1001 строка
26 KiB
C
1001 строка
26 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright (C) 2013 Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "fsl-pamu: %s: " fmt, __func__
|
|
|
|
#include "fsl_pamu.h"
|
|
|
|
#include <linux/fsl/guts.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/genalloc.h>
|
|
|
|
#include <asm/mpc85xx.h>
|
|
|
|
/* define indexes for each operation mapping scenario */
|
|
#define OMI_QMAN 0x00
|
|
#define OMI_FMAN 0x01
|
|
#define OMI_QMAN_PRIV 0x02
|
|
#define OMI_CAAM 0x03
|
|
|
|
#define make64(high, low) (((u64)(high) << 32) | (low))
|
|
|
|
struct pamu_isr_data {
|
|
void __iomem *pamu_reg_base; /* Base address of PAMU regs */
|
|
unsigned int count; /* The number of PAMUs */
|
|
};
|
|
|
|
static struct paace *ppaact;
|
|
static struct paace *spaact;
|
|
|
|
static bool probed; /* Has PAMU been probed? */
|
|
|
|
/*
|
|
* Table for matching compatible strings, for device tree
|
|
* guts node, for QorIQ SOCs.
|
|
* "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
|
|
* SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
|
|
* string would be used.
|
|
*/
|
|
static const struct of_device_id guts_device_ids[] = {
|
|
{ .compatible = "fsl,qoriq-device-config-1.0", },
|
|
{ .compatible = "fsl,qoriq-device-config-2.0", },
|
|
{}
|
|
};
|
|
|
|
/*
|
|
* Table for matching compatible strings, for device tree
|
|
* L3 cache controller node.
|
|
* "fsl,t4240-l3-cache-controller" corresponds to T4,
|
|
* "fsl,b4860-l3-cache-controller" corresponds to B4 &
|
|
* "fsl,p4080-l3-cache-controller" corresponds to other,
|
|
* SOCs.
|
|
*/
|
|
static const struct of_device_id l3_device_ids[] = {
|
|
{ .compatible = "fsl,t4240-l3-cache-controller", },
|
|
{ .compatible = "fsl,b4860-l3-cache-controller", },
|
|
{ .compatible = "fsl,p4080-l3-cache-controller", },
|
|
{}
|
|
};
|
|
|
|
/* maximum subwindows permitted per liodn */
|
|
static u32 max_subwindow_count;
|
|
|
|
/**
|
|
* pamu_get_ppaace() - Return the primary PACCE
|
|
* @liodn: liodn PAACT index for desired PAACE
|
|
*
|
|
* Returns the ppace pointer upon success else return
|
|
* null.
|
|
*/
|
|
static struct paace *pamu_get_ppaace(int liodn)
|
|
{
|
|
if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
|
|
pr_debug("PPAACT doesn't exist\n");
|
|
return NULL;
|
|
}
|
|
|
|
return &ppaact[liodn];
|
|
}
|
|
|
|
/**
|
|
* pamu_enable_liodn() - Set valid bit of PACCE
|
|
* @liodn: liodn PAACT index for desired PAACE
|
|
*
|
|
* Returns 0 upon success else error code < 0 returned
|
|
*/
|
|
int pamu_enable_liodn(int liodn)
|
|
{
|
|
struct paace *ppaace;
|
|
|
|
ppaace = pamu_get_ppaace(liodn);
|
|
if (!ppaace) {
|
|
pr_debug("Invalid primary paace entry\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
|
|
pr_debug("liodn %d not configured\n", liodn);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Ensure that all other stores to the ppaace complete first */
|
|
mb();
|
|
|
|
set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
|
|
mb();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pamu_disable_liodn() - Clears valid bit of PACCE
|
|
* @liodn: liodn PAACT index for desired PAACE
|
|
*
|
|
* Returns 0 upon success else error code < 0 returned
|
|
*/
|
|
int pamu_disable_liodn(int liodn)
|
|
{
|
|
struct paace *ppaace;
|
|
|
|
ppaace = pamu_get_ppaace(liodn);
|
|
if (!ppaace) {
|
|
pr_debug("Invalid primary paace entry\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
|
|
mb();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Derive the window size encoding for a particular PAACE entry */
|
|
static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
|
|
{
|
|
/* Bug if not a power of 2 */
|
|
BUG_ON(addrspace_size & (addrspace_size - 1));
|
|
|
|
/* window size is 2^(WSE+1) bytes */
|
|
return fls64(addrspace_size) - 2;
|
|
}
|
|
|
|
/*
|
|
* Set the PAACE type as primary and set the coherency required domain
|
|
* attribute
|
|
*/
|
|
static void pamu_init_ppaace(struct paace *ppaace)
|
|
{
|
|
set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
|
|
|
|
set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
|
|
PAACE_M_COHERENCE_REQ);
|
|
}
|
|
|
|
/*
|
|
* Function used for updating stash destination for the coressponding
|
|
* LIODN.
