WSL2-Linux-Kernel/drivers/media/dvb-frontends/rtl2830.c

902 строки
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Realtek RTL2830 DVB-T demodulator driver
*
* Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
*/
#include "rtl2830_priv.h"
/* Our regmap is bypassing I2C adapter lock, thus we do it! */
static int rtl2830_bulk_write(struct i2c_client *client, unsigned int reg,
const void *val, size_t val_count)
{
struct rtl2830_dev *dev = i2c_get_clientdata(client);
int ret;
i2c_lock_bus(client->adapter, I2C_LOCK_SEGMENT);
ret = regmap_bulk_write(dev->regmap, reg, val, val_count);
i2c_unlock_bus(client->adapter, I2C_LOCK_SEGMENT);
return ret;
}
static int rtl2830_update_bits(struct i2c_client *client, unsigned int reg,
unsigned int mask, unsigned int val)
{
struct rtl2830_dev *dev = i2c_get_clientdata(client);
int ret;
i2c_lock_bus(client->adapter, I2C_LOCK_SEGMENT);
ret = regmap_update_bits(dev->regmap, reg, mask, val);
i2c_unlock_bus(client->adapter, I2C_LOCK_SEGMENT);
return ret;
}
static int rtl2830_bulk_read(struct i2c_client *client, unsigned int reg,
void *val, size_t val_count)
{
struct rtl2830_dev *dev = i2c_get_clientdata(client);
int ret;
i2c_lock_bus(client->adapter, I2C_LOCK_SEGMENT);
ret = regmap_bulk_read(dev->regmap, reg, val, val_count);
i2c_unlock_bus(client->adapter, I2C_LOCK_SEGMENT);
return ret;
}
static int rtl2830_init(struct dvb_frontend *fe)
{
struct i2c_client *client = fe->demodulator_priv;
struct rtl2830_dev *dev = i2c_get_clientdata(client);
struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache;
int ret, i;
struct rtl2830_reg_val_mask tab[] = {
{0x00d, 0x01, 0x03},
{0x00d, 0x10, 0x10},
{0x104, 0x00, 0x1e},
{0x105, 0x80, 0x80},
{0x110, 0x02, 0x03},
{0x110, 0x08, 0x0c},
{0x17b, 0x00, 0x40},
{0x17d, 0x05, 0x0f},
{0x17d, 0x50, 0xf0},
{0x18c, 0x08, 0x0f},
{0x18d, 0x00, 0xc0},
{0x188, 0x05, 0x0f},
{0x189, 0x00, 0xfc},
{0x2d5, 0x02, 0x02},
{0x2f1, 0x02, 0x06},
{0x2f1, 0x20, 0xf8},
{0x16d, 0x00, 0x01},
{0x1a6, 0x00, 0x80},
{0x106, dev->pdata->vtop, 0x3f},
{0x107, dev->pdata->krf, 0x3f},
{0x112, 0x28, 0xff},
{0x103, dev->pdata->agc_targ_val, 0xff},
{0x00a, 0x02, 0x07},
{0x140, 0x0c, 0x3c},
{0x140, 0x40, 0xc0},
{0x15b, 0x05, 0x07},
{0x15b, 0x28, 0x38},
{0x15c, 0x05, 0x07},
{0x15c, 0x28, 0x38},
{0x115, dev->pdata->spec_inv, 0x01},
{0x16f, 0x01, 0x07},
{0x170, 0x18, 0x38},
{0x172, 0x0f, 0x0f},
{0x173, 0x08, 0x38},
{0x175, 0x01, 0x07},
{0x176, 0x00, 0xc0},
};
for (i = 0; i < ARRAY_SIZE(tab); i++) {
ret = rtl2830_update_bits(client, tab[i].reg, tab[i].mask,
tab[i].val);
if (ret)
goto err;
}
ret = rtl2830_bulk_write(client, 0x18f, "\x28\x00", 2);
if (ret)
goto err;
ret = rtl2830_bulk_write(client, 0x195,
"\x04\x06\x0a\x12\x0a\x12\x1e\x28", 8);
if (ret)
goto err;
/* TODO: spec init */
/* soft reset */
ret = rtl2830_update_bits(client, 0x101, 0x04, 0x04);
if (ret)
goto err;
ret = rtl2830_update_bits(client, 0x101, 0x04, 0x00);
if (ret)
goto err;
/* init stats here in order signal app which stats are supported */
c->strength.len = 1;
c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->cnr.len = 1;
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_error.len = 1;
