_leave_mc_groups(id_priv);
cma_release_dev(id_priv);
}
cma_release_port(id_priv);
cma_id_put(id_priv);
wait_for_completion(&id_priv->comp);
if (id_priv->internal_id)
cma_id_put(id_priv->id.context);
kfree(id_priv->id.route.path_rec);
put_net(id_priv->id.route.addr.dev_addr.net);
kfree(id_priv);
}
/*
* destroy an ID from within the handler_mutex. This ensures that no other
* handlers can start running concurrently.
*/
static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
__releases(&idprv->handler_mutex)
{
enum rdma_cm_state state;
unsigned long flags;
trace_cm_id_destroy(id_priv);
/*
* Setting the state to destroyed under the handler mutex provides a
* fence against calling handler callbacks. If this is invoked due to
* the failure of a handler callback then it guarentees that no future
* handlers will be called.
*/
lockdep_assert_held(&id_priv->handler_mutex);
spin_lock_irqsave(&id_priv->lock, flags);
state = id_priv->state;
id_priv->state = RDMA_CM_DESTROYING;
spin_unlock_irqrestore(&id_priv->lock, flags);
mutex_unlock(&id_priv->handler_mutex);
_destroy_id(id_priv, state);
}
void rdma_destroy_id(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->handler_mutex);
destroy_id_handler_unlock(id_priv);
}
EXPORT_SYMBOL(rdma_destroy_id);
static int cma_rep_recv(struct rdma_id_private *id_priv)
{
int ret;
ret = cma_modify_qp_rtr(id_priv, NULL);
if (ret)
goto reject;
ret = cma_modify_qp_rts(id_priv, NULL);
if (ret)
goto reject;
trace_cm_send_rtu(id_priv);
ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
if (ret)
goto reject;
return 0;
reject:
pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
cma_modify_qp_err(id_priv);
trace_cm_send_rej(id_priv);
ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
NULL, 0, NULL, 0);
return ret;
}
static void cma_set_rep_event_data(struct rdma_cm_event *event,
const struct ib_cm_rep_event_param *rep_data,
void *private_data)
{
event->param.conn.private_data = private_data;
event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
event->param.conn.responder_resources = rep_data->responder_resources;
event->param.conn.initiator_depth = rep_data->initiator_depth;
event->param.conn.flow_control = rep_data->flow_control;
event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
event->param.conn.srq = rep_data->srq;
event->param.conn.qp_num = rep_data->remote_qpn;
event->ece.vendor_id = rep_data->ece.vendor_id;
event->ece.attr_mod = rep_data->ece.attr_mod;
}
static int cma_cm_event_handler(struct rdma_id_private *id_priv,
struct rdma_cm_event *event)
{
int ret;
lockdep_assert_held(&id_priv->handler_mutex);
trace_cm_event_handler(id_priv, event);
ret = id_priv->id.event_handler(&id_priv->id, event);
trace_cm_event_done(id_priv, event, ret);
return ret;
}
static int cma_ib_handler(struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event = {};
enum rdma_cm_state state;
int ret;
mutex_lock(&id_priv->handler_mutex);
state = READ_ONCE(id_priv->state);
if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
state != RDMA_CM_CONNECT) ||
(ib_event->event == IB_CM_TIMEWAIT_EXIT &&
state != RDMA_CM_DISCONNECT))
goto out;
switch (ib_event->event) {
case IB_CM_REQ_ERROR:
case IB_CM_REP_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_REP_RECEIVED:
if (state == RDMA_CM_CONNECT &&
(id_priv->id.qp_type != IB_QPT_UD)) {
trace_cm_send_mra(id_priv);
ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
}
if (id_priv->id.qp) {
event.status = cma_rep_recv(id_priv);
event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
RDMA_CM_EVENT_ESTABLISHED;
} else {
event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
}
cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
ib_event->private_data);
break;
case IB_CM_RTU_RECEIVED:
case IB_CM_USER_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
break;
case IB_CM_DREQ_ERROR:
event.status = -ETIMEDOUT;
fallthrough;
case IB_CM_DREQ_RECEIVED:
case IB_CM_DREP_RECEIVED:
if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
RDMA_CM_DISCONNECT))
goto out;
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IB_CM_TIMEWAIT_EXIT:
event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
break;
case IB_CM_MRA_RECEIVED:
/* ignore event */
goto out;
case IB_CM_REJ_RECEIVED:
pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
ib_event->param.rej_rcvd.reason));
cma_modify_qp_err(id_priv);
event.status = ib_event->param.rej_rcvd.reason;
event.event = RDMA_CM_EVENT_REJECTED;
event.param.conn.private_data = ib_event->private_data;
event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
break;
default:
pr_err("RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = cma_cm_event_handler(id_priv, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
destroy_id_handler_unlock(id_priv);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static struct rdma_id_private *
cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
const struct ib_cm_event *ib_event,
struct net_device *net_dev)
{
struct rdma_id_private *listen_id_priv;
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
struct rdma_route *rt;
const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
const __be64 service_id =
ib_event->param.req_rcvd.primary_path->service_id;
int ret;
listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
listen_id->event_handler, listen_id->context,
listen_id->ps,
ib_event->param.req_rcvd.qp_type,
listen_id_priv);
if (IS_ERR(id_priv))
return NULL;
id = &id_priv->id;
if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
(struct sockaddr *)&id->route.addr.dst_addr,
listen_id, ib_event, ss_family, service_id))
goto err;
rt = &id->route;
rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec),
GFP_KERNEL);
if (!rt->path_rec)
goto err;
rt->path_rec[0] = *path;
if (rt->num_paths == 2)
rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
if (net_dev) {
rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
} else {
if (!cma_protocol_roce(listen_id) &&
cma_any_addr(cma_src_addr(id_priv))) {
rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
} else if (!cma_any_addr(cma_src_addr(id_priv))) {
ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
if (ret)
goto err;
}
}
rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static struct rdma_id_private *
cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
const struct ib_cm_event *ib_event,
struct net_device *net_dev)
{
const struct rdma_id_private *listen_id_priv;
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
struct net *net = listen_id->route.addr.dev_addr.net;
int ret;
listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
id_priv = __rdma_create_id(net, listen_id->event_handler,
listen_id->context, listen_id->ps, IB_QPT_UD,
listen_id_priv);
if (IS_ERR(id_priv))
return NULL;
id = &id_priv->id;
if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
(struct sockaddr *)&id->route.addr.dst_addr,
listen_id, ib_event, ss_family,
ib_event->param.sidr_req_rcvd.service_id))
goto err;
if (net_dev) {
rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
} else {
if (!cma_any_addr(cma_src_addr(id_priv))) {
ret = cma_translate_addr(cma_src_addr(id_priv),
&id->route.addr.dev_addr);
if (ret)
goto err;
}
}
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static void cma_set_req_event_data(struct rdma_cm_event *event,
const struct ib_cm_req_event_param *req_data,
void *private_data, int offset)
{
event->param.conn.private_data = private_data + offset;
event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
event->param.conn.responder_resources = req_data->responder_resources;
event->param.conn.initiator_depth = req_data->initiator_depth;
event->param.conn.flow_control = req_data->flow_control;
event->param.conn.retry_count = req_data->retry_count;
event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
event->param.conn.srq = req_data->srq;
event->param.conn.qp_num = req_data->remote_qpn;
event->ece.vendor_id = req_data->ece.vendor_id;
event->ece.attr_mod = req_data->ece.attr_mod;
}
static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
const struct ib_cm_event *ib_event)
{
return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
(ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
(id->qp_type == IB_QPT_UD)) ||
(!id->qp_type));
}
static int cma_ib_req_handler(struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event)
{
struct rdma_id_private *listen_id, *conn_id = NULL;
struct rdma_cm_event event = {};
struct cma_req_info req = {};
struct net_device *net_dev;
u8 offset;
int ret;
listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
if (IS_ERR(listen_id))
return PTR_ERR(listen_id);
trace_cm_req_handler(listen_id, ib_event->event);
if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
ret = -EINVAL;
goto net_dev_put;
}
mutex_lock(&listen_id->handler_mutex);
if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
ret = -ECONNABORTED;
goto err_unlock;
}
offset = cma_user_data_offset(listen_id);
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
event.param.ud.private_data = ib_event->private_data + offset;
event.param.ud.private_data_len =
IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
} else {
conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
ib_event->private_data, offset);
}
if (!conn_id) {
ret = -ENOMEM;
goto err_unlock;
}