|
|
*/
|
|
int pamu_update_paace_stash(int liodn, u32 value)
|
|
{
|
|
struct paace *paace;
|
|
|
|
paace = pamu_get_ppaace(liodn);
|
|
if (!paace) {
|
|
pr_debug("Invalid liodn entry\n");
|
|
return -ENOENT;
|
|
}
|
|
set_bf(paace->impl_attr, PAACE_IA_CID, value);
|
|
|
|
mb();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pamu_config_paace() - Sets up PPAACE entry for specified liodn
|
|
*
|
|
* @liodn: Logical IO device number
|
|
* @omi: Operation mapping index -- if ~omi == 0 then omi not defined
|
|
* @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
|
|
* stashid not defined
|
|
* @prot: window permissions
|
|
*
|
|
* Returns 0 upon success else error code < 0 returned
|
|
*/
|
|
int pamu_config_ppaace(int liodn, u32 omi, u32 stashid, int prot)
|
|
{
|
|
struct paace *ppaace;
|
|
|
|
ppaace = pamu_get_ppaace(liodn);
|
|
if (!ppaace)
|
|
return -ENOENT;
|
|
|
|
/* window size is 2^(WSE+1) bytes */
|
|
set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
|
|
map_addrspace_size_to_wse(1ULL << 36));
|
|
|
|
pamu_init_ppaace(ppaace);
|
|
|
|
ppaace->wbah = 0;
|
|
set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
|
|
|
|
/* set up operation mapping if it's configured */
|
|
if (omi < OME_NUMBER_ENTRIES) {
|
|
set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
|
|
ppaace->op_encode.index_ot.omi = omi;
|
|
} else if (~omi != 0) {
|
|
pr_debug("bad operation mapping index: %d\n", omi);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* configure stash id */
|
|
if (~stashid != 0)
|
|
set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
|
|
|
|
set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
|
|
ppaace->twbah = 0;
|
|
set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0);
|
|
set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
|
|
set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
|
|
set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
|
|
mb();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* get_ome_index() - Returns the index in the operation mapping table
|
|
* for device.
|
|
* @*omi_index: pointer for storing the index value
|
|
*
|
|
*/
|
|
void get_ome_index(u32 *omi_index, struct device *dev)
|
|
{
|
|
if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
|
|
*omi_index = OMI_QMAN;
|
|
if (of_device_is_compatible(dev->of_node, "fsl,qman"))
|
|
*omi_index = OMI_QMAN_PRIV;
|
|
}
|
|
|
|
/**
|
|
* get_stash_id - Returns stash destination id corresponding to a
|
|
* cache type and vcpu.
|
|
* @stash_dest_hint: L1, L2 or L3
|
|
* @vcpu: vpcu target for a particular cache type.
|
|
*
|
|
* Returs stash on success or ~(u32)0 on failure.