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.len = 1;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
dev->sleeping = false;
return ret;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int rtl2830_sleep(struct dvb_frontend *fe)
{
struct i2c_client *client = fe->demodulator_priv;
struct rtl2830_dev *dev = i2c_get_clientdata(client);
dev->sleeping = true;
dev->fe_status = 0;
return 0;
}
static int rtl2830_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *s)
{
s->min_delay_ms = 500;
s->step_size = fe->ops.info.frequency_stepsize_hz * 2;
s->max_drift = (fe->ops.info.frequency_stepsize_hz * 2) + 1;
return 0;
}
static int rtl2830_set_frontend(struct dvb_frontend *fe)
{
struct i2c_client *client = fe->demodulator_priv;
struct rtl2830_dev *dev = i2c_get_clientdata(client);
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret, i;
u64 num;
u8 buf[3], u8tmp;
u32 if_ctl, if_frequency;
static const u8 bw_params1[3][34] = {
{
0x1f, 0xf0, 0x1f, 0xf0, 0x1f, 0xfa, 0x00, 0x17, 0x00, 0x41,
0x00, 0x64, 0x00, 0x67, 0x00, 0x38, 0x1f, 0xde, 0x1f, 0x7a,
0x1f, 0x47, 0x1f, 0x7c, 0x00, 0x30, 0x01, 0x4b, 0x02, 0x82,
0x03, 0x73, 0x03, 0xcf, /* 6 MHz */
}, {
0x1f, 0xfa, 0x1f, 0xda, 0x1f, 0xc1, 0x1f, 0xb3, 0x1f, 0xca,
0x00, 0x07, 0x00, 0x4d, 0x00, 0x6d, 0x00, 0x40, 0x1f, 0xca,
0x1f, 0x4d, 0x1f, 0x2a, 0x1f, 0xb2, 0x00, 0xec, 0x02, 0x7e,
0x03, 0xd0, 0x04, 0x53, /* 7 MHz */
}, {
0x00, 0x10, 0x00, 0x0e, 0x1f, 0xf7, 0x1f, 0xc9, 0x1f, 0xa0,
0x1f, 0xa6, 0x1f, 0xec, 0x00, 0x4e, 0x00, 0x7d, 0x00, 0x3a,
0x1f, 0x98, 0x1f, 0x10, 0x1f, 0x40, 0x00, 0x75, 0x02, 0x5f,
0x04, 0x24, 0x04, 0xdb, /* 8 MHz */
},
};
static const u8 bw_params2[3][6] = {
{0xc3, 0x0c, 0x44, 0x33, 0x33, 0x30}, /* 6 MHz */
{0xb8, 0xe3, 0x93, 0x99, 0x99, 0x98}, /* 7 MHz */
{0xae, 0xba, 0xf3, 0x26, 0x66, 0x64}, /* 8 MHz */
};
dev_dbg(&client->dev, "frequency=%u bandwidth_hz=%u inversion=%u\n",
c->frequency, c->bandwidth_hz, c->inversion);
/* program tuner */
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
switch (c->bandwidth_hz) {
case 6000000:
i = 0;
break;
case 7000000:
i = 1;
break;
case 8000000:
i = 2;
break;
default:
dev_err(&client->dev, "invalid bandwidth_hz %u\n",
c->bandwidth_hz);
return -EINVAL;
}
ret = rtl2830_update_bits(client, 0x008, 0x06, i << 1);
if (ret)
goto err;
/* program if frequency */
if (fe->ops.tuner_ops.get_if_frequency)
ret = fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
else
ret = -EINVAL;
if (ret)
goto err;
num = if_frequency % dev->pdata->clk;
num *= 0x400000;
num = div_u64(num, dev->pdata->clk);
num = -num;
if_ctl = num & 0x3fffff;
dev_dbg(&client->dev, "if_frequency=%d if_ctl=%08x\n",
if_frequency, if_ctl);
buf[0] = (if_ctl >> 16) & 0x3f;
buf[1] = (if_ctl >> 8) & 0xff;
buf[2] = (if_ctl >> 0) & 0xff;
ret = rtl2830_bulk_read(client, 0x119, &u8tmp, 1);
if (ret)
goto err;
buf[0] |= u8tmp & 0xc0; /* [7:6] */
ret = rtl2830_bulk_write(client, 0x119, buf, 3);
if (ret)
goto err;
/* 1/2 split I2C write */
ret = rtl2830_bulk_write(client, 0x11c, &bw_params1[i][0], 17);
if (ret)
goto err;
/* 2/2 split I2C write */
ret = rtl2830_bulk_write(client, 0x12d, &bw_params1[i][17], 17);
if (ret)
goto err;
ret = rtl2830_bulk_write(client, 0x19d, bw_params2[i], 6);
if (ret)
goto err;