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
if (ret) {
destroy_id_handler_unlock(conn_id);
goto err_unlock;
}
conn_id->cm_id.ib = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_ib_handler;
ret = cma_cm_event_handler(conn_id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
conn_id->cm_id.ib = NULL;
mutex_unlock(&listen_id->handler_mutex);
destroy_id_handler_unlock(conn_id);
goto net_dev_put;
}
if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
conn_id->id.qp_type != IB_QPT_UD) {
trace_cm_send_mra(cm_id->context);
ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
}
mutex_unlock(&conn_id->handler_mutex);
err_unlock:
mutex_unlock(&listen_id->handler_mutex);
net_dev_put:
if (net_dev)
dev_put(net_dev);
return ret;
}
__be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
{
if (addr->sa_family == AF_IB)
return ((struct sockaddr_ib *) addr)->sib_sid;
return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
}
EXPORT_SYMBOL(rdma_get_service_id);
void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
union ib_gid *dgid)
{
struct rdma_addr *addr = &cm_id->route.addr;
if (!cm_id->device) {
if (sgid)
memset(sgid, 0, sizeof(*sgid));
if (dgid)
memset(dgid, 0, sizeof(*dgid));
return;
}
if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
if (sgid)
rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
if (dgid)
rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
} else {
if (sgid)
rdma_addr_get_sgid(&addr->dev_addr, sgid);
if (dgid)
rdma_addr_get_dgid(&addr->dev_addr, dgid);
}
}
EXPORT_SYMBOL(rdma_read_gids);
static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
{
struct rdma_id_private *id_priv = iw_id->context;
struct rdma_cm_event event = {};
int ret = 0;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
goto out;
switch (iw_event->event) {
case IW_CM_EVENT_CLOSE:
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IW_CM_EVENT_CONNECT_REPLY:
memcpy(cma_src_addr(id_priv), laddr,
rdma_addr_size(laddr));
memcpy(cma_dst_addr(id_priv), raddr,
rdma_addr_size(raddr));
switch (iw_event->status) {
case 0:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
case -ECONNRESET:
case -ECONNREFUSED:
event.event = RDMA_CM_EVENT_REJECTED;
break;
case -ETIMEDOUT:
event.event = RDMA_CM_EVENT_UNREACHABLE;
break;
default:
event.event = RDMA_CM_EVENT_CONNECT_ERROR;
break;
}
break;
case IW_CM_EVENT_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
default:
goto out;
}
event.status = iw_event->status;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
ret = cma_cm_event_handler(id_priv, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.iw = NULL;
destroy_id_handler_unlock(id_priv);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static int iw_conn_req_handler(struct iw_cm_id *cm_id,
struct iw_cm_event *iw_event)
{
struct rdma_id_private *listen_id, *conn_id;
struct rdma_cm_event event = {};
int ret = -ECONNABORTED;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
listen_id = cm_id->context;
mutex_lock(&listen_id->handler_mutex);
if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
goto out;
/* Create a new RDMA id for the new IW CM ID */
conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
listen_id->id.event_handler,
listen_id->id.context, RDMA_PS_TCP,
IB_QPT_RC, listen_id);
if (IS_ERR(conn_id)) {
ret = -ENOMEM;
goto out;
}
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
conn_id->state = RDMA_CM_CONNECT;
ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
if (ret) {
mutex_unlock(&listen_id->handler_mutex);
destroy_id_handler_unlock(conn_id);
return ret;
}
ret = cma_iw_acquire_dev(conn_id, listen_id);
if (ret) {
mutex_unlock(&listen_id->handler_mutex);
destroy_id_handler_unlock(conn_id);
return ret;
}
conn_id->cm_id.iw = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_iw_handler;
memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
ret = cma_cm_event_handler(conn_id, &event);
if (ret) {
/* User wants to destroy the CM ID */
conn_id->cm_id.iw = NULL;
mutex_unlock(&listen_id->handler_mutex);
destroy_id_handler_unlock(conn_id);
return ret;
}
mutex_unlock(&conn_id->handler_mutex);
out:
mutex_unlock(&listen_id->handler_mutex);
return ret;
}
static int cma_ib_listen(struct rdma_id_private *id_priv)
{
struct sockaddr *addr;
struct ib_cm_id *id;
__be64 svc_id;
addr = cma_src_addr(id_priv);
svc_id = rdma_get_service_id(&id_priv->id, addr);
id = ib_cm_insert_listen(id_priv->id.device,
cma_ib_req_handler, svc_id);
if (IS_ERR(id))
return PTR_ERR(id);
id_priv->cm_id.ib = id;
return 0;
}
static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
{
int ret;
struct iw_cm_id *id;
id = iw_create_cm_id(id_priv->id.device,
iw_conn_req_handler,
id_priv);
if (IS_ERR(id))
return PTR_ERR(id);
mutex_lock(&id_priv->qp_mutex);
id->tos = id_priv->tos;
id->tos_set = id_priv->tos_set;
mutex_unlock(&id_priv->qp_mutex);
id->afonly = id_priv->afonly;
id_priv->cm_id.iw = id;
memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
if (ret) {
iw_destroy_cm_id(id_priv->cm_id.iw);
id_priv->cm_id.iw = NULL;
}
return ret;
}
static int cma_listen_handler(struct rdma_cm_id *id,
struct rdma_cm_event *event)
{
struct rdma_id_private *id_priv = id->context;
/* Listening IDs are always destroyed on removal */
if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
return -1;
id->context = id_priv->id.context;
id->event_handler = id_priv->id.event_handler;
trace_cm_event_handler(id_priv, event);
return id_priv->id.event_handler(id, event);
}
static int cma_listen_on_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev,
struct rdma_id_private **to_destroy)
{
struct rdma_id_private *dev_id_priv;
struct net *net = id_priv->id.route.addr.dev_addr.net;
int ret;
lockdep_assert_held(&lock);
*to_destroy = NULL;
if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
return 0;
dev_id_priv =
__rdma_create_id(net, cma_listen_handler, id_priv,
id_priv->id.ps, id_priv->id.qp_type, id_priv);
if (IS_ERR(dev_id_priv))
return PTR_ERR(dev_id_priv);
dev_id_priv->state = RDMA_CM_ADDR_BOUND;
memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
_cma_attach_to_dev(dev_id_priv, cma_dev);
rdma_restrack_add(&dev_id_priv->res);
cma_id_get(id_priv);
dev_id_priv->internal_id = 1;
dev_id_priv->afonly = id_priv->afonly;
mutex_lock(&id_priv->qp_mutex);
dev_id_priv->tos_set = id_priv->tos_set;
dev_id_priv->tos = id_priv->tos;
mutex_unlock(&id_priv->qp_mutex);
ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
if (ret)
goto err_listen;
list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list);
return 0;
err_listen:
/* Caller must destroy this after releasing lock */
*to_destroy = dev_id_priv;
dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
return ret;
}
static int cma_listen_on_all(struct rdma_id_private *id_priv)
{
struct rdma_id_private *to_destroy;
struct cma_device *cma_dev;
int ret;
mutex_lock(&lock);
list_add_tail(&id_priv->list, &listen_any_list);
list_for_each_entry(cma_dev, &dev_list, list) {
ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
if (ret) {
/* Prevent racing with cma_process_remove() */
if (to_destroy)
list_del_init(&to_destroy->list);
goto err_listen;
}
}
mutex_unlock(&lock);
return 0;
err_listen:
_cma_cancel_listens(id_priv);
mutex_unlock(&lock);
if (to_destroy)
rdma_destroy_id(&to_destroy->id);
return ret;
}
void rdma_set_service_type(struct rdma_cm_id *id, int tos)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
id_priv->tos = (u8) tos;
id_priv->tos_set = true;
mutex_unlock(&id_priv->qp_mutex);
}
EXPORT_SYMBOL(rdma_set_service_type);
/**
* rdma_set_ack_timeout() - Set the ack timeout of QP associated
* with a connection identifier.
* @id: Communication identifier to associated with service type.
* @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
*
* This function should be called before rdma_connect() on active side,
* and on passive side before rdma_accept(). It is applicable to primary
* path only. The timeout will affect the local side of the QP, it is not
* negotiated with remote side and zero disables the timer. In case it is
* set before rdma_resolve_route, the value will also be used to determine
* PacketLifeTime for RoCE.
*
* Return: 0 for success
*/
int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
{
struct rdma_id_private *id_priv;
if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
return -EINVAL;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
id_priv->timeout = timeout;
id_priv->timeout_set = true;
mutex_unlock(&id_priv->qp_mutex);
return 0;
}
EXPORT_SYMBOL(rdma_set_ack_timeout);
/**
* rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
* QP associated with a connection identifier.
* @id: Communication identifier to associated with service type.
* @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
* Timer Field" in the IBTA specification.
*
* This function should be called before rdma_connect() on active
* side, and on passive side before rdma_accept(). The timer value
* will be associated with the local QP. When it receives a send it is
* not read to handle, typically if the receive queue is empty, an RNR
* Retry NAK is returned to the requester with the min_rnr_timer
* encoded. The requester will then wait at least the time specified
* in the NAK before retrying. The default is zero, which translates
* to a minimum RNR Timer value of 655 ms.