|
|
*
|
|
*/
|
|
u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
|
|
{
|
|
const u32 *prop;
|
|
struct device_node *node;
|
|
u32 cache_level;
|
|
int len, found = 0;
|
|
int i;
|
|
|
|
/* Fastpath, exit early if L3/CPC cache is target for stashing */
|
|
if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
|
|
node = of_find_matching_node(NULL, l3_device_ids);
|
|
if (node) {
|
|
prop = of_get_property(node, "cache-stash-id", NULL);
|
|
if (!prop) {
|
|
pr_debug("missing cache-stash-id at %pOF\n",
|
|
node);
|
|
of_node_put(node);
|
|
return ~(u32)0;
|
|
}
|
|
of_node_put(node);
|
|
return be32_to_cpup(prop);
|
|
}
|
|
return ~(u32)0;
|
|
}
|
|
|
|
for_each_of_cpu_node(node) {
|
|
prop = of_get_property(node, "reg", &len);
|
|
for (i = 0; i < len / sizeof(u32); i++) {
|
|
if (be32_to_cpup(&prop[i]) == vcpu) {
|
|
found = 1;
|
|
goto found_cpu_node;
|
|
}
|
|
}
|
|
}
|
|
found_cpu_node:
|
|
|
|
/* find the hwnode that represents the cache */
|
|
for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
|
|
if (stash_dest_hint == cache_level) {
|
|
prop = of_get_property(node, "cache-stash-id", NULL);
|
|
if (!prop) {
|
|
pr_debug("missing cache-stash-id at %pOF\n",
|
|
node);
|
|
of_node_put(node);
|
|
return ~(u32)0;
|
|
}
|
|
of_node_put(node);
|
|
return be32_to_cpup(prop);
|
|
}
|
|
|
|
prop = of_get_property(node, "next-level-cache", NULL);
|
|
if (!prop) {
|
|
pr_debug("can't find next-level-cache at %pOF\n", node);
|
|
of_node_put(node);
|
|
return ~(u32)0; /* can't traverse any further */
|
|
}
|
|
of_node_put(node);
|
|
|
|
/* advance to next node in cache hierarchy */
|
|
node = of_find_node_by_phandle(*prop);
|
|
if (!node) {
|
|
pr_debug("Invalid node for cache hierarchy\n");
|
|
return ~(u32)0;
|
|
}
|
|
}
|
|
|
|
pr_debug("stash dest not found for %d on vcpu %d\n",
|
|
stash_dest_hint, vcpu);
|
|
return ~(u32)0;
|
|
}
|
|
|
|
/* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
|
|
#define QMAN_PAACE 1
|
|
#define QMAN_PORTAL_PAACE 2
|
|
#define BMAN_PAACE 3
|
|
|
|
/**
|
|
* Setup operation mapping and stash destinations for QMAN and QMAN portal.
|
|
* Memory accesses to QMAN and BMAN private memory need not be coherent, so
|
|
* clear the PAACE entry coherency attribute for them.
|
|
*/
|
|
static void setup_qbman_paace(struct paace *ppaace, int paace_type)
|
|
{
|
|
switch (paace_type) {
|
|
case QMAN_PAACE:
|
|
set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
|
|
ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
|
|
/* setup QMAN Private data stashing for the L3 cache */
|
|
set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
|
|
set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
|
|
0);
|
|
break;
|
|
case QMAN_PORTAL_PAACE:
|
|
set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
|
|
ppaace->op_encode.index_ot.omi = OMI_QMAN;
|
|
/* Set DQRR and Frame stashing for the L3 cache */
|
|
set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
|
|
break;
|
|
case BMAN_PAACE:
|
|
set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
|
|
0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Setup the operation mapping table for various devices. This is a static
|
|
* table where each table index corresponds to a particular device. PAMU uses
|
|
* this table to translate device transaction to appropriate corenet
|
|
* transaction.