return ret;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int rtl2830_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *c)
{
struct i2c_client *client = fe->demodulator_priv;
struct rtl2830_dev *dev = i2c_get_clientdata(client);
int ret;
u8 buf[3];
if (dev->sleeping)
return 0;
ret = rtl2830_bulk_read(client, 0x33c, buf, 2);
if (ret)
goto err;
ret = rtl2830_bulk_read(client, 0x351, &buf[2], 1);
if (ret)
goto err;
dev_dbg(&client->dev, "TPS=%*ph\n", 3, buf);
switch ((buf[0] >> 2) & 3) {
case 0:
c->modulation = QPSK;
break;
case 1:
c->modulation = QAM_16;
break;
case 2:
c->modulation = QAM_64;
break;
}
switch ((buf[2] >> 2) & 1) {
case 0:
c->transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
c->transmission_mode = TRANSMISSION_MODE_8K;
}
switch ((buf[2] >> 0) & 3) {
case 0:
c->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
c->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
c->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
c->guard_interval = GUARD_INTERVAL_1_4;
break;
}
switch ((buf[0] >> 4) & 7) {
case 0:
c->hierarchy = HIERARCHY_NONE;
break;
case 1:
c->hierarchy = HIERARCHY_1;
break;
case 2:
c->hierarchy = HIERARCHY_2;
break;
case 3:
c->hierarchy = HIERARCHY_4;
break;
}
switch ((buf[1] >> 3) & 7) {
case 0:
c->code_rate_HP = FEC_1_2;
break;
case 1:
c->code_rate_HP = FEC_2_3;
break;
case 2:
c->code_rate_HP = FEC_3_4;
break;
case 3:
c->code_rate_HP = FEC_5_6;
break;
case 4:
c->code_rate_HP = FEC_7_8;
break;
}
switch ((buf[1] >> 0) & 7) {
case 0:
c->code_rate_LP = FEC_1_2;
break;
case 1:
c->code_rate_LP = FEC_2_3;
break;
case 2:
c->code_rate_LP = FEC_3_4;
break;
case 3:
c->code_rate_LP = FEC_5_6;
break;
case 4:
c->code_rate_LP = FEC_7_8;
break;
}
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int rtl2830_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct i2c_client *client = fe->demodulator_priv;
struct rtl2830_dev *dev = i2c_get_clientdata(client);
struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache;
int ret, stmp;
unsigned int utmp;
u8 u8tmp, buf[2];
*status = 0;
if (dev->sleeping)
return 0;
ret = rtl2830_bulk_read(client, 0x351, &u8tmp, 1);
if (ret)
goto err;
u8tmp = (u8tmp >> 3) & 0x0f; /* [6:3] */
if (u8tmp == 11) {
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
} else if (u8tmp == 10) {
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
FE_HAS_VITERBI;
}
dev->fe_status = *status;
/* Signal strength */
if (dev->fe_status & FE_HAS_SIGNAL) {
/* Read IF AGC */
ret = rtl2830_bulk_read(client, 0x359, buf, 2);
if (ret)
goto err;
stmp = buf[0] << 8 | buf[1] << 0;
stmp = sign_extend32(stmp, 13);
utmp = clamp_val(-4 * stmp + 32767, 0x0000, 0xffff);
dev_dbg(&client->dev, "IF AGC=%d\n", stmp);
c->strength.stat[0].scale = FE_SCALE_RELATIVE;
c->strength.stat[0].uvalue = utmp;
} else {
c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
/* CNR */
if (dev->fe_status & FE_HAS_VITERBI) {
unsigned int hierarchy, constellation;
#define CONSTELLATION_NUM 3
#define HIERARCHY_NUM 4
static const u32 constant[CONSTELLATION_NUM][HIERARCHY_NUM] = {
{70705899, 70705899, 70705899, 70705899},
{82433173, 82433173, 87483115, 94445660},
{92888734, 92888734, 95487525, 99770748},
};