*
* Return: 0 for success
*/
int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
{
struct rdma_id_private *id_priv;
/* It is a five-bit value */
if (min_rnr_timer & 0xe0)
return -EINVAL;
if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
return -EINVAL;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
id_priv->min_rnr_timer = min_rnr_timer;
id_priv->min_rnr_timer_set = true;
mutex_unlock(&id_priv->qp_mutex);
return 0;
}
EXPORT_SYMBOL(rdma_set_min_rnr_timer);
static void cma_query_handler(int status, struct sa_path_rec *path_rec,
void *context)
{
struct cma_work *work = context;
struct rdma_route *route;
route = &work->id->id.route;
if (!status) {
route->num_paths = 1;
*route->path_rec = *path_rec;
} else {
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
work->event.status = status;
pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
status);
}
queue_work(cma_wq, &work->work);
}
static int cma_query_ib_route(struct rdma_id_private *id_priv,
unsigned long timeout_ms, struct cma_work *work)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct sa_path_rec path_rec;
ib_sa_comp_mask comp_mask;
struct sockaddr_in6 *sin6;
struct sockaddr_ib *sib;
memset(&path_rec, 0, sizeof path_rec);
if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
else
path_rec.rec_type = SA_PATH_REC_TYPE_IB;
rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
path_rec.numb_path = 1;
path_rec.reversible = 1;
path_rec.service_id = rdma_get_service_id(&id_priv->id,
cma_dst_addr(id_priv));
comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
switch (cma_family(id_priv)) {
case AF_INET:
path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
break;
case AF_IB:
sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
break;
}
id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
id_priv->id.port_num, &path_rec,
comp_mask, timeout_ms,
GFP_KERNEL, cma_query_handler,
work, &id_priv->query);
return (id_priv->query_id < 0) ? id_priv->query_id : 0;
}
static void cma_iboe_join_work_handler(struct work_struct *work)
{
struct cma_multicast *mc =
container_of(work, struct cma_multicast, iboe_join.work);
struct rdma_cm_event *event = &mc->iboe_join.event;
struct rdma_id_private *id_priv = mc->id_priv;
int ret;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
goto out_unlock;
ret = cma_cm_event_handler(id_priv, event);
WARN_ON(ret);
out_unlock:
mutex_unlock(&id_priv->handler_mutex);
if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
rdma_destroy_ah_attr(&event->param.ud.ah_attr);
}
static void cma_work_handler(struct work_struct *_work)
{
struct cma_work *work = container_of(_work, struct cma_work, work);
struct rdma_id_private *id_priv = work->id;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
goto out_unlock;
if (work->old_state != 0 || work->new_state != 0) {
if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
goto out_unlock;
}
if (cma_cm_event_handler(id_priv, &work->event)) {
cma_id_put(id_priv);
destroy_id_handler_unlock(id_priv);
goto out_free;
}
out_unlock:
mutex_unlock(&id_priv->handler_mutex);
cma_id_put(id_priv);
out_free:
if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
kfree(work);
}
static void cma_init_resolve_route_work(struct cma_work *work,
struct rdma_id_private *id_priv)
{
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
}
static void enqueue_resolve_addr_work(struct cma_work *work,
struct rdma_id_private *id_priv)
{
/* Balances with cma_id_put() in cma_work_handler */
cma_id_get(id_priv);
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ADDR_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
queue_work(cma_wq, &work->work);
}
static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
unsigned long timeout_ms)
{
struct rdma_route *route = &id_priv->id.route;
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
cma_init_resolve_route_work(work, id_priv);
if (!route->path_rec)
route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
ret = cma_query_ib_route(id_priv, timeout_ms, work);
if (ret)
goto err2;
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
err1:
kfree(work);
return ret;
}
static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
unsigned long supported_gids,
enum ib_gid_type default_gid)
{
if ((network_type == RDMA_NETWORK_IPV4 ||
network_type == RDMA_NETWORK_IPV6) &&
test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
return IB_GID_TYPE_ROCE_UDP_ENCAP;
return default_gid;
}
/*
* cma_iboe_set_path_rec_l2_fields() is helper function which sets
* path record type based on GID type.
* It also sets up other L2 fields which includes destination mac address
* netdev ifindex, of the path record.
* It returns the netdev of the bound interface for this path record entry.
*/
static struct net_device *
cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
{
struct rdma_route *route = &id_priv->id.route;
enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
struct rdma_addr *addr = &route->addr;
unsigned long supported_gids;
struct net_device *ndev;
if (!addr->dev_addr.bound_dev_if)
return NULL;
ndev = dev_get_by_index(addr->dev_addr.net,
addr->dev_addr.bound_dev_if);
if (!ndev)
return NULL;
supported_gids = roce_gid_type_mask_support(id_priv->id.device,
id_priv->id.port_num);
gid_type = cma_route_gid_type(addr->dev_addr.network,
supported_gids,
id_priv->gid_type);
/* Use the hint from IP Stack to select GID Type */
if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
gid_type = ib_network_to_gid_type(addr->dev_addr.network);
route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
route->path_rec->roce.route_resolved = true;
sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
return ndev;
}
int rdma_set_ib_path(struct rdma_cm_id *id,
struct sa_path_rec *path_rec)
{
struct rdma_id_private *id_priv;
struct net_device *ndev;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ROUTE_RESOLVED))
return -EINVAL;
id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
GFP_KERNEL);
if (!id->route.path_rec) {
ret = -ENOMEM;
goto err;
}
if (rdma_protocol_roce(id->device, id->port_num)) {
ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
if (!ndev) {
ret = -ENODEV;
goto err_free;
}
dev_put(ndev);
}
id->route.num_paths = 1;
return 0;
err_free:
kfree(id->route.path_rec);
id->route.path_rec = NULL;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_set_ib_path);
static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
{
struct cma_work *work;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
cma_init_resolve_route_work(work, id_priv);
queue_work(cma_wq, &work->work);
return 0;
}
static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
{
struct net_device *dev;
dev = vlan_dev_real_dev(vlan_ndev);
if (dev->num_tc)
return netdev_get_prio_tc_map(dev, prio);
return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
}
struct iboe_prio_tc_map {
int input_prio;
int output_tc;
bool found;
};
static int get_lower_vlan_dev_tc(struct net_device *dev,
struct netdev_nested_priv *priv)
{
struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
if (is_vlan_dev(dev))
map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
else if (dev->num_tc)
map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
else
map->output_tc = 0;
/* We are interested only in first level VLAN device, so always
* return 1 to stop iterating over next level devices.
*/
map->found = true;
return 1;
}
static int iboe_tos_to_sl(struct net_device *ndev, int tos)
{
struct iboe_prio_tc_map prio_tc_map = {};
int prio = rt_tos2priority(tos);
struct netdev_nested_priv priv;
/* If VLAN device, get it directly from the VLAN netdev */
if (is_vlan_dev(ndev))
return get_vlan_ndev_tc(ndev, prio);
prio_tc_map.input_prio = prio;
priv.data = (void *)&prio_tc_map;
rcu_read_lock();
netdev_walk_all_lower_dev_rcu(ndev,
get_lower_vlan_dev_tc,
&priv);
rcu_read_unlock();
/* If map is found from lower device, use it; Otherwise
* continue with the current netdevice to get priority to tc map.
*/
if (prio_tc_map.found)
return prio_tc_map.output_tc;
else if (ndev->num_tc)
return netdev_get_prio_tc_map(ndev, prio);
else
return 0;
}
static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
{
struct sockaddr_in6 *addr6;
u16 dport, sport;
u32 hash, fl;
addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
if ((cma_family(id_priv) != AF_INET6) || !fl) {
dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
hash = (u32)sport * 31 + dport;
fl = hash & IB_GRH_FLOWLABEL_MASK;
}
return cpu_to_be32(fl);
}
static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
{
struct rdma_route *route = &id_priv->id.route;
struct rdma_addr *addr = &route->addr;
struct cma_work *work;
int ret;
struct net_device *ndev;
u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
rdma_start_port(id_priv->cma_dev->device)];
u8 tos;
mutex_lock(&id_priv->qp_mutex);
tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
mutex_unlock(&id_priv->qp_mutex);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
route->num_paths = 1;
ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
if (!ndev) {
ret = -ENODEV;
goto err2;
}
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&route->path_rec->sgid);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
&route->path_rec->dgid);
if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
/* TODO: get the hoplimit from the inet/inet6 device */
route->path_rec->hop_limit = addr->dev_addr.hoplimit;
else
route->path_rec->hop_limit = 1;
route->path_rec->reversible = 1;
route->path_rec->pkey = cpu_to_be16(0xffff);
route->path_rec->mtu_selector = IB_SA_EQ;
route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
route->path_rec->traffic_class = tos;
route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
route->path_rec->rate_selector = IB_SA_EQ;
route->path_rec->rate = IB_RATE_PORT_CURRENT;
dev_put(ndev);
route->path_rec->packet_life_time_selector = IB_SA_EQ;
/* In case ACK timeout is set, use this value to calculate
* PacketLifeTime. As per IBTA 12.7.34,
* local ACK timeout = (2 * PacketLifeTime + Local CAs ACK delay).