|
|
*/
|
|
static void setup_omt(struct ome *omt)
|
|
{
|
|
struct ome *ome;
|
|
|
|
/* Configure OMI_QMAN */
|
|
ome = &omt[OMI_QMAN];
|
|
|
|
ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
|
|
ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
|
|
ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
|
|
ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
|
|
|
|
ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
|
|
ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
|
|
|
|
/* Configure OMI_FMAN */
|
|
ome = &omt[OMI_FMAN];
|
|
ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI;
|
|
ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
|
|
|
|
/* Configure OMI_QMAN private */
|
|
ome = &omt[OMI_QMAN_PRIV];
|
|
ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
|
|
ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
|
|
ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
|
|
ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
|
|
|
|
/* Configure OMI_CAAM */
|
|
ome = &omt[OMI_CAAM];
|
|
ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI;
|
|
ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
|
|
}
|
|
|
|
/*
|
|
* Get the maximum number of PAACT table entries
|
|
* and subwindows supported by PAMU
|
|
*/
|
|
static void get_pamu_cap_values(unsigned long pamu_reg_base)
|
|
{
|
|
u32 pc_val;
|
|
|
|
pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
|
|
/* Maximum number of subwindows per liodn */
|
|
max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
|
|
}
|
|
|
|
/* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
|
|
static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
|
|
phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
|
|
phys_addr_t omt_phys)
|
|
{
|
|
u32 *pc;
|
|
struct pamu_mmap_regs *pamu_regs;
|
|
|
|
pc = (u32 *) (pamu_reg_base + PAMU_PC);
|
|
pamu_regs = (struct pamu_mmap_regs *)
|
|
(pamu_reg_base + PAMU_MMAP_REGS_BASE);
|
|
|
|
/* set up pointers to corenet control blocks */
|
|
|
|
out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
|
|
out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
|
|
ppaact_phys = ppaact_phys + PAACT_SIZE;
|
|
out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
|
|
out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
|
|
|
|
out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
|
|
out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
|
|
spaact_phys = spaact_phys + SPAACT_SIZE;
|
|
out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
|
|
out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
|
|
|
|
out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
|
|
out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
|
|
omt_phys = omt_phys + OMT_SIZE;
|
|
out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
|
|
out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
|
|
|
|
/*
|
|
* set PAMU enable bit,
|
|
* allow ppaact & omt to be cached
|
|
* & enable PAMU access violation interrupts.
|
|
*/
|
|
|
|
out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
|
|
PAMU_ACCESS_VIOLATION_ENABLE);
|
|
out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
|
|
return 0;
|
|
}
|
|
|
|
/* Enable all device LIODNS */
|
|
static void setup_liodns(void)
|
|
{
|
|
int i, len;
|
|
struct paace *ppaace;
|
|
struct device_node *node = NULL;
|
|
const u32 *prop;
|
|
|
|
for_each_node_with_property(node, "fsl,liodn") {
|
|
prop = of_get_property(node, "fsl,liodn", &len);
|
|
for (i = 0; i < len / sizeof(u32); i++) {
|
|
int liodn;
