WSL2-Linux-Kernel/drivers/media/platform/renesas-ceu.c

1753 строки
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* V4L2 Driver for Renesas Capture Engine Unit (CEU) interface
* Copyright (C) 2017-2018 Jacopo Mondi <jacopo+renesas@jmondi.org>
*
* Based on soc-camera driver "soc_camera/sh_mobile_ceu_camera.c"
* Copyright (C) 2008 Magnus Damm
*
* Based on V4L2 Driver for PXA camera host - "pxa_camera.c",
* Copyright (C) 2006, Sascha Hauer, Pengutronix
* Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/videodev2.h>
#include <media/v4l2-async.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-image-sizes.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mediabus.h>
#include <media/videobuf2-dma-contig.h>
#include <media/drv-intf/renesas-ceu.h>
#define DRIVER_NAME "renesas-ceu"
/* CEU registers offsets and masks. */
#define CEU_CAPSR 0x00 /* Capture start register */
#define CEU_CAPCR 0x04 /* Capture control register */
#define CEU_CAMCR 0x08 /* Capture interface control register */
#define CEU_CAMOR 0x10 /* Capture interface offset register */
#define CEU_CAPWR 0x14 /* Capture interface width register */
#define CEU_CAIFR 0x18 /* Capture interface input format register */
#define CEU_CRCNTR 0x28 /* CEU register control register */
#define CEU_CRCMPR 0x2c /* CEU register forcible control register */
#define CEU_CFLCR 0x30 /* Capture filter control register */
#define CEU_CFSZR 0x34 /* Capture filter size clip register */
#define CEU_CDWDR 0x38 /* Capture destination width register */
#define CEU_CDAYR 0x3c /* Capture data address Y register */
#define CEU_CDACR 0x40 /* Capture data address C register */
#define CEU_CFWCR 0x5c /* Firewall operation control register */
#define CEU_CDOCR 0x64 /* Capture data output control register */
#define CEU_CEIER 0x70 /* Capture event interrupt enable register */
#define CEU_CETCR 0x74 /* Capture event flag clear register */
#define CEU_CSTSR 0x7c /* Capture status register */
#define CEU_CSRTR 0x80 /* Capture software reset register */
/* Data synchronous fetch mode. */
#define CEU_CAMCR_JPEG BIT(4)
/* Input components ordering: CEU_CAMCR.DTARY field. */
#define CEU_CAMCR_DTARY_8_UYVY (0x00 << 8)
#define CEU_CAMCR_DTARY_8_VYUY (0x01 << 8)
#define CEU_CAMCR_DTARY_8_YUYV (0x02 << 8)
#define CEU_CAMCR_DTARY_8_YVYU (0x03 << 8)
/* TODO: input components ordering for 16 bits input. */
/* Bus transfer MTU. */
#define CEU_CAPCR_BUS_WIDTH256 (0x3 << 20)
/* Bus width configuration. */
#define CEU_CAMCR_DTIF_16BITS BIT(12)
/* No downsampling to planar YUV420 in image fetch mode. */
#define CEU_CDOCR_NO_DOWSAMPLE BIT(4)
/* Swap all input data in 8-bit, 16-bits and 32-bits units (Figure 46.45). */
#define CEU_CDOCR_SWAP_ENDIANNESS (7)
/* Capture reset and enable bits. */
#define CEU_CAPSR_CPKIL BIT(16)
#define CEU_CAPSR_CE BIT(0)
/* CEU operating flag bit. */
#define CEU_CAPCR_CTNCP BIT(16)
#define CEU_CSTRST_CPTON BIT(0)
/* Platform specific IRQ source flags. */
#define CEU_CETCR_ALL_IRQS_RZ 0x397f313
#define CEU_CETCR_ALL_IRQS_SH4 0x3d7f313
/* Prohibited register access interrupt bit. */
#define CEU_CETCR_IGRW BIT(4)
/* One-frame capture end interrupt. */
#define CEU_CEIER_CPE BIT(0)
/* VBP error. */
#define CEU_CEIER_VBP BIT(20)
#define CEU_CEIER_MASK (CEU_CEIER_CPE | CEU_CEIER_VBP)
#define CEU_MAX_WIDTH 2560
#define CEU_MAX_HEIGHT 1920
#define CEU_MAX_BPL 8188
#define CEU_W_MAX(w) ((w) < CEU_MAX_WIDTH ? (w) : CEU_MAX_WIDTH)
#define CEU_H_MAX(h) ((h) < CEU_MAX_HEIGHT ? (h) : CEU_MAX_HEIGHT)
/*
* ceu_bus_fmt - describe a 8-bits yuyv format the sensor can produce
*
* @mbus_code: bus format code
* @fmt_order: CEU_CAMCR.DTARY ordering of input components (Y, Cb, Cr)
* @fmt_order_swap: swapped CEU_CAMCR.DTARY ordering of input components
* (Y, Cr, Cb)
* @swapped: does Cr appear before Cb?