* Assuming a negligible local ACK delay, we can use
* PacketLifeTime = local ACK timeout/2
* as a reasonable approximation for RoCE networks.
*/
mutex_lock(&id_priv->qp_mutex);
if (id_priv->timeout_set && id_priv->timeout)
route->path_rec->packet_life_time = id_priv->timeout - 1;
else
route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
mutex_unlock(&id_priv->qp_mutex);
if (!route->path_rec->mtu) {
ret = -EINVAL;
goto err2;
}
if (rdma_protocol_roce_udp_encap(id_priv->id.device,
id_priv->id.port_num))
route->path_rec->flow_label =
cma_get_roce_udp_flow_label(id_priv);
cma_init_resolve_route_work(work, id_priv);
queue_work(cma_wq, &work->work);
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
route->num_paths = 0;
err1:
kfree(work);
return ret;
}
int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
{
struct rdma_id_private *id_priv;
int ret;
if (!timeout_ms)
return -EINVAL;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
return -EINVAL;
cma_id_get(id_priv);
if (rdma_cap_ib_sa(id->device, id->port_num))
ret = cma_resolve_ib_route(id_priv, timeout_ms);
else if (rdma_protocol_roce(id->device, id->port_num))
ret = cma_resolve_iboe_route(id_priv);
else if (rdma_protocol_iwarp(id->device, id->port_num))
ret = cma_resolve_iw_route(id_priv);
else
ret = -ENOSYS;
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
cma_id_put(id_priv);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_route);
static void cma_set_loopback(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
break;
case AF_INET6:
ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
0, 0, 0, htonl(1));
break;
default:
ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
0, 0, 0, htonl(1));
break;
}
}
static int cma_bind_loopback(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev, *cur_dev;
union ib_gid gid;
enum ib_port_state port_state;
unsigned int p;
u16 pkey;
int ret;
cma_dev = NULL;
mutex_lock(&lock);
list_for_each_entry(cur_dev, &dev_list, list) {
if (cma_family(id_priv) == AF_IB &&
!rdma_cap_ib_cm(cur_dev->device, 1))
continue;
if (!cma_dev)
cma_dev = cur_dev;
rdma_for_each_port (cur_dev->device, p) {
if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
port_state == IB_PORT_ACTIVE) {
cma_dev = cur_dev;
goto port_found;
}
}
}
if (!cma_dev) {
ret = -ENODEV;
goto out;
}
p = 1;
port_found:
ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
if (ret)
goto out;
ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
if (ret)
goto out;
id_priv->id.route.addr.dev_addr.dev_type =
(rdma_protocol_ib(cma_dev->device, p)) ?
ARPHRD_INFINIBAND : ARPHRD_ETHER;
rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
id_priv->id.port_num = p;
cma_attach_to_dev(id_priv, cma_dev);
rdma_restrack_add(&id_priv->res);
cma_set_loopback(cma_src_addr(id_priv));
out:
mutex_unlock(&lock);
return ret;
}
static void addr_handler(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *dev_addr, void *context)
{
struct rdma_id_private *id_priv = context;
struct rdma_cm_event event = {};
struct sockaddr *addr;
struct sockaddr_storage old_addr;
mutex_lock(&id_priv->handler_mutex);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
RDMA_CM_ADDR_RESOLVED))
goto out;
/*
* Store the previous src address, so that if we fail to acquire
* matching rdma device, old address can be restored back, which helps
* to cancel the cma listen operation correctly.
*/
addr = cma_src_addr(id_priv);
memcpy(&old_addr, addr, rdma_addr_size(addr));
memcpy(addr, src_addr, rdma_addr_size(src_addr));
if (!status && !id_priv->cma_dev) {
status = cma_acquire_dev_by_src_ip(id_priv);
if (status)
pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
status);
rdma_restrack_add(&id_priv->res);
} else if (status) {
pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
}
if (status) {
memcpy(addr, &old_addr,
rdma_addr_size((struct sockaddr *)&old_addr));
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ADDR_BOUND))
goto out;
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = status;
} else
event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
if (cma_cm_event_handler(id_priv, &event)) {
destroy_id_handler_unlock(id_priv);
return;
}
out:
mutex_unlock(&id_priv->handler_mutex);
}
static int cma_resolve_loopback(struct rdma_id_private *id_priv)
{
struct cma_work *work;
union ib_gid gid;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_bind_loopback(id_priv);
if (ret)
goto err;
}
rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
enqueue_resolve_addr_work(work, id_priv);
return 0;
err:
kfree(work);
return ret;
}
static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
{
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_resolve_ib_dev(id_priv);
if (ret)
goto err;
}
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
enqueue_resolve_addr_work(work, id_priv);
return 0;
err:
kfree(work);
return ret;
}
static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
const struct sockaddr *dst_addr)
{
struct sockaddr_storage zero_sock = {};
if (src_addr && src_addr->sa_family)
return rdma_bind_addr(id, src_addr);
/*
* When the src_addr is not specified, automatically supply an any addr
*/
zero_sock.ss_family = dst_addr->sa_family;
if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
struct sockaddr_in6 *src_addr6 =
(struct sockaddr_in6 *)&zero_sock;
struct sockaddr_in6 *dst_addr6 =
(struct sockaddr_in6 *)dst_addr;
src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
id->route.addr.dev_addr.bound_dev_if =
dst_addr6->sin6_scope_id;
} else if (dst_addr->sa_family == AF_IB) {
((struct sockaddr_ib *)&zero_sock)->sib_pkey =
((struct sockaddr_ib *)dst_addr)->sib_pkey;
}
return rdma_bind_addr(id, (struct sockaddr *)&zero_sock);
}
/*
* If required, resolve the source address for bind and leave the id_priv in
* state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
* calls made by ULP, a previously bound ID will not be re-bound and src_addr is
* ignored.
*/
static int resolve_prepare_src(struct rdma_id_private *id_priv,
struct sockaddr *src_addr,
const struct sockaddr *dst_addr)
{
int ret;
memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
/* For a well behaved ULP state will be RDMA_CM_IDLE */
ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
if (ret)
goto err_dst;
if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
RDMA_CM_ADDR_QUERY))) {
ret = -EINVAL;
goto err_dst;
}
}
if (cma_family(id_priv) != dst_addr->sa_family) {
ret = -EINVAL;
goto err_state;
}
return 0;
err_state:
cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
err_dst:
memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr));
return ret;
}
int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
const struct sockaddr *dst_addr, unsigned long timeout_ms)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
if (ret)
return ret;
if (cma_any_addr(dst_addr)) {
ret = cma_resolve_loopback(id_priv);
} else {
if (dst_addr->sa_family == AF_IB) {
ret = cma_resolve_ib_addr(id_priv);
} else {
/*
* The FSM can return back to RDMA_CM_ADDR_BOUND after
* rdma_resolve_ip() is called, eg through the error
* path in addr_handler(). If this happens the existing
* request must be canceled before issuing a new one.
* Since canceling a request is a bit slow and this
* oddball path is rare, keep track once a request has
* been issued. The track turns out to be a permanent
* state since this is the only cancel as it is
* immediately before rdma_resolve_ip().