|
|
|
|
liodn = be32_to_cpup(&prop[i]);
|
|
if (liodn >= PAACE_NUMBER_ENTRIES) {
|
|
pr_debug("Invalid LIODN value %d\n", liodn);
|
|
continue;
|
|
}
|
|
ppaace = pamu_get_ppaace(liodn);
|
|
pamu_init_ppaace(ppaace);
|
|
/* window size is 2^(WSE+1) bytes */
|
|
set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
|
|
ppaace->wbah = 0;
|
|
set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
|
|
set_bf(ppaace->impl_attr, PAACE_IA_ATM,
|
|
PAACE_ATM_NO_XLATE);
|
|
set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
|
|
PAACE_AP_PERMS_ALL);
|
|
if (of_device_is_compatible(node, "fsl,qman-portal"))
|
|
setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
|
|
if (of_device_is_compatible(node, "fsl,qman"))
|
|
setup_qbman_paace(ppaace, QMAN_PAACE);
|
|
if (of_device_is_compatible(node, "fsl,bman"))
|
|
setup_qbman_paace(ppaace, BMAN_PAACE);
|
|
mb();
|
|
pamu_enable_liodn(liodn);
|
|
}
|
|
}
|
|
}
|
|
|
|
static irqreturn_t pamu_av_isr(int irq, void *arg)
|
|
{
|
|
struct pamu_isr_data *data = arg;
|
|
phys_addr_t phys;
|
|
unsigned int i, j, ret;
|
|
|
|
pr_emerg("access violation interrupt\n");
|
|
|
|
for (i = 0; i < data->count; i++) {
|
|
void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
|
|
u32 pics = in_be32(p + PAMU_PICS);
|
|
|
|
if (pics & PAMU_ACCESS_VIOLATION_STAT) {
|
|
u32 avs1 = in_be32(p + PAMU_AVS1);
|
|
struct paace *paace;
|
|
|
|
pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
|
|
pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
|
|
pr_emerg("AVS1=%08x\n", avs1);
|
|
pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
|
|
pr_emerg("AVA=%016llx\n",
|
|
make64(in_be32(p + PAMU_AVAH),
|
|
in_be32(p + PAMU_AVAL)));
|
|
pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
|
|
pr_emerg("POEA=%016llx\n",
|
|
make64(in_be32(p + PAMU_POEAH),
|
|
in_be32(p + PAMU_POEAL)));
|
|
|
|
phys = make64(in_be32(p + PAMU_POEAH),
|
|
in_be32(p + PAMU_POEAL));
|
|
|
|
/* Assume that POEA points to a PAACE */
|
|
if (phys) {
|
|
u32 *paace = phys_to_virt(phys);
|
|
|
|
/* Only the first four words are relevant */
|
|
for (j = 0; j < 4; j++)
|
|
pr_emerg("PAACE[%u]=%08x\n",
|
|
j, in_be32(paace + j));
|
|
}
|
|
|
|
/* clear access violation condition */
|
|
out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
|
|
paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
|
|
BUG_ON(!paace);
|
|
/* check if we got a violation for a disabled LIODN */
|
|
if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
|
|
/*
|
|
* As per hardware erratum A-003638, access
|
|
* violation can be reported for a disabled
|
|
* LIODN. If we hit that condition, disable
|
|
* access violation reporting.
|
|
*/
|
|
pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
|
|
} else {
|
|
/* Disable the LIODN */
|
|
ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
|
|
BUG_ON(ret);
|
|
pr_emerg("Disabling liodn %x\n",
|
|
avs1 >> PAMU_AVS1_LIODN_SHIFT);
|
|
}
|
|
out_be32((p + PAMU_PICS), pics);
|
|
}
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#define LAWAR_EN 0x80000000
|
|
#define LAWAR_TARGET_MASK 0x0FF00000
|
|
#define LAWAR_TARGET_SHIFT 20
|
|
#define LAWAR_SIZE_MASK 0x0000003F
|
|
#define LAWAR_CSDID_MASK 0x000FF000
|
|
#define LAWAR_CSDID_SHIFT 12
|
|
|
|
#define LAW_SIZE_4K 0xb
|
|
|
|
struct ccsr_law {
|
|
u32 lawbarh; /* LAWn base address high */
|
|
u32 lawbarl; /* LAWn base address low */
|
|
u32 lawar; /* LAWn attributes */
|
|
u32 reserved;
|
|
};
|
|
|
|
/*
|
|
* Create a coherence subdomain for a given memory block.