* @bps: number of bits sent over bus for each sample
* @bpp: number of bits per pixels unit
*/
struct ceu_mbus_fmt {
u32 mbus_code;
u32 fmt_order;
u32 fmt_order_swap;
bool swapped;
u8 bps;
u8 bpp;
};
/*
* ceu_buffer - Link vb2 buffer to the list of available buffers.
*/
struct ceu_buffer {
struct vb2_v4l2_buffer vb;
struct list_head queue;
};
static inline struct ceu_buffer *vb2_to_ceu(struct vb2_v4l2_buffer *vbuf)
{
return container_of(vbuf, struct ceu_buffer, vb);
}
/*
* ceu_subdev - Wraps v4l2 sub-device and provides async subdevice.
*/
struct ceu_subdev {
struct v4l2_async_subdev asd;
struct v4l2_subdev *v4l2_sd;
/* per-subdevice mbus configuration options */
unsigned int mbus_flags;
struct ceu_mbus_fmt mbus_fmt;
};
static struct ceu_subdev *to_ceu_subdev(struct v4l2_async_subdev *asd)
{
return container_of(asd, struct ceu_subdev, asd);
}
/*
* ceu_device - CEU device instance
*/
struct ceu_device {
struct device *dev;
struct video_device vdev;
struct v4l2_device v4l2_dev;
/* subdevices descriptors */
struct ceu_subdev **subdevs;
/* the subdevice currently in use */
struct ceu_subdev *sd;
unsigned int sd_index;
unsigned int num_sd;
/* platform specific mask with all IRQ sources flagged */
u32 irq_mask;
/* currently configured field and pixel format */
enum v4l2_field field;
struct v4l2_pix_format_mplane v4l2_pix;
/* async subdev notification helpers */
struct v4l2_async_notifier notifier;
/* vb2 queue, capture buffer list and active buffer pointer */
struct vb2_queue vb2_vq;
struct list_head capture;
struct vb2_v4l2_buffer *active;
unsigned int sequence;
/* mlock - lock access to interface reset and vb2 queue */
struct mutex mlock;
/* lock - lock access to capture buffer queue and active buffer */
spinlock_t lock;
/* base - CEU memory base address */
void __iomem *base;
};
static inline struct ceu_device *v4l2_to_ceu(struct v4l2_device *v4l2_dev)
{
return container_of(v4l2_dev, struct ceu_device, v4l2_dev);
}
/* --- CEU memory output formats --- */
/*
* ceu_fmt - describe a memory output format supported by CEU interface.
*
* @fourcc: memory layout fourcc format code
* @bpp: number of bits for each pixel stored in memory
*/
struct ceu_fmt {
u32 fourcc;
u32 bpp;
};
/*
* ceu_format_list - List of supported memory output formats
*
* If sensor provides any YUYV bus format, all the following planar memory
* formats are available thanks to CEU re-ordering and sub-sampling
* capabilities.
*/
static const struct ceu_fmt ceu_fmt_list[] = {
{
.fourcc = V4L2_PIX_FMT_NV16,
.bpp = 16,
},
{
.fourcc = V4L2_PIX_FMT_NV61,
.bpp = 16,
},
{
.fourcc = V4L2_PIX_FMT_NV12,
.bpp = 12,
},
{
.fourcc = V4L2_PIX_FMT_NV21,
.bpp = 12,
},
{
.fourcc = V4L2_PIX_FMT_YUYV,
.bpp = 16,
},
{
.fourcc = V4L2_PIX_FMT_UYVY,
.bpp = 16,
},
{
.fourcc = V4L2_PIX_FMT_YVYU,
.bpp = 16,
},
{
.fourcc = V4L2_PIX_FMT_VYUY,
.bpp = 16,
},
};
static const struct ceu_fmt *get_ceu_fmt_from_fourcc(unsigned int fourcc)
{
const struct ceu_fmt *fmt = &ceu_fmt_list[0];
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ceu_fmt_list); i++, fmt++)
if (fmt->fourcc == fourcc)
return fmt;
return NULL;
}
static bool ceu_fmt_mplane(struct v4l2_pix_format_mplane *pix)
{
switch (pix->pixelformat) {
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_YVYU:
case V4L2_PIX_FMT_VYUY:
return false;
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
return true;
default:
return false;
}
}
/* --- CEU HW operations --- */
static void ceu_write(struct ceu_device *priv, unsigned int reg_offs, u32 data)
{
iowrite32(data, priv->base + reg_offs);
}
static u32 ceu_read(struct ceu_device *priv, unsigned int reg_offs)
{
return ioread32(priv->base + reg_offs);
}
/*
* ceu_soft_reset() - Software reset the CEU interface.