*/
if (id_priv->used_resolve_ip)
rdma_addr_cancel(&id->route.addr.dev_addr);
else
id_priv->used_resolve_ip = 1;
ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
&id->route.addr.dev_addr,
timeout_ms, addr_handler,
false, id_priv);
}
}
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_addr);
int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
id_priv->state == RDMA_CM_IDLE) {
id_priv->reuseaddr = reuse;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_reuseaddr);
int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
id_priv->options |= (1 << CMA_OPTION_AFONLY);
id_priv->afonly = afonly;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_afonly);
static void cma_bind_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv)
{
struct sockaddr *addr;
struct sockaddr_ib *sib;
u64 sid, mask;
__be16 port;
lockdep_assert_held(&lock);
addr = cma_src_addr(id_priv);
port = htons(bind_list->port);
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *) addr)->sin_port = port;
break;
case AF_INET6:
((struct sockaddr_in6 *) addr)->sin6_port = port;
break;
case AF_IB:
sib = (struct sockaddr_ib *) addr;
sid = be64_to_cpu(sib->sib_sid);
mask = be64_to_cpu(sib->sib_sid_mask);
sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
sib->sib_sid_mask = cpu_to_be64(~0ULL);
break;
}
id_priv->bind_list = bind_list;
hlist_add_head(&id_priv->node, &bind_list->owners);
}
static int cma_alloc_port(enum rdma_ucm_port_space ps,
struct rdma_id_private *id_priv, unsigned short snum)
{
struct rdma_bind_list *bind_list;
int ret;
lockdep_assert_held(&lock);
bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
if (!bind_list)
return -ENOMEM;
ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
snum);
if (ret < 0)
goto err;
bind_list->ps = ps;
bind_list->port = snum;
cma_bind_port(bind_list, id_priv);
return 0;
err:
kfree(bind_list);
return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
}
static int cma_port_is_unique(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv)
{
struct rdma_id_private *cur_id;
struct sockaddr *daddr = cma_dst_addr(id_priv);
struct sockaddr *saddr = cma_src_addr(id_priv);
__be16 dport = cma_port(daddr);
lockdep_assert_held(&lock);
hlist_for_each_entry(cur_id, &bind_list->owners, node) {
struct sockaddr *cur_daddr = cma_dst_addr(cur_id);
struct sockaddr *cur_saddr = cma_src_addr(cur_id);
__be16 cur_dport = cma_port(cur_daddr);
if (id_priv == cur_id)
continue;
/* different dest port -> unique */
if (!cma_any_port(daddr) &&
!cma_any_port(cur_daddr) &&
(dport != cur_dport))
continue;
/* different src address -> unique */
if (!cma_any_addr(saddr) &&
!cma_any_addr(cur_saddr) &&
cma_addr_cmp(saddr, cur_saddr))
continue;
/* different dst address -> unique */
if (!cma_any_addr(daddr) &&
!cma_any_addr(cur_daddr) &&
cma_addr_cmp(daddr, cur_daddr))
continue;
return -EADDRNOTAVAIL;
}
return 0;
}
static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
struct rdma_id_private *id_priv)
{
static unsigned int last_used_port;
int low, high, remaining;
unsigned int rover;
struct net *net = id_priv->id.route.addr.dev_addr.net;
lockdep_assert_held(&lock);
inet_get_local_port_range(net, &low, &high);
remaining = (high - low) + 1;
rover = prandom_u32() % remaining + low;
retry:
if (last_used_port != rover) {
struct rdma_bind_list *bind_list;
int ret;
bind_list = cma_ps_find(net, ps, (unsigned short)rover);
if (!bind_list) {
ret = cma_alloc_port(ps, id_priv, rover);
} else {
ret = cma_port_is_unique(bind_list, id_priv);
if (!ret)
cma_bind_port(bind_list, id_priv);
}
/*
* Remember previously used port number in order to avoid
* re-using same port immediately after it is closed.
*/
if (!ret)
last_used_port = rover;
if (ret != -EADDRNOTAVAIL)
return ret;
}
if (--remaining) {
rover++;
if ((rover < low) || (rover > high))
rover = low;
goto retry;
}
return -EADDRNOTAVAIL;
}
/*
* Check that the requested port is available. This is called when trying to
* bind to a specific port, or when trying to listen on a bound port. In
* the latter case, the provided id_priv may already be on the bind_list, but
* we still need to check that it's okay to start listening.
*/
static int cma_check_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv, uint8_t reuseaddr)
{
struct rdma_id_private *cur_id;
struct sockaddr *addr, *cur_addr;
lockdep_assert_held(&lock);
addr = cma_src_addr(id_priv);
hlist_for_each_entry(cur_id, &bind_list->owners, node) {
if (id_priv == cur_id)
continue;
if (reuseaddr && cur_id->reuseaddr)
continue;
cur_addr = cma_src_addr(cur_id);
if (id_priv->afonly && cur_id->afonly &&
(addr->sa_family != cur_addr->sa_family))
continue;
if (cma_any_addr(addr) || cma_any_addr(cur_addr))
return -EADDRNOTAVAIL;
if (!cma_addr_cmp(addr, cur_addr))
return -EADDRINUSE;
}
return 0;
}
static int cma_use_port(enum rdma_ucm_port_space ps,
struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list;
unsigned short snum;
int ret;
lockdep_assert_held(&lock);
snum = ntohs(cma_port(cma_src_addr(id_priv)));
if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
if (!bind_list) {
ret = cma_alloc_port(ps, id_priv, snum);
} else {
ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
if (!ret)
cma_bind_port(bind_list, id_priv);
}
return ret;
}
static enum rdma_ucm_port_space
cma_select_inet_ps(struct rdma_id_private *id_priv)
{
switch (id_priv->id.ps) {
case RDMA_PS_TCP:
case RDMA_PS_UDP:
case RDMA_PS_IPOIB:
case RDMA_PS_IB:
return id_priv->id.ps;
default:
return 0;
}
}
static enum rdma_ucm_port_space
cma_select_ib_ps(struct rdma_id_private *id_priv)
{
enum rdma_ucm_port_space ps = 0;
struct sockaddr_ib *sib;
u64 sid_ps, mask, sid;
sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
sid = be64_to_cpu(sib->sib_sid) & mask;
if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
sid_ps = RDMA_IB_IP_PS_IB;
ps = RDMA_PS_IB;
} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
(sid == (RDMA_IB_IP_PS_TCP & mask))) {
sid_ps = RDMA_IB_IP_PS_TCP;
ps = RDMA_PS_TCP;
} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
(sid == (RDMA_IB_IP_PS_UDP & mask))) {
sid_ps = RDMA_IB_IP_PS_UDP;
ps = RDMA_PS_UDP;
}
if (ps) {
sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
be64_to_cpu(sib->sib_sid_mask));
}
return ps;
}
static int cma_get_port(struct rdma_id_private *id_priv)
{
enum rdma_ucm_port_space ps;
int ret;
if (cma_family(id_priv) != AF_IB)
ps = cma_select_inet_ps(id_priv);
else
ps = cma_select_ib_ps(id_priv);
if (!ps)
return -EPROTONOSUPPORT;
mutex_lock(&lock);
if (cma_any_port(cma_src_addr(id_priv)))
ret = cma_alloc_any_port(ps, id_priv);
else
ret = cma_use_port(ps, id_priv);
mutex_unlock(&lock);
return ret;
}
static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
struct sockaddr *addr)
{
#if IS_ENABLED(CONFIG_IPV6)
struct sockaddr_in6 *sin6;
if (addr->sa_family != AF_INET6)
return 0;
sin6 = (struct sockaddr_in6 *) addr;
if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
return 0;
if (!sin6->sin6_scope_id)
return -EINVAL;
dev_addr->bound_dev_if = sin6->sin6_scope_id;
#endif
return 0;
}
int rdma_listen(struct rdma_cm_id *id, int backlog)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
struct sockaddr_in any_in = {
.sin_family = AF_INET,
.sin_addr.s_addr = htonl(INADDR_ANY),
};
/* For a well behaved ULP state will be RDMA_CM_IDLE */
ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
if (ret)
return ret;
if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
RDMA_CM_LISTEN)))
return -EINVAL;
}
/*
* Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
* any more, and has to be unique in the bind list.
*/
if (id_priv->reuseaddr) {
mutex_lock(&lock);
ret = cma_check_port(id_priv->bind_list, id_priv, 0);
if (!ret)
id_priv->reuseaddr = 0;
mutex_unlock(&lock);
if (ret)
goto err;
}
id_priv->backlog = backlog;
if (id_priv->cma_dev) {
if (rdma_cap_ib_cm(id->device, 1)) {
ret = cma_ib_listen(id_priv);
if (ret)
goto err;
} else if (rdma_cap_iw_cm(id->device, 1)) {
ret = cma_iw_listen(id_priv, backlog);
if (ret)
goto err;
} else {
ret = -ENOSYS;
goto err;
}
} else {
ret = cma_listen_on_all(id_priv);
if (ret)
goto err;
}
return 0;
err:
id_priv->backlog = 0;
/*
* All the failure paths that lead here will not allow the req_handler's
* to have run.