ret = rtl2830_bulk_read(client, 0x33c, &u8tmp, 1);
if (ret)
goto err;
constellation = (u8tmp >> 2) & 0x03; /* [3:2] */
if (constellation > CONSTELLATION_NUM - 1)
goto err;
hierarchy = (u8tmp >> 4) & 0x07; /* [6:4] */
if (hierarchy > HIERARCHY_NUM - 1)
goto err;
ret = rtl2830_bulk_read(client, 0x40c, buf, 2);
if (ret)
goto err;
utmp = buf[0] << 8 | buf[1] << 0;
if (utmp)
stmp = (constant[constellation][hierarchy] -
intlog10(utmp)) / ((1 << 24) / 10000);
else
stmp = 0;
dev_dbg(&client->dev, "CNR raw=%u\n", utmp);
c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
c->cnr.stat[0].svalue = stmp;
} else {
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
/* BER */
if (dev->fe_status & FE_HAS_LOCK) {
ret = rtl2830_bulk_read(client, 0x34e, buf, 2);
if (ret)
goto err;
utmp = buf[0] << 8 | buf[1] << 0;
dev->post_bit_error += utmp;
dev->post_bit_count += 1000000;
dev_dbg(&client->dev, "BER errors=%u total=1000000\n", utmp);
c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_error.stat[0].uvalue = dev->post_bit_error;
c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_count.stat[0].uvalue = dev->post_bit_count;
} else {
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
return ret;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int rtl2830_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
if (c->cnr.stat[0].scale == FE_SCALE_DECIBEL)
*snr = div_s64(c->cnr.stat[0].svalue, 100);
else
*snr = 0;
return 0;
}
static int rtl2830_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct i2c_client *client = fe->demodulator_priv;
struct rtl2830_dev *dev = i2c_get_clientdata(client);
*ber = (dev->post_bit_error - dev->post_bit_error_prev);
dev->post_bit_error_prev = dev->post_bit_error;
return 0;
}
static int rtl2830_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
*ucblocks = 0;
return 0;
}
static int rtl2830_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
if (c->strength.stat[0].scale == FE_SCALE_RELATIVE)
*strength = c->strength.stat[0].uvalue;
else
*strength = 0;
return 0;
}
static const struct dvb_frontend_ops rtl2830_ops = {
.delsys = {SYS_DVBT},
.info = {
.name = "Realtek RTL2830 (DVB-T)",
.caps = FE_CAN_FEC_1_2 |
FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_QAM_16 |
FE_CAN_QAM_64 |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO |
FE_CAN_RECOVER |
FE_CAN_MUTE_TS
},
.init = rtl2830_init,
.sleep = rtl2830_sleep,
.get_tune_settings = rtl2830_get_tune_settings,
.set_frontend = rtl2830_set_frontend,
.get_frontend = rtl2830_get_frontend,
.read_status = rtl2830_read_status,
.read_snr = rtl2830_read_snr,
.read_ber = rtl2830_read_ber,
.read_ucblocks = rtl2830_read_ucblocks,
.read_signal_strength = rtl2830_read_signal_strength,
};
static int rtl2830_pid_filter_ctrl(struct dvb_frontend *fe, int onoff)
{
struct i2c_client *client = fe->demodulator_priv;
int ret;
u8 u8tmp;
dev_dbg(&client->dev, "onoff=%d\n", onoff);
/* enable / disable PID filter */
if (onoff)
u8tmp = 0x80;
else
u8tmp = 0x00;
ret = rtl2830_update_bits(client, 0x061, 0x80, u8tmp);
if (ret)
goto err;
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int rtl2830_pid_filter(struct dvb_frontend *fe, u8 index, u16 pid, int onoff)
{