* @ceu_device: CEU device.
*
* Returns 0 for success, -EIO for error.
*/
static int ceu_soft_reset(struct ceu_device *ceudev)
{
unsigned int i;
ceu_write(ceudev, CEU_CAPSR, CEU_CAPSR_CPKIL);
for (i = 0; i < 100; i++) {
if (!(ceu_read(ceudev, CEU_CSTSR) & CEU_CSTRST_CPTON))
break;
udelay(1);
}
if (i == 100) {
dev_err(ceudev->dev, "soft reset time out\n");
return -EIO;
}
for (i = 0; i < 100; i++) {
if (!(ceu_read(ceudev, CEU_CAPSR) & CEU_CAPSR_CPKIL))
return 0;
udelay(1);
}
/* If we get here, CEU has not reset properly. */
return -EIO;
}
/* --- CEU Capture Operations --- */
/*
* ceu_hw_config() - Configure CEU interface registers.
*/
static int ceu_hw_config(struct ceu_device *ceudev)
{
u32 camcr, cdocr, cfzsr, cdwdr, capwr;
struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
struct ceu_subdev *ceu_sd = ceudev->sd;
struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt;
unsigned int mbus_flags = ceu_sd->mbus_flags;
/* Start configuring CEU registers */
ceu_write(ceudev, CEU_CAIFR, 0);
ceu_write(ceudev, CEU_CFWCR, 0);
ceu_write(ceudev, CEU_CRCNTR, 0);
ceu_write(ceudev, CEU_CRCMPR, 0);
/* Set the frame capture period for both image capture and data sync. */
capwr = (pix->height << 16) | pix->width * mbus_fmt->bpp / 8;
/*
* Swap input data endianness by default.
* In data fetch mode bytes are received in chunks of 8 bytes.
* D0, D1, D2, D3, D4, D5, D6, D7 (D0 received first)
* The data is however by default written to memory in reverse order:
* D7, D6, D5, D4, D3, D2, D1, D0 (D7 written to lowest byte)
*
* Use CEU_CDOCR[2:0] to swap data ordering.
*/
cdocr = CEU_CDOCR_SWAP_ENDIANNESS;
/*
* Configure CAMCR and CDOCR:
* match input components ordering with memory output format and
* handle downsampling to YUV420.
*
* If the memory output planar format is 'swapped' (Cr before Cb) and
* input format is not, use the swapped version of CAMCR.DTARY.
*
* If the memory output planar format is not 'swapped' (Cb before Cr)
* and input format is, use the swapped version of CAMCR.DTARY.
*
* CEU by default downsample to planar YUV420 (CDCOR[4] = 0).
* If output is planar YUV422 set CDOCR[4] = 1
*
* No downsample for data fetch sync mode.
*/
switch (pix->pixelformat) {
/* Data fetch sync mode */
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_YVYU:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_VYUY:
camcr = CEU_CAMCR_JPEG;
cdocr |= CEU_CDOCR_NO_DOWSAMPLE;
cfzsr = (pix->height << 16) | pix->width;
cdwdr = pix->plane_fmt[0].bytesperline;
break;
/* Non-swapped planar image capture mode. */
case V4L2_PIX_FMT_NV16:
cdocr |= CEU_CDOCR_NO_DOWSAMPLE;
fallthrough;
case V4L2_PIX_FMT_NV12:
if (mbus_fmt->swapped)
camcr = mbus_fmt->fmt_order_swap;
else
camcr = mbus_fmt->fmt_order;
cfzsr = (pix->height << 16) | pix->width;
cdwdr = pix->width;
break;
/* Swapped planar image capture mode. */
case V4L2_PIX_FMT_NV61:
cdocr |= CEU_CDOCR_NO_DOWSAMPLE;
fallthrough;
case V4L2_PIX_FMT_NV21:
if (mbus_fmt->swapped)
camcr = mbus_fmt->fmt_order;
else
camcr = mbus_fmt->fmt_order_swap;
cfzsr = (pix->height << 16) | pix->width;
cdwdr = pix->width;
break;
default:
return -EINVAL;
}
camcr |= mbus_flags & V4L2_MBUS_VSYNC_ACTIVE_LOW ? 1 << 1 : 0;
camcr |= mbus_flags & V4L2_MBUS_HSYNC_ACTIVE_LOW ? 1 << 0 : 0;
/* TODO: handle 16 bit bus width with DTIF bit in CAMCR */
ceu_write(ceudev, CEU_CAMCR, camcr);
ceu_write(ceudev, CEU_CDOCR, cdocr);
ceu_write(ceudev, CEU_CAPCR, CEU_CAPCR_BUS_WIDTH256);
/*
* TODO: make CAMOR offsets configurable.