|
|
*/
|
|
static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
|
|
{
|
|
struct device_node *np;
|
|
const __be32 *iprop;
|
|
void __iomem *lac = NULL; /* Local Access Control registers */
|
|
struct ccsr_law __iomem *law;
|
|
void __iomem *ccm = NULL;
|
|
u32 __iomem *csdids;
|
|
unsigned int i, num_laws, num_csds;
|
|
u32 law_target = 0;
|
|
u32 csd_id = 0;
|
|
int ret = 0;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
|
|
if (!np)
|
|
return -ENODEV;
|
|
|
|
iprop = of_get_property(np, "fsl,num-laws", NULL);
|
|
if (!iprop) {
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
num_laws = be32_to_cpup(iprop);
|
|
if (!num_laws) {
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
lac = of_iomap(np, 0);
|
|
if (!lac) {
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
/* LAW registers are at offset 0xC00 */
|
|
law = lac + 0xC00;
|
|
|
|
of_node_put(np);
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
|
|
if (!np) {
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
|
|
if (!iprop) {
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
num_csds = be32_to_cpup(iprop);
|
|
if (!num_csds) {
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
ccm = of_iomap(np, 0);
|
|
if (!ccm) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
/* The undocumented CSDID registers are at offset 0x600 */
|
|
csdids = ccm + 0x600;
|
|
|
|
of_node_put(np);
|
|
np = NULL;
|
|
|
|
/* Find an unused coherence subdomain ID */
|
|
for (csd_id = 0; csd_id < num_csds; csd_id++) {
|
|
if (!csdids[csd_id])
|
|
break;
|
|
}
|
|
|
|
/* Store the Port ID in the (undocumented) proper CIDMRxx register */
|
|
csdids[csd_id] = csd_port_id;
|
|
|
|
/* Find the DDR LAW that maps to our buffer. */
|
|
for (i = 0; i < num_laws; i++) {
|
|
if (law[i].lawar & LAWAR_EN) {
|
|
phys_addr_t law_start, law_end;
|
|
|
|
law_start = make64(law[i].lawbarh, law[i].lawbarl);
|
|
law_end = law_start +
|
|
(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
|
|
|
|
if (law_start <= phys && phys < law_end) {
|
|
law_target = law[i].lawar & LAWAR_TARGET_MASK;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (i == 0 || i == num_laws) {
|
|
/* This should never happen */
|
|
ret = -ENOENT;
|
|
goto error;
|
|
}
|
|
|
|
/* Find a free LAW entry */
|
|
while (law[--i].lawar & LAWAR_EN) {
|
|
if (i == 0) {
|
|
/* No higher priority LAW slots available */
|
|
ret = -ENOENT;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
law[i].lawbarh = upper_32_bits(phys);
|
|
law[i].lawbarl = lower_32_bits(phys);
|
|
wmb();
|
|
law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
|
|
(LAW_SIZE_4K + get_order(size));
|
|
wmb();
|
|
|
|
error:
|
|
if (ccm)
|
|
iounmap(ccm);
|
|
|
|
if (lac)
|
|
iounmap(lac);
|
|
|
|
if (np)
|
|
of_node_put(np);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
|
|
* bit map of snoopers for a given range of memory mapped by a LAW.
|
|
*
|
|
* All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
|
|
* table should never need to be updated. SVRs are guaranteed to be unique, so
|
|
* there is no worry that a future SOC will inadvertently have one of these