*/
cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
return ret;
}
EXPORT_SYMBOL(rdma_listen);
int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
int ret;
struct sockaddr *daddr;
if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
addr->sa_family != AF_IB)
return -EAFNOSUPPORT;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
return -EINVAL;
ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
if (ret)
goto err1;
memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
if (!cma_any_addr(addr)) {
ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
if (ret)
goto err1;
ret = cma_acquire_dev_by_src_ip(id_priv);
if (ret)
goto err1;
}
if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
if (addr->sa_family == AF_INET)
id_priv->afonly = 1;
#if IS_ENABLED(CONFIG_IPV6)
else if (addr->sa_family == AF_INET6) {
struct net *net = id_priv->id.route.addr.dev_addr.net;
id_priv->afonly = net->ipv6.sysctl.bindv6only;
}
#endif
}
daddr = cma_dst_addr(id_priv);
daddr->sa_family = addr->sa_family;
ret = cma_get_port(id_priv);
if (ret)
goto err2;
if (!cma_any_addr(addr))
rdma_restrack_add(&id_priv->res);
return 0;
err2:
if (id_priv->cma_dev)
cma_release_dev(id_priv);
err1:
cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
return ret;
}
EXPORT_SYMBOL(rdma_bind_addr);
static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
{
struct cma_hdr *cma_hdr;
cma_hdr = hdr;
cma_hdr->cma_version = CMA_VERSION;
if (cma_family(id_priv) == AF_INET) {
struct sockaddr_in *src4, *dst4;
src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
cma_set_ip_ver(cma_hdr, 4);
cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
cma_hdr->port = src4->sin_port;
} else if (cma_family(id_priv) == AF_INET6) {
struct sockaddr_in6 *src6, *dst6;
src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
cma_set_ip_ver(cma_hdr, 6);
cma_hdr->src_addr.ip6 = src6->sin6_addr;
cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
cma_hdr->port = src6->sin6_port;
}
return 0;
}
static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event = {};
const struct ib_cm_sidr_rep_event_param *rep =
&ib_event->param.sidr_rep_rcvd;
int ret;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
goto out;
switch (ib_event->event) {
case IB_CM_SIDR_REQ_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_SIDR_REP_RECEIVED:
event.param.ud.private_data = ib_event->private_data;
event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
if (rep->status != IB_SIDR_SUCCESS) {
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = ib_event->param.sidr_rep_rcvd.status;
pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
event.status);
break;
}
ret = cma_set_qkey(id_priv, rep->qkey);
if (ret) {
pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = ret;
break;
}
ib_init_ah_attr_from_path(id_priv->id.device,
id_priv->id.port_num,
id_priv->id.route.path_rec,
&event.param.ud.ah_attr,
rep->sgid_attr);
event.param.ud.qp_num = rep->qpn;
event.param.ud.qkey = rep->qkey;
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.status = 0;
break;
default:
pr_err("RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = cma_cm_event_handler(id_priv, &event);
rdma_destroy_ah_attr(&event.param.ud.ah_attr);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
destroy_id_handler_unlock(id_priv);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_sidr_req_param req;
struct ib_cm_id *id;
void *private_data;
u8 offset;
int ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv);
if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
return -EINVAL;
if (req.private_data_len) {
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
} else {
private_data = NULL;
}
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
if (private_data) {
ret = cma_format_hdr(private_data, id_priv);
if (ret)
goto out;
req.private_data = private_data;
}
id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
req.path = id_priv->id.route.path_rec;
req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
req.max_cm_retries = CMA_MAX_CM_RETRIES;
trace_cm_send_sidr_req(id_priv);
ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
if (ret) {
ib_destroy_cm_id(id_priv->cm_id.ib);
id_priv->cm_id.ib = NULL;
}
out:
kfree(private_data);
return ret;
}
static int cma_connect_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_req_param req;
struct rdma_route *route;
void *private_data;
struct ib_cm_id *id;
u8 offset;
int ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv);
if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
return -EINVAL;
if (req.private_data_len) {
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
} else {
private_data = NULL;
}
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
route = &id_priv->id.route;
if (private_data) {
ret = cma_format_hdr(private_data, id_priv);
if (ret)
goto out;
req.private_data = private_data;
}
req.primary_path = &route->path_rec[0];
if (route->num_paths == 2)
req.alternate_path = &route->path_rec[1];
req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
/* Alternate path SGID attribute currently unsupported */
req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
req.qp_num = id_priv->qp_num;
req.qp_type = id_priv->id.qp_type;
req.starting_psn = id_priv->seq_num;
req.responder_resources = conn_param->responder_resources;
req.initiator_depth = conn_param->initiator_depth;
req.flow_control = conn_param->flow_control;
req.retry_count = min_t(u8, 7, conn_param->retry_count);
req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.max_cm_retries = CMA_MAX_CM_RETRIES;
req.srq = id_priv->srq ? 1 : 0;
req.ece.vendor_id = id_priv->ece.vendor_id;
req.ece.attr_mod = id_priv->ece.attr_mod;
trace_cm_send_req(id_priv);
ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
out:
if (ret && !IS_ERR(id)) {
ib_destroy_cm_id(id);
id_priv->cm_id.ib = NULL;
}
kfree(private_data);
return ret;
}
static int cma_connect_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_id *cm_id;
int ret;
struct iw_cm_conn_param iw_param;
cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
if (IS_ERR(cm_id))
return PTR_ERR(cm_id);
mutex_lock(&id_priv->qp_mutex);
cm_id->tos = id_priv->tos;
cm_id->tos_set = id_priv->tos_set;
mutex_unlock(&id_priv->qp_mutex);
id_priv->cm_id.iw = cm_id;
memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
rdma_addr_size(cma_dst_addr(id_priv)));
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
if (conn_param) {
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
} else {
memset(&iw_param, 0, sizeof iw_param);
iw_param.qpn = id_priv->qp_num;
}
ret = iw_cm_connect(cm_id, &iw_param);
out:
if (ret) {
iw_destroy_cm_id(cm_id);
id_priv->cm_id.iw = NULL;
}
return ret;
}
/**
* rdma_connect_locked - Initiate an active connection request.
* @id: Connection identifier to connect.
* @conn_param: Connection information used for connected QPs.
*
* Same as rdma_connect() but can only be called from the
* RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
*/
int rdma_connect_locked(struct rdma_cm_id *id,
struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
return -EINVAL;
if (!id->qp) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD)
ret = cma_resolve_ib_udp(id_priv, conn_param);
else
ret = cma_connect_ib(id_priv, conn_param);
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = cma_connect_iw(id_priv, conn_param);
} else {
ret = -ENOSYS;
}
if (ret)
goto err_state;
return 0;
err_state:
cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_connect_locked);
/**
* rdma_connect - Initiate an active connection request.
* @id: Connection identifier to connect.
* @conn_param: Connection information used for connected QPs.
*
* Users must have resolved a route for the rdma_cm_id to connect with by having
* called rdma_resolve_route before calling this routine.
*
* This call will either connect to a remote QP or obtain remote QP information
* for unconnected rdma_cm_id's. The actual operation is based on the
* rdma_cm_id's port space.
*/
int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
mutex_lock(&id_priv->handler_mutex);
ret = rdma_connect_locked(id, conn_param);
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
EXPORT_SYMBOL(rdma_connect);
/**
* rdma_connect_ece - Initiate an active connection request with ECE data.
* @id: Connection identifier to connect.
* @conn_param: Connection information used for connected QPs.
* @ece: ECE parameters
*
* See rdma_connect() explanation.
*/
int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
struct rdma_ucm_ece *ece)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
id_priv->ece.vendor_id = ece->vendor_id;
id_priv->ece.attr_mod = ece->attr_mod;
return rdma_connect(id, conn_param);
}
EXPORT_SYMBOL(rdma_connect_ece);
static int cma_accept_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_rep_param rep;
int ret;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
ret = cma_modify_qp_rts(id_priv, conn_param);
if (ret)
goto out;
memset(&rep, 0, sizeof rep);
rep.qp_num = id_priv->qp_num;
rep.starting_psn = id_priv->seq_num;
rep.private_data = conn_param->private_data;
rep.private_data_len = conn_param->private_data_len;
rep.responder_resources = conn_param->responder_resources;
rep.initiator_depth = conn_param->initiator_depth;
rep.failover_accepted = 0;
rep.flow_control = conn_param->flow_control;
rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
rep.srq = id_priv->srq ? 1 : 0;
rep.ece.vendor_id = id_priv->ece.vendor_id;
rep.ece.attr_mod = id_priv->ece.attr_mod;
trace_cm_send_rep(id_priv);
ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
out:
return ret;
}
static int cma_accept_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_conn_param iw_param;
int ret;
if (!conn_param)
return -EINVAL;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
return ret;
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
if (id_priv->id.qp)
iw_param.qpn = id_priv->qp_num;
else
iw_param.qpn = conn_param->qp_num;
return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
}
static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
enum ib_cm_sidr_status status, u32 qkey,
const void *private_data, int private_data_len)
{
struct ib_cm_sidr_rep_param rep;
int ret;
memset(&rep, 0, sizeof rep);
rep.status = status;
if (status == IB_SIDR_SUCCESS) {
if (qkey)
ret = cma_set_qkey(id_priv, qkey);
else
ret = cma_set_default_qkey(id_priv);
if (ret)
return ret;
rep.qp_num = id_priv->qp_num;
rep.qkey = id_priv->qkey;
rep.ece.vendor_id = id_priv->ece.vendor_id;
rep.ece.attr_mod = id_priv->ece.attr_mod;
}
rep.private_data = private_data;
rep.private_data_len = private_data_len;
trace_cm_send_sidr_rep(id_priv);
return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
}
/**
* rdma_accept - Called to accept a connection request or response.