* CAMOR wants to know the number of blanks between a VS/HS signal
* and valid data. This value should actually come from the sensor...
*/
ceu_write(ceudev, CEU_CAMOR, 0);
/* TODO: 16 bit bus width require re-calculation of cdwdr and cfzsr */
ceu_write(ceudev, CEU_CAPWR, capwr);
ceu_write(ceudev, CEU_CFSZR, cfzsr);
ceu_write(ceudev, CEU_CDWDR, cdwdr);
return 0;
}
/*
* ceu_capture() - Trigger start of a capture sequence.
*
* Program the CEU DMA registers with addresses where to transfer image data.
*/
static int ceu_capture(struct ceu_device *ceudev)
{
struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
dma_addr_t phys_addr_top;
phys_addr_top =
vb2_dma_contig_plane_dma_addr(&ceudev->active->vb2_buf, 0);
ceu_write(ceudev, CEU_CDAYR, phys_addr_top);
/* Ignore CbCr plane for non multi-planar image formats. */
if (ceu_fmt_mplane(pix)) {
phys_addr_top =
vb2_dma_contig_plane_dma_addr(&ceudev->active->vb2_buf,
1);
ceu_write(ceudev, CEU_CDACR, phys_addr_top);
}
/*
* Trigger new capture start: once for each frame, as we work in
* one-frame capture mode.
*/
ceu_write(ceudev, CEU_CAPSR, CEU_CAPSR_CE);
return 0;
}
static irqreturn_t ceu_irq(int irq, void *data)
{
struct ceu_device *ceudev = data;
struct vb2_v4l2_buffer *vbuf;
struct ceu_buffer *buf;
u32 status;
/* Clean interrupt status. */
status = ceu_read(ceudev, CEU_CETCR);
ceu_write(ceudev, CEU_CETCR, ~ceudev->irq_mask);
/* Unexpected interrupt. */
if (!(status & CEU_CEIER_MASK))
return IRQ_NONE;
spin_lock(&ceudev->lock);
/* Stale interrupt from a released buffer, ignore it. */
vbuf = ceudev->active;
if (!vbuf) {
spin_unlock(&ceudev->lock);
return IRQ_HANDLED;
}
/*
* When a VBP interrupt occurs, no capture end interrupt will occur
* and the image of that frame is not captured correctly.
*/
if (status & CEU_CEIER_VBP) {
dev_err(ceudev->dev, "VBP interrupt: abort capture\n");
goto error_irq_out;
}
/* Prepare to return the 'previous' buffer. */
vbuf->vb2_buf.timestamp = ktime_get_ns();
vbuf->sequence = ceudev->sequence++;
vbuf->field = ceudev->field;
/* Prepare a new 'active' buffer and trigger a new capture. */
if (!list_empty(&ceudev->capture)) {
buf = list_first_entry(&ceudev->capture, struct ceu_buffer,
queue);
list_del(&buf->queue);
ceudev->active = &buf->vb;
ceu_capture(ceudev);
}
/* Return the 'previous' buffer. */
vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
spin_unlock(&ceudev->lock);
return IRQ_HANDLED;
error_irq_out:
/* Return the 'previous' buffer and all queued ones. */
vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_ERROR);
list_for_each_entry(buf, &ceudev->capture, queue)
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
spin_unlock(&ceudev->lock);
return IRQ_HANDLED;
}
/* --- CEU Videobuf2 operations --- */
static void ceu_update_plane_sizes(struct v4l2_plane_pix_format *plane,
unsigned int bpl, unsigned int szimage)
{
memset(plane, 0, sizeof(*plane));
plane->sizeimage = szimage;
if (plane->bytesperline < bpl || plane->bytesperline > CEU_MAX_BPL)
plane->bytesperline = bpl;
}
/*
* ceu_calc_plane_sizes() - Fill per-plane 'struct v4l2_plane_pix_format'
* information according to the currently configured
* pixel format.
* @ceu_device: CEU device.
* @ceu_fmt: Active image format.