|
|
* values.
|
|
*/
|
|
static const struct {
|
|
u32 svr;
|
|
u32 port_id;
|
|
} port_id_map[] = {
|
|
{(SVR_P2040 << 8) | 0x10, 0xFF000000}, /* P2040 1.0 */
|
|
{(SVR_P2040 << 8) | 0x11, 0xFF000000}, /* P2040 1.1 */
|
|
{(SVR_P2041 << 8) | 0x10, 0xFF000000}, /* P2041 1.0 */
|
|
{(SVR_P2041 << 8) | 0x11, 0xFF000000}, /* P2041 1.1 */
|
|
{(SVR_P3041 << 8) | 0x10, 0xFF000000}, /* P3041 1.0 */
|
|
{(SVR_P3041 << 8) | 0x11, 0xFF000000}, /* P3041 1.1 */
|
|
{(SVR_P4040 << 8) | 0x20, 0xFFF80000}, /* P4040 2.0 */
|
|
{(SVR_P4080 << 8) | 0x20, 0xFFF80000}, /* P4080 2.0 */
|
|
{(SVR_P5010 << 8) | 0x10, 0xFC000000}, /* P5010 1.0 */
|
|
{(SVR_P5010 << 8) | 0x20, 0xFC000000}, /* P5010 2.0 */
|
|
{(SVR_P5020 << 8) | 0x10, 0xFC000000}, /* P5020 1.0 */
|
|
{(SVR_P5021 << 8) | 0x10, 0xFF800000}, /* P5021 1.0 */
|
|
{(SVR_P5040 << 8) | 0x10, 0xFF800000}, /* P5040 1.0 */
|
|
};
|
|
|
|
#define SVR_SECURITY 0x80000 /* The Security (E) bit */
|
|
|
|
static int fsl_pamu_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
void __iomem *pamu_regs = NULL;
|
|
struct ccsr_guts __iomem *guts_regs = NULL;
|
|
u32 pamubypenr, pamu_counter;
|
|
unsigned long pamu_reg_off;
|
|
unsigned long pamu_reg_base;
|
|
struct pamu_isr_data *data = NULL;
|
|
struct device_node *guts_node;
|
|
u64 size;
|
|
struct page *p;
|
|
int ret = 0;
|
|
int irq;
|
|
phys_addr_t ppaact_phys;
|
|
phys_addr_t spaact_phys;
|
|
struct ome *omt;
|
|
phys_addr_t omt_phys;
|
|
size_t mem_size = 0;
|
|
unsigned int order = 0;
|
|
u32 csd_port_id = 0;
|
|
unsigned i;
|
|
/*
|
|
* enumerate all PAMUs and allocate and setup PAMU tables
|
|
* for each of them,
|
|
* NOTE : All PAMUs share the same LIODN tables.
|
|
*/
|
|
|
|
if (WARN_ON(probed))
|
|
return -EBUSY;
|
|
|
|
pamu_regs = of_iomap(dev->of_node, 0);
|
|
if (!pamu_regs) {
|
|
dev_err(dev, "ioremap of PAMU node failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
of_get_address(dev->of_node, 0, &size, NULL);
|
|
|
|
irq = irq_of_parse_and_map(dev->of_node, 0);
|
|
if (irq == NO_IRQ) {
|
|
dev_warn(dev, "no interrupts listed in PAMU node\n");
|
|
goto error;
|
|
}
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
data->pamu_reg_base = pamu_regs;
|
|
data->count = size / PAMU_OFFSET;
|
|
|
|
/* The ISR needs access to the regs, so we won't iounmap them */
|
|
ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
|
|
if (ret < 0) {
|
|
dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
|
|
goto error;
|
|
}
|
|
|
|
guts_node = of_find_matching_node(NULL, guts_device_ids);
|
|
if (!guts_node) {
|
|
dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
guts_regs = of_iomap(guts_node, 0);
|
|
of_node_put(guts_node);
|
|
if (!guts_regs) {
|
|
dev_err(dev, "ioremap of GUTS node failed\n");
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
/* read in the PAMU capability registers */
|
|
get_pamu_cap_values((unsigned long)pamu_regs);
|
|
/*
|
|
* To simplify the allocation of a coherency domain, we allocate the
|
|
* PAACT and the OMT in the same memory buffer. Unfortunately, this
|
|
* wastes more memory compared to allocating the buffers separately.