struct i2c_client *client = fe->demodulator_priv;
struct rtl2830_dev *dev = i2c_get_clientdata(client);
int ret;
u8 buf[4];
dev_dbg(&client->dev, "index=%d pid=%04x onoff=%d\n",
index, pid, onoff);
/* skip invalid PIDs (0x2000) */
if (pid > 0x1fff || index > 32)
return 0;
if (onoff)
set_bit(index, &dev->filters);
else
clear_bit(index, &dev->filters);
/* enable / disable PIDs */
buf[0] = (dev->filters >> 0) & 0xff;
buf[1] = (dev->filters >> 8) & 0xff;
buf[2] = (dev->filters >> 16) & 0xff;
buf[3] = (dev->filters >> 24) & 0xff;
ret = rtl2830_bulk_write(client, 0x062, buf, 4);
if (ret)
goto err;
/* add PID */
buf[0] = (pid >> 8) & 0xff;
buf[1] = (pid >> 0) & 0xff;
ret = rtl2830_bulk_write(client, 0x066 + 2 * index, buf, 2);
if (ret)
goto err;
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
/*
* I2C gate/mux/repeater logic
* We must use unlocked __i2c_transfer() here (through regmap) because of I2C
* adapter lock is already taken by tuner driver.
* Gate is closed automatically after single I2C transfer.
*/
static int rtl2830_select(struct i2c_mux_core *muxc, u32 chan_id)
{
struct i2c_client *client = i2c_mux_priv(muxc);
struct rtl2830_dev *dev = i2c_get_clientdata(client);
int ret;
dev_dbg(&client->dev, "\n");
/* open I2C repeater for 1 transfer, closes automatically */
/* XXX: regmap_update_bits() does not lock I2C adapter */
ret = regmap_update_bits(dev->regmap, 0x101, 0x08, 0x08);
if (ret)
goto err;
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static struct dvb_frontend *rtl2830_get_dvb_frontend(struct i2c_client *client)
{
struct rtl2830_dev *dev = i2c_get_clientdata(client);
dev_dbg(&client->dev, "\n");
return &dev->fe;
}
static struct i2c_adapter *rtl2830_get_i2c_adapter(struct i2c_client *client)
{
struct rtl2830_dev *dev = i2c_get_clientdata(client);
dev_dbg(&client->dev, "\n");
return dev->muxc->adapter[0];
}
/*
* We implement own I2C access routines for regmap in order to get manual access
* to I2C adapter lock, which is needed for I2C mux adapter.
*/
static int rtl2830_regmap_read(void *context, const void *reg_buf,
size_t reg_size, void *val_buf, size_t val_size)
{
struct i2c_client *client = context;
int ret;
struct i2c_msg msg[2] = {
{
.addr = client->addr,
.flags = 0,
.len = reg_size,
.buf = (u8 *)reg_buf,
}, {
.addr = client->addr,
.flags = I2C_M_RD,
.len = val_size,
.buf = val_buf,
}
};
ret = __i2c_transfer(client->adapter, msg, 2);
if (ret != 2) {
dev_warn(&client->dev, "i2c reg read failed %d\n", ret);
if (ret >= 0)
ret = -EREMOTEIO;
return ret;
}
return 0;
}
static int rtl2830_regmap_write(void *context, const void *data, size_t count)
{
struct i2c_client *client = context;
int ret;
struct i2c_msg msg[1] = {
{
.addr = client->addr,
.flags = 0,
.len = count,
.buf = (u8 *)data,
}
};
ret = __i2c_transfer(client->adapter, msg, 1);
if (ret != 1) {
dev_warn(&client->dev, "i2c reg write failed %d\n", ret);
if (ret >= 0)
ret = -EREMOTEIO;
return ret;
}
return 0;
}
static int rtl2830_regmap_gather_write(void *context, const void *reg,
size_t reg_len, const void *val,
size_t val_len)
{
struct i2c_client *client = context;
int ret;
u8 buf[256];
struct i2c_msg msg[1] = {
{
.addr = client->addr,
.flags = 0,
.len = 1 + val_len,