* @pix: Pixel format information (store line width and image sizes)
*/
static void ceu_calc_plane_sizes(struct ceu_device *ceudev,
const struct ceu_fmt *ceu_fmt,
struct v4l2_pix_format_mplane *pix)
{
unsigned int bpl, szimage;
switch (pix->pixelformat) {
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_YVYU:
case V4L2_PIX_FMT_VYUY:
pix->num_planes = 1;
bpl = pix->width * ceu_fmt->bpp / 8;
szimage = pix->height * bpl;
ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
break;
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
pix->num_planes = 2;
bpl = pix->width;
szimage = pix->height * pix->width;
ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
ceu_update_plane_sizes(&pix->plane_fmt[1], bpl, szimage / 2);
break;
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
default:
pix->num_planes = 2;
bpl = pix->width;
szimage = pix->height * pix->width;
ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
ceu_update_plane_sizes(&pix->plane_fmt[1], bpl, szimage);
break;
}
}
/*
* ceu_vb2_setup() - is called to check whether the driver can accept the
* requested number of buffers and to fill in plane sizes
* for the current frame format, if required.
*/
static int ceu_vb2_setup(struct vb2_queue *vq, unsigned int *count,
unsigned int *num_planes, unsigned int sizes[],
struct device *alloc_devs[])
{
struct ceu_device *ceudev = vb2_get_drv_priv(vq);
struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
unsigned int i;
/* num_planes is set: just check plane sizes. */
if (*num_planes) {
for (i = 0; i < pix->num_planes; i++)
if (sizes[i] < pix->plane_fmt[i].sizeimage)
return -EINVAL;
return 0;
}
/* num_planes not set: called from REQBUFS, just set plane sizes. */
*num_planes = pix->num_planes;
for (i = 0; i < pix->num_planes; i++)
sizes[i] = pix->plane_fmt[i].sizeimage;
return 0;
}
static void ceu_vb2_queue(struct vb2_buffer *vb)
{
struct ceu_device *ceudev = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct ceu_buffer *buf = vb2_to_ceu(vbuf);
unsigned long irqflags;
spin_lock_irqsave(&ceudev->lock, irqflags);
list_add_tail(&buf->queue, &ceudev->capture);
spin_unlock_irqrestore(&ceudev->lock, irqflags);
}
static int ceu_vb2_prepare(struct vb2_buffer *vb)
{
struct ceu_device *ceudev = vb2_get_drv_priv(vb->vb2_queue);
struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
unsigned int i;
for (i = 0; i < pix->num_planes; i++) {
if (vb2_plane_size(vb, i) < pix->plane_fmt[i].sizeimage) {
dev_err(ceudev->dev,
"Plane size too small (%lu < %u)\n",
vb2_plane_size(vb, i),
pix->plane_fmt[i].sizeimage);
return -EINVAL;
}
vb2_set_plane_payload(vb, i, pix->plane_fmt[i].sizeimage);
}
return 0;
}
static int ceu_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct ceu_device *ceudev = vb2_get_drv_priv(vq);
struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
struct ceu_buffer *buf;
unsigned long irqflags;
int ret;
/* Program the CEU interface according to the CEU image format. */
ret = ceu_hw_config(ceudev);
if (ret)
goto error_return_bufs;
ret = v4l2_subdev_call(v4l2_sd, video, s_stream, 1);
if (ret && ret != -ENOIOCTLCMD) {
dev_dbg(ceudev->dev,
"Subdevice failed to start streaming: %d\n", ret);
goto error_return_bufs;
}
spin_lock_irqsave(&ceudev->lock, irqflags);
ceudev->sequence = 0;
/* Grab the first available buffer and trigger the first capture. */
buf = list_first_entry(&ceudev->capture, struct ceu_buffer,
queue);
if (!buf) {
spin_unlock_irqrestore(&ceudev->lock, irqflags);
dev_dbg(ceudev->dev,
"No buffer available for capture.\n");
goto error_stop_sensor;
}
list_del(&buf->queue);
ceudev->active = &buf->vb;
/* Clean and program interrupts for first capture. */
ceu_write(ceudev, CEU_CETCR, ~ceudev->irq_mask);
ceu_write(ceudev, CEU_CEIER, CEU_CEIER_MASK);
ceu_capture(ceudev);
spin_unlock_irqrestore(&ceudev->lock, irqflags);
return 0;
error_stop_sensor:
v4l2_subdev_call(v4l2_sd, video, s_stream, 0);
error_return_bufs:
spin_lock_irqsave(&ceudev->lock, irqflags);
list_for_each_entry(buf, &ceudev->capture, queue)
vb2_buffer_done(&ceudev->active->vb2_buf,
VB2_BUF_STATE_QUEUED);
ceudev->active = NULL;
spin_unlock_irqrestore(&ceudev->lock, irqflags);
return ret;
}
static void ceu_stop_streaming(struct vb2_queue *vq)