* @id: Connection identifier associated with the request.
* @conn_param: Information needed to establish the connection. This must be
* provided if accepting a connection request. If accepting a connection
* response, this parameter must be NULL.
*
* Typically, this routine is only called by the listener to accept a connection
* request. It must also be called on the active side of a connection if the
* user is performing their own QP transitions.
*
* In the case of error, a reject message is sent to the remote side and the
* state of the qp associated with the id is modified to error, such that any
* previously posted receive buffers would be flushed.
*
* This function is for use by kernel ULPs and must be called from under the
* handler callback.
*/
int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
int ret;
lockdep_assert_held(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
return -EINVAL;
if (!id->qp && conn_param) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD) {
if (conn_param)
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
conn_param->qkey,
conn_param->private_data,
conn_param->private_data_len);
else
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
0, NULL, 0);
} else {
if (conn_param)
ret = cma_accept_ib(id_priv, conn_param);
else
ret = cma_rep_recv(id_priv);
}
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = cma_accept_iw(id_priv, conn_param);
} else {
ret = -ENOSYS;
}
if (ret)
goto reject;
return 0;
reject:
cma_modify_qp_err(id_priv);
rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
return ret;
}
EXPORT_SYMBOL(rdma_accept);
int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
struct rdma_ucm_ece *ece)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
id_priv->ece.vendor_id = ece->vendor_id;
id_priv->ece.attr_mod = ece->attr_mod;
return rdma_accept(id, conn_param);
}
EXPORT_SYMBOL(rdma_accept_ece);
void rdma_lock_handler(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->handler_mutex);
}
EXPORT_SYMBOL(rdma_lock_handler);
void rdma_unlock_handler(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
mutex_unlock(&id_priv->handler_mutex);
}
EXPORT_SYMBOL(rdma_unlock_handler);
int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (id->device->node_type) {
case RDMA_NODE_IB_CA:
ret = ib_cm_notify(id_priv->cm_id.ib, event);
break;
default:
ret = 0;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_notify);
int rdma_reject(struct rdma_cm_id *id, const void *private_data,
u8 private_data_len, u8 reason)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD) {
ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
private_data, private_data_len);
} else {
trace_cm_send_rej(id_priv);
ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
private_data, private_data_len);
}
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = iw_cm_reject(id_priv->cm_id.iw,
private_data, private_data_len);
} else {
ret = -ENOSYS;
}
return ret;
}
EXPORT_SYMBOL(rdma_reject);
int rdma_disconnect(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
if (rdma_cap_ib_cm(id->device, id->port_num)) {
ret = cma_modify_qp_err(id_priv);
if (ret)
goto out;
/* Initiate or respond to a disconnect. */
trace_cm_disconnect(id_priv);
if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
trace_cm_sent_drep(id_priv);
} else {
trace_cm_sent_dreq(id_priv);
}
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
} else
ret = -EINVAL;
out:
return ret;
}
EXPORT_SYMBOL(rdma_disconnect);
static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
struct ib_sa_multicast *multicast,
struct rdma_cm_event *event,
struct cma_multicast *mc)
{
struct rdma_dev_addr *dev_addr;
enum ib_gid_type gid_type;
struct net_device *ndev;
if (status)
pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
status);
event->status = status;
event->param.ud.private_data = mc->context;
if (status) {
event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
return;
}
dev_addr = &id_priv->id.route.addr.dev_addr;
ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
gid_type =
id_priv->cma_dev
->default_gid_type[id_priv->id.port_num -
rdma_start_port(
id_priv->cma_dev->device)];
event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
&multicast->rec, ndev, gid_type,
&event->param.ud.ah_attr)) {
event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
goto out;
}
event->param.ud.qp_num = 0xFFFFFF;
event->param.ud.qkey = id_priv->qkey;
out:
if (ndev)
dev_put(ndev);
}
static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
{
struct cma_multicast *mc = multicast->context;
struct rdma_id_private *id_priv = mc->id_priv;
struct rdma_cm_event event = {};
int ret = 0;
mutex_lock(&id_priv->handler_mutex);
if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
goto out;
ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
if (!ret) {
cma_make_mc_event(status, id_priv, multicast, &event, mc);
ret = cma_cm_event_handler(id_priv, &event);
}
rdma_destroy_ah_attr(&event.param.ud.ah_attr);
WARN_ON(ret);
out:
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static void cma_set_mgid(struct rdma_id_private *id_priv,
struct sockaddr *addr, union ib_gid *mgid)
{
unsigned char mc_map[MAX_ADDR_LEN];
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct sockaddr_in *sin = (struct sockaddr_in *) addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if ((addr->sa_family == AF_INET6) &&
((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
0xFF10A01B)) {
/* IPv6 address is an SA assigned MGID. */
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else if (addr->sa_family == AF_IB) {
memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
} else if (addr->sa_family == AF_INET6) {
ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
} else {
ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
}
}
static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct ib_sa_mcmember_rec rec;
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
ib_sa_comp_mask comp_mask;
int ret;
ib_addr_get_mgid(dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
&rec.mgid, &rec);
if (ret)
return ret;
if (!id_priv->qkey) {
ret = cma_set_default_qkey(id_priv);
if (ret)
return ret;
}
cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
rec.qkey = cpu_to_be32(id_priv->qkey);
rdma_addr_get_sgid(dev_addr, &rec.port_gid);
rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
rec.join_state = mc->join_state;
comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
IB_SA_MCMEMBER_REC_FLOW_LABEL |
IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
if (id_priv->id.ps == RDMA_PS_IPOIB)
comp_mask |= IB_SA_MCMEMBER_REC_RATE |
IB_SA_MCMEMBER_REC_RATE_SELECTOR |
IB_SA_MCMEMBER_REC_MTU_SELECTOR |
IB_SA_MCMEMBER_REC_MTU |
IB_SA_MCMEMBER_REC_HOP_LIMIT;
mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
id_priv->id.port_num, &rec, comp_mask,
GFP_KERNEL, cma_ib_mc_handler, mc);
return PTR_ERR_OR_ZERO(mc->sa_mc);
}
static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
enum ib_gid_type gid_type)
{
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if (addr->sa_family == AF_INET6) {
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else {
mgid->raw[0] =
(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
mgid->raw[1] =
(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
mgid->raw[2] = 0;
mgid->raw[3] = 0;
mgid->raw[4] = 0;
mgid->raw[5] = 0;
mgid->raw[6] = 0;
mgid->raw[7] = 0;
mgid->raw[8] = 0;
mgid->raw[9] = 0;
mgid->raw[10] = 0xff;
mgid->raw[11] = 0xff;
*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
}
}
static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int err = 0;
struct sockaddr *addr = (struct sockaddr *)&mc->addr;
struct net_device *ndev = NULL;
struct ib_sa_multicast ib = {};
enum ib_gid_type gid_type;
bool send_only;
send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
if (cma_zero_addr(addr))
return -EINVAL;
gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
rdma_start_port(id_priv->cma_dev->device)];
cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
ib.rec.pkey = cpu_to_be16(0xffff);
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
if (!ndev)
return -ENODEV;
ib.rec.rate = IB_RATE_PORT_CURRENT;
ib.rec.hop_limit = 1;
ib.rec.mtu = iboe_get_mtu(ndev->mtu);
if (addr->sa_family == AF_INET) {
if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
if (!send_only) {
err = cma_igmp_send(ndev, &ib.rec.mgid,
true);
}
}
} else {
if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
err = -ENOTSUPP;
}
dev_put(ndev);
if (err || !ib.rec.mtu)