.buf = buf,
}
};
buf[0] = *(u8 const *)reg;
memcpy(&buf[1], val, val_len);
ret = __i2c_transfer(client->adapter, msg, 1);
if (ret != 1) {
dev_warn(&client->dev, "i2c reg write failed %d\n", ret);
if (ret >= 0)
ret = -EREMOTEIO;
return ret;
}
return 0;
}
static int rtl2830_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct rtl2830_platform_data *pdata = client->dev.platform_data;
struct rtl2830_dev *dev;
int ret;
u8 u8tmp;
static const struct regmap_bus regmap_bus = {
.read = rtl2830_regmap_read,
.write = rtl2830_regmap_write,
.gather_write = rtl2830_regmap_gather_write,
.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
};
static const struct regmap_range_cfg regmap_range_cfg[] = {
{
.selector_reg = 0x00,
.selector_mask = 0xff,
.selector_shift = 0,
.window_start = 0,
.window_len = 0x100,
.range_min = 0 * 0x100,
.range_max = 5 * 0x100,
},
};
static const struct regmap_config regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 5 * 0x100,
.ranges = regmap_range_cfg,
.num_ranges = ARRAY_SIZE(regmap_range_cfg),
};
dev_dbg(&client->dev, "\n");
if (pdata == NULL) {
ret = -EINVAL;
goto err;
}
/* allocate memory for the internal state */
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (dev == NULL) {
ret = -ENOMEM;
goto err;
}
/* setup the state */
i2c_set_clientdata(client, dev);
dev->client = client;
dev->pdata = client->dev.platform_data;
dev->sleeping = true;
dev->regmap = regmap_init(&client->dev, &regmap_bus, client,
&regmap_config);
if (IS_ERR(dev->regmap)) {
ret = PTR_ERR(dev->regmap);
goto err_kfree;
}
/* check if the demod is there */
ret = rtl2830_bulk_read(client, 0x000, &u8tmp, 1);
if (ret)
goto err_regmap_exit;
/* create muxed i2c adapter for tuner */
dev->muxc = i2c_mux_alloc(client->adapter, &client->dev, 1, 0, 0,
rtl2830_select, NULL);
if (!dev->muxc) {
ret = -ENOMEM;
goto err_regmap_exit;
}
dev->muxc->priv = client;
ret = i2c_mux_add_adapter(dev->muxc, 0, 0, 0);
if (ret)
goto err_regmap_exit;
/* create dvb frontend */
memcpy(&dev->fe.ops, &rtl2830_ops, sizeof(dev->fe.ops));
dev->fe.demodulator_priv = client;
/* setup callbacks */
pdata->get_dvb_frontend = rtl2830_get_dvb_frontend;
pdata->get_i2c_adapter = rtl2830_get_i2c_adapter;
pdata->pid_filter = rtl2830_pid_filter;
pdata->pid_filter_ctrl = rtl2830_pid_filter_ctrl;
dev_info(&client->dev, "Realtek RTL2830 successfully attached\n");
return 0;
err_regmap_exit:
regmap_exit(dev->regmap);
err_kfree:
kfree(dev);
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int rtl2830_remove(struct i2c_client *client)
{
struct rtl2830_dev *dev = i2c_get_clientdata(client);
dev_dbg(&client->dev, "\n");
i2c_mux_del_adapters(dev->muxc);
regmap_exit(dev->regmap);
kfree(dev);
return 0;
}
static const struct i2c_device_id rtl2830_id_table[] = {
{"rtl2830", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, rtl2830_id_table);
static struct i2c_driver rtl2830_driver = {
.driver = {
.name = "rtl2830",
.suppress_bind_attrs = true,
},
.probe = rtl2830_probe,
.remove = rtl2830_remove,
.id_table = rtl2830_id_table,
};
module_i2c_driver(rtl2830_driver);
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Realtek RTL2830 DVB-T demodulator driver");
MODULE_LICENSE("GPL");