{
struct ceu_device *ceudev = vb2_get_drv_priv(vq);
struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
struct ceu_buffer *buf;
unsigned long irqflags;
/* Clean and disable interrupt sources. */
ceu_write(ceudev, CEU_CETCR,
ceu_read(ceudev, CEU_CETCR) & ceudev->irq_mask);
ceu_write(ceudev, CEU_CEIER, CEU_CEIER_MASK);
v4l2_subdev_call(v4l2_sd, video, s_stream, 0);
spin_lock_irqsave(&ceudev->lock, irqflags);
if (ceudev->active) {
vb2_buffer_done(&ceudev->active->vb2_buf,
VB2_BUF_STATE_ERROR);
ceudev->active = NULL;
}
/* Release all queued buffers. */
list_for_each_entry(buf, &ceudev->capture, queue)
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
INIT_LIST_HEAD(&ceudev->capture);
spin_unlock_irqrestore(&ceudev->lock, irqflags);
ceu_soft_reset(ceudev);
}
static const struct vb2_ops ceu_vb2_ops = {
.queue_setup = ceu_vb2_setup,
.buf_queue = ceu_vb2_queue,
.buf_prepare = ceu_vb2_prepare,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.start_streaming = ceu_start_streaming,
.stop_streaming = ceu_stop_streaming,
};
/* --- CEU image formats handling --- */
/*
* __ceu_try_fmt() - test format on CEU and sensor
* @ceudev: The CEU device.
* @v4l2_fmt: format to test.
* @sd_mbus_code: the media bus code accepted by the subdevice; output param.
*
* Returns 0 for success, < 0 for errors.
*/
static int __ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt,
u32 *sd_mbus_code)
{
struct ceu_subdev *ceu_sd = ceudev->sd;
struct v4l2_pix_format_mplane *pix = &v4l2_fmt->fmt.pix_mp;
struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
struct v4l2_subdev_pad_config pad_cfg;
struct v4l2_subdev_state pad_state = {
.pads = &pad_cfg
};
const struct ceu_fmt *ceu_fmt;
u32 mbus_code_old;
u32 mbus_code;
int ret;
/*
* Set format on sensor sub device: bus format used to produce memory
* format is selected depending on YUV component ordering or
* at initialization time.
*/
struct v4l2_subdev_format sd_format = {
.which = V4L2_SUBDEV_FORMAT_TRY,
};
mbus_code_old = ceu_sd->mbus_fmt.mbus_code;
switch (pix->pixelformat) {
case V4L2_PIX_FMT_YUYV:
mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
break;
case V4L2_PIX_FMT_UYVY:
mbus_code = MEDIA_BUS_FMT_UYVY8_2X8;
break;
case V4L2_PIX_FMT_YVYU:
mbus_code = MEDIA_BUS_FMT_YVYU8_2X8;
break;
case V4L2_PIX_FMT_VYUY:
mbus_code = MEDIA_BUS_FMT_VYUY8_2X8;
break;
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
mbus_code = ceu_sd->mbus_fmt.mbus_code;
break;
default:
pix->pixelformat = V4L2_PIX_FMT_NV16;
mbus_code = ceu_sd->mbus_fmt.mbus_code;
break;
}
ceu_fmt = get_ceu_fmt_from_fourcc(pix->pixelformat);
/* CFSZR requires height and width to be 4-pixel aligned. */
v4l_bound_align_image(&pix->width, 2, CEU_MAX_WIDTH, 4,
&pix->height, 4, CEU_MAX_HEIGHT, 4, 0);
v4l2_fill_mbus_format_mplane(&sd_format.format, pix);
/*
* Try with the mbus_code matching YUYV components ordering first,
* if that one fails, fallback to default selected at initialization
* time.
*/
sd_format.format.code = mbus_code;
ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, &pad_state, &sd_format);
if (ret) {
if (ret == -EINVAL) {
/* fallback */
sd_format.format.code = mbus_code_old;
ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt,
&pad_state, &sd_format);
}
if (ret)
return ret;
}
/* Apply size returned by sensor as the CEU can't scale. */
v4l2_fill_pix_format_mplane(pix, &sd_format.format);
/* Calculate per-plane sizes based on image format. */
ceu_calc_plane_sizes(ceudev, ceu_fmt, pix);
/* Report to caller the configured mbus format. */
*sd_mbus_code = sd_format.format.code;
return 0;
}
/*
* ceu_try_fmt() - Wrapper for __ceu_try_fmt; discard configured mbus_fmt
*/
static int ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt)
{
u32 mbus_code;
return __ceu_try_fmt(ceudev, v4l2_fmt, &mbus_code);
}
/*
* ceu_set_fmt() - Apply the supplied format to both sensor and CEU
*/
static int ceu_set_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt)
{
struct ceu_subdev *ceu_sd = ceudev->sd;
struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
u32 mbus_code;
int ret;
/*
* Set format on sensor sub device: bus format used to produce memory
* format is selected at initialization time.