|
|
*/
|
|
/* Determine how much memory we need */
|
|
mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
|
|
(PAGE_SIZE << get_order(SPAACT_SIZE)) +
|
|
(PAGE_SIZE << get_order(OMT_SIZE));
|
|
order = get_order(mem_size);
|
|
|
|
p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
|
|
if (!p) {
|
|
dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
ppaact = page_address(p);
|
|
ppaact_phys = page_to_phys(p);
|
|
|
|
/* Make sure the memory is naturally aligned */
|
|
if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
|
|
dev_err(dev, "PAACT/OMT block is unaligned\n");
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
|
|
omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
|
|
|
|
dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
|
|
|
|
/* Check to see if we need to implement the work-around on this SOC */
|
|
|
|
/* Determine the Port ID for our coherence subdomain */
|
|
for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
|
|
if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
|
|
csd_port_id = port_id_map[i].port_id;
|
|
dev_dbg(dev, "found matching SVR %08x\n",
|
|
port_id_map[i].svr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (csd_port_id) {
|
|
dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
|
|
&ppaact_phys, mem_size, csd_port_id);
|
|
|
|
ret = create_csd(ppaact_phys, mem_size, csd_port_id);
|
|
if (ret) {
|
|
dev_err(dev, "could not create coherence subdomain\n");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
spaact_phys = virt_to_phys(spaact);
|
|
omt_phys = virt_to_phys(omt);
|
|
|
|
pamubypenr = in_be32(&guts_regs->pamubypenr);
|
|
|
|
for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
|
|
pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
|
|
|
|
pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
|
|
setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
|
|
spaact_phys, omt_phys);
|
|
/* Disable PAMU bypass for this PAMU */
|
|
pamubypenr &= ~pamu_counter;
|
|
}
|
|
|
|
setup_omt(omt);
|
|
|
|
/* Enable all relevant PAMU(s) */
|
|
out_be32(&guts_regs->pamubypenr, pamubypenr);
|
|
|
|
iounmap(guts_regs);
|
|
|
|
/* Enable DMA for the LIODNs in the device tree */
|
|
|
|
setup_liodns();
|
|
|
|
probed = true;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (irq != NO_IRQ)
|
|
free_irq(irq, data);
|
|
|
|
kfree_sensitive(data);
|
|
|
|
if (pamu_regs)
|
|
iounmap(pamu_regs);
|
|
|
|
if (guts_regs)
|
|
iounmap(guts_regs);
|
|
|
|
if (ppaact)
|
|
free_pages((unsigned long)ppaact, order);
|
|
|
|
ppaact = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct platform_driver fsl_of_pamu_driver = {
|
|
.driver = {
|
|
.name = "fsl-of-pamu",
|
|
},
|
|
.probe = fsl_pamu_probe,
|
|
};
|
|
|
|
static __init int fsl_pamu_init(void)
|
|
{
|
|
struct platform_device *pdev = NULL;
|
|
struct device_node *np;
|
|
int ret;
|
|
|
|
/*
|
|
* The normal OF process calls the probe function at some
|
|
* indeterminate later time, after most drivers have loaded. This is
|
|
* too late for us, because PAMU clients (like the Qman driver)
|
|
* depend on PAMU being initialized early.
|
|
*
|
|
* So instead, we "manually" call our probe function by creating the
|
|
* platform devices ourselves.
|
|
*/
|
|
|
|
/*
|
|
* We assume that there is only one PAMU node in the device tree. A
|
|
* single PAMU node represents all of the PAMU devices in the SOC
|
|
* already. Everything else already makes that assumption, and the
|
|
* binding for the PAMU nodes doesn't allow for any parent-child
|
|
* relationships anyway. In other words, support for more than one
|
|
* PAMU node would require significant changes to a lot of code.
|
|
*/
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
|
|
if (!np) {
|
|
pr_err("could not find a PAMU node\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = platform_driver_register(&fsl_of_pamu_driver);
|
|
if (ret) {
|
|
pr_err("could not register driver (err=%i)\n", ret);
|
|
goto error_driver_register;
|
|
}
|
|
|
|
pdev = platform_device_alloc("fsl-of-pamu", 0);
|
|
if (!pdev) {
|
|
pr_err("could not allocate device %pOF\n", np);
|
|
ret = -ENOMEM;
|
|
goto error_device_alloc;
|
|
}
|
|
pdev->dev.of_node = of_node_get(np);
|
|
|
|
ret = pamu_domain_init();
|
|
if (ret)
|
|
goto error_device_add;
|
|
|
|
ret = platform_device_add(pdev);
|
|
if (ret) {
|
|
pr_err("could not add device %pOF (err=%i)\n", np, ret);
|
|
goto error_device_add;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error_device_add:
|
|
of_node_put(pdev->dev.of_node);
|
|
pdev->dev.of_node = NULL;
|
|
|
|
platform_device_put(pdev);
|
|
|
|
error_device_alloc:
|
|
platform_driver_unregister(&fsl_of_pamu_driver);
|
|
|
|
error_driver_register:
|
|
of_node_put(np);
|
|
|
|
return ret;
|
|
}
|
|
arch_initcall(fsl_pamu_init);
|