return err ?: -EINVAL;
if (!id_priv->qkey)
cma_set_default_qkey(id_priv);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&ib.rec.port_gid);
INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
queue_work(cma_wq, &mc->iboe_join.work);
return 0;
}
int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
u8 join_state, void *context)
{
struct rdma_id_private *id_priv =
container_of(id, struct rdma_id_private, id);
struct cma_multicast *mc;
int ret;
/* Not supported for kernel QPs */
if (WARN_ON(id->qp))
return -EINVAL;
/* ULP is calling this wrong. */
if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
return -EINVAL;
if (id_priv->id.qp_type != IB_QPT_UD)
return -EINVAL;
mc = kzalloc(sizeof(*mc), GFP_KERNEL);
if (!mc)
return -ENOMEM;
memcpy(&mc->addr, addr, rdma_addr_size(addr));
mc->context = context;
mc->id_priv = id_priv;
mc->join_state = join_state;
if (rdma_protocol_roce(id->device, id->port_num)) {
ret = cma_iboe_join_multicast(id_priv, mc);
if (ret)
goto out_err;
} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
ret = cma_join_ib_multicast(id_priv, mc);
if (ret)
goto out_err;
} else {
ret = -ENOSYS;
goto out_err;
}
spin_lock(&id_priv->lock);
list_add(&mc->list, &id_priv->mc_list);
spin_unlock(&id_priv->lock);
return 0;
out_err:
kfree(mc);
return ret;
}
EXPORT_SYMBOL(rdma_join_multicast);
void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irq(&id_priv->lock);
list_for_each_entry(mc, &id_priv->mc_list, list) {
if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
continue;
list_del(&mc->list);
spin_unlock_irq(&id_priv->lock);
WARN_ON(id_priv->cma_dev->device != id->device);
destroy_mc(id_priv, mc);
return;
}
spin_unlock_irq(&id_priv->lock);
}
EXPORT_SYMBOL(rdma_leave_multicast);
static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr;
struct cma_work *work;
dev_addr = &id_priv->id.route.addr.dev_addr;
if ((dev_addr->bound_dev_if == ndev->ifindex) &&
(net_eq(dev_net(ndev), dev_addr->net)) &&
memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
pr_info("RDMA CM addr change for ndev %s used by id %p\n",
ndev->name, &id_priv->id);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
INIT_WORK(&work->work, cma_work_handler);
work->id = id_priv;
work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
cma_id_get(id_priv);
queue_work(cma_wq, &work->work);
}
return 0;
}
static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
int ret = NOTIFY_DONE;
if (event != NETDEV_BONDING_FAILOVER)
return NOTIFY_DONE;
if (!netif_is_bond_master(ndev))
return NOTIFY_DONE;
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list)
list_for_each_entry(id_priv, &cma_dev->id_list, list) {
ret = cma_netdev_change(ndev, id_priv);
if (ret)
goto out;
}
out:
mutex_unlock(&lock);
return ret;
}
static struct notifier_block cma_nb = {
.notifier_call = cma_netdev_callback
};
static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
{
struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
enum rdma_cm_state state;
unsigned long flags;
mutex_lock(&id_priv->handler_mutex);
/* Record that we want to remove the device */
spin_lock_irqsave(&id_priv->lock, flags);
state = id_priv->state;
if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
spin_unlock_irqrestore(&id_priv->lock, flags);
mutex_unlock(&id_priv->handler_mutex);
cma_id_put(id_priv);
return;
}
id_priv->state = RDMA_CM_DEVICE_REMOVAL;
spin_unlock_irqrestore(&id_priv->lock, flags);
if (cma_cm_event_handler(id_priv, &event)) {
/*
* At this point the ULP promises it won't call
* rdma_destroy_id() concurrently
*/
cma_id_put(id_priv);
mutex_unlock(&id_priv->handler_mutex);
trace_cm_id_destroy(id_priv);
_destroy_id(id_priv, state);
return;
}
mutex_unlock(&id_priv->handler_mutex);
/*
* If this races with destroy then the thread that first assigns state
* to a destroying does the cancel.
*/
cma_cancel_operation(id_priv, state);
cma_id_put(id_priv);
}
static void cma_process_remove(struct cma_device *cma_dev)
{
mutex_lock(&lock);
while (!list_empty(&cma_dev->id_list)) {
struct rdma_id_private *id_priv = list_first_entry(
&cma_dev->id_list, struct rdma_id_private, list);
list_del(&id_priv->listen_list);
list_del_init(&id_priv->list);
cma_id_get(id_priv);
mutex_unlock(&lock);
cma_send_device_removal_put(id_priv);
mutex_lock(&lock);
}
mutex_unlock(&lock);
cma_dev_put(cma_dev);
wait_for_completion(&cma_dev->comp);
}
static bool cma_supported(struct ib_device *device)
{
u32 i;
rdma_for_each_port(device, i) {
if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
return true;
}
return false;
}
static int cma_add_one(struct ib_device *device)
{
struct rdma_id_private *to_destroy;
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
unsigned long supported_gids = 0;
int ret;
u32 i;
if (!cma_supported(device))
return -EOPNOTSUPP;
cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
if (!cma_dev)
return -ENOMEM;
cma_dev->device = device;
cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
sizeof(*cma_dev->default_gid_type),
GFP_KERNEL);
if (!cma_dev->default_gid_type) {
ret = -ENOMEM;
goto free_cma_dev;
}
cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
sizeof(*cma_dev->default_roce_tos),
GFP_KERNEL);
if (!cma_dev->default_roce_tos) {
ret = -ENOMEM;
goto free_gid_type;
}
rdma_for_each_port (device, i) {
supported_gids = roce_gid_type_mask_support(device, i);
WARN_ON(!supported_gids);
if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
cma_dev->default_gid_type[i - rdma_start_port(device)] =
CMA_PREFERRED_ROCE_GID_TYPE;
else
cma_dev->default_gid_type[i - rdma_start_port(device)] =
find_first_bit(&supported_gids, BITS_PER_LONG);
cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
}
init_completion(&cma_dev->comp);
refcount_set(&cma_dev->refcount, 1);
INIT_LIST_HEAD(&cma_dev->id_list);
ib_set_client_data(device, &cma_client, cma_dev);
mutex_lock(&lock);
list_add_tail(&cma_dev->list, &dev_list);
list_for_each_entry(id_priv, &listen_any_list, list) {
ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
if (ret)
goto free_listen;
}
mutex_unlock(&lock);
trace_cm_add_one(device);
return 0;
free_listen:
list_del(&cma_dev->list);
mutex_unlock(&lock);
/* cma_process_remove() will delete to_destroy */
cma_process_remove(cma_dev);
kfree(cma_dev->default_roce_tos);
free_gid_type:
kfree(cma_dev->default_gid_type);
free_cma_dev:
kfree(cma_dev);
return ret;
}
static void cma_remove_one(struct ib_device *device, void *client_data)
{
struct cma_device *cma_dev = client_data;
trace_cm_remove_one(device);
mutex_lock(&lock);
list_del(&cma_dev->list);
mutex_unlock(&lock);
cma_process_remove(cma_dev);
kfree(cma_dev->default_roce_tos);
kfree(cma_dev->default_gid_type);
kfree(cma_dev);
}
static int cma_init_net(struct net *net)
{
struct cma_pernet *pernet = cma_pernet(net);
xa_init(&pernet->tcp_ps);
xa_init(&pernet->udp_ps);
xa_init(&pernet->ipoib_ps);
xa_init(&pernet->ib_ps);
return 0;
}
static void cma_exit_net(struct net *net)
{
struct cma_pernet *pernet = cma_pernet(net);
WARN_ON(!xa_empty(&pernet->tcp_ps));
WARN_ON(!xa_empty(&pernet->udp_ps));
WARN_ON(!xa_empty(&pernet->ipoib_ps));
WARN_ON(!xa_empty(&pernet->ib_ps));
}
static struct pernet_operations cma_pernet_operations = {
.init = cma_init_net,
.exit = cma_exit_net,
.id = &cma_pernet_id,
.size = sizeof(struct cma_pernet),
};
static int __init cma_init(void)
{
int ret;
/*
* There is a rare lock ordering dependency in cma_netdev_callback()
* that only happens when bonding is enabled. Teach lockdep that rtnl
* must never be nested under lock so it can find these without having
* to test with bonding.
*/
if (IS_ENABLED(CONFIG_LOCKDEP)) {
rtnl_lock();
mutex_lock(&lock);
mutex_unlock(&lock);
rtnl_unlock();
}
cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
if (!cma_wq)
return -ENOMEM;
ret = register_pernet_subsys(&cma_pernet_operations);
if (ret)
goto err_wq;
ib_sa_register_client(&sa_client);
register_netdevice_notifier(&cma_nb);
ret = ib_register_client(&cma_client);
if (ret)
goto err;
ret = cma_configfs_init();
if (ret)
goto err_ib;
return 0;
err_ib:
ib_unregister_client(&cma_client);
err:
unregister_netdevice_notifier(&cma_nb);
ib_sa_unregister_client(&sa_client);
unregister_pernet_subsys(&cma_pernet_operations);
err_wq:
destroy_workqueue(cma_wq);
return ret;
}
static void __exit cma_cleanup(void)
{
cma_configfs_exit();
ib_unregister_client(&cma_client);
unregister_netdevice_notifier(&cma_nb);
ib_sa_unregister_client(&sa_client);
unregister_pernet_subsys(&cma_pernet_operations);
destroy_workqueue(cma_wq);
}
module_init(cma_init);
module_exit(cma_cleanup);