*/
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
ret = __ceu_try_fmt(ceudev, v4l2_fmt, &mbus_code);
if (ret)
return ret;
format.format.code = mbus_code;
v4l2_fill_mbus_format_mplane(&format.format, &v4l2_fmt->fmt.pix_mp);
ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, NULL, &format);
if (ret)
return ret;
ceudev->v4l2_pix = v4l2_fmt->fmt.pix_mp;
ceudev->field = V4L2_FIELD_NONE;
return 0;
}
/*
* ceu_set_default_fmt() - Apply default NV16 memory output format with VGA
* sizes.
*/
static int ceu_set_default_fmt(struct ceu_device *ceudev)
{
int ret;
struct v4l2_format v4l2_fmt = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
.fmt.pix_mp = {
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.field = V4L2_FIELD_NONE,
.pixelformat = V4L2_PIX_FMT_NV16,
.num_planes = 2,
.plane_fmt = {
[0] = {
.sizeimage = VGA_WIDTH * VGA_HEIGHT * 2,
.bytesperline = VGA_WIDTH * 2,
},
[1] = {
.sizeimage = VGA_WIDTH * VGA_HEIGHT * 2,
.bytesperline = VGA_WIDTH * 2,
},
},
},
};
ret = ceu_try_fmt(ceudev, &v4l2_fmt);
if (ret)
return ret;
ceudev->v4l2_pix = v4l2_fmt.fmt.pix_mp;
ceudev->field = V4L2_FIELD_NONE;
return 0;
}
/*
* ceu_init_mbus_fmt() - Query sensor for supported formats and initialize
* CEU media bus format used to produce memory formats.
*
* Find out if sensor can produce a permutation of 8-bits YUYV bus format.
* From a single 8-bits YUYV bus format the CEU can produce several memory
* output formats:
* - NV[12|21|16|61] through image fetch mode;
* - YUYV422 if sensor provides YUYV422
*
* TODO: Other YUYV422 permutations through data fetch sync mode and DTARY
* TODO: Binary data (eg. JPEG) and raw formats through data fetch sync mode
*/
static int ceu_init_mbus_fmt(struct ceu_device *ceudev)
{
struct ceu_subdev *ceu_sd = ceudev->sd;
struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt;
struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
bool yuyv_bus_fmt = false;
struct v4l2_subdev_mbus_code_enum sd_mbus_fmt = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.index = 0,
};
/* Find out if sensor can produce any permutation of 8-bits YUYV422. */
while (!yuyv_bus_fmt &&
!v4l2_subdev_call(v4l2_sd, pad, enum_mbus_code,
NULL, &sd_mbus_fmt)) {
switch (sd_mbus_fmt.code) {
case MEDIA_BUS_FMT_YUYV8_2X8:
case MEDIA_BUS_FMT_YVYU8_2X8:
case MEDIA_BUS_FMT_UYVY8_2X8:
case MEDIA_BUS_FMT_VYUY8_2X8:
yuyv_bus_fmt = true;
break;
default:
/*
* Only support 8-bits YUYV bus formats at the moment;
*
* TODO: add support for binary formats (data sync
* fetch mode).
*/
break;
}
sd_mbus_fmt.index++;
}
if (!yuyv_bus_fmt)
return -ENXIO;
/*
* Save the first encountered YUYV format as "mbus_fmt" and use it
* to output all planar YUV422 and YUV420 (NV*) formats to memory as
* well as for data synch fetch mode (YUYV - YVYU etc. ).
*/
mbus_fmt->mbus_code = sd_mbus_fmt.code;
mbus_fmt->bps = 8;
/* Annotate the selected bus format components ordering. */
switch (sd_mbus_fmt.code) {
case MEDIA_BUS_FMT_YUYV8_2X8:
mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_YUYV;
mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_YVYU;
mbus_fmt->swapped = false;
mbus_fmt->bpp = 16;
break;
case MEDIA_BUS_FMT_YVYU8_2X8:
mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_YVYU;
mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_YUYV;
mbus_fmt->swapped = true;
mbus_fmt->bpp = 16;
break;
case MEDIA_BUS_FMT_UYVY8_2X8:
mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_UYVY;
mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_VYUY;
mbus_fmt->swapped = false;
mbus_fmt->bpp = 16;
break;
case MEDIA_BUS_FMT_VYUY8_2X8:
mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_VYUY;
mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_UYVY;
mbus_fmt->swapped = true;
mbus_fmt->bpp = 16;
break;
}
return 0;
}
/* --- Runtime PM Handlers --- */
/*
* ceu_runtime_resume() - soft-reset the interface and turn sensor power on.
*/
static int __maybe_unused ceu_runtime_resume(struct device *dev)
{
struct ceu_device *ceudev = dev_get_drvdata(dev);
struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
v4l2_subdev_call(v4l2_sd, core, s_power, 1);
ceu_soft_reset(ceudev);
return 0;
}
/*
* ceu_runtime_suspend() - disable capture and interrupts and soft-reset.
* Turn sensor power off.
*/
static int __maybe_unused ceu_runtime_suspend(struct device *dev)
{
struct ceu_device *ceudev = dev_get_drvdata(dev);
struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
v4l2_subdev_call(v4l2_sd, core, s_power, 0);
ceu_write(ceudev, CEU_CEIER, 0);
ceu_soft_reset(ceudev);
return 0;
}
/* --- File Operations --- */
static int ceu_open(struct file *file)
{
struct ceu_device *ceudev = video_drvdata(file);
int ret;
ret = v4l2_fh_open(file);
if (ret)
return ret;
mutex_lock(&ceudev->mlock);
/* Causes soft-reset and sensor power on on first open */
ret = pm_runtime_resume_and_get(ceudev->dev);
mutex_unlock(&ceudev->mlock);
return ret;
}
static int ceu_release(struct file *file)
{
struct ceu_device *ceudev = video_drvdata(file);
vb2_fop_release(file);
mutex_lock(&ceudev->mlock);
/* Causes soft-reset and sensor power down on last close */
pm_runtime_put(ceudev->dev);
mutex_unlock(&ceudev->mlock);
return 0;
}
static const struct v4l2_file_operations ceu_fops = {
.owner = THIS_MODULE,
.open = ceu_open,
.release = ceu_release,
.unlocked_ioctl = video_ioctl2,
.mmap = vb2_fop_mmap,
.poll = vb2_fop_poll,
};
/* --- Video Device IOCTLs --- */
static int ceu_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct ceu_device *ceudev = video_drvdata(file);
strscpy(cap->card, "Renesas CEU", sizeof(cap->card));
strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:renesas-ceu-%s", dev_name(ceudev->dev));
return 0;
}
static int ceu_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
const struct ceu_fmt *fmt;
if (f->index >= ARRAY_SIZE(ceu_fmt_list))
return -EINVAL;
fmt = &ceu_fmt_list[f->index];
f->pixelformat = fmt->fourcc;
return 0;
}
static int ceu_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct ceu_device *ceudev = video_drvdata(file);
return ceu_try_fmt(ceudev, f);
}
static int ceu_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct ceu_device *ceudev = video_drvdata(file);
if (vb2_is_streaming(&ceudev->vb2_vq))
return -EBUSY;
return ceu_set_fmt(ceudev, f);
}
static int ceu_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct ceu_device *ceudev = video_drvdata(file);
f->fmt.pix_mp = ceudev->v4l2_pix;
return 0;
}
static int ceu_enum_input(struct file *file, void *priv,
struct v4l2_input *inp)
{
struct ceu_device *ceudev = video_drvdata(file);
struct ceu_subdev *ceusd;
if (inp->index >= ceudev->num_sd)
return -EINVAL;
ceusd = ceudev->subdevs[inp->index];
inp->type = V4L2_INPUT_TYPE_CAMERA;
inp->std = 0;
snprintf(inp->name, sizeof(inp->name), "Camera%u: %s",
inp->index, ceusd->v4l2_sd->name);
return 0;
}
static int ceu_g_input(struct file *file, void *priv, unsigned int *i)
{
struct ceu_device *ceudev = video_drvdata(file);
*i = ceudev->sd_index;
return 0;
}
static int ceu_s_input(struct file *file, void *priv, unsigned int i)
{
struct ceu_device *ceudev = video_drvdata(file);
struct ceu_subdev *ceu_sd_old;
int ret;
if (i >= ceudev->num_sd)
return -EINVAL;
if (vb2_is_streaming(&ceudev->vb2_vq))
return -EBUSY;
if (i == ceudev->sd_index)
return 0;
ceu_sd_old = ceudev->sd;
ceudev->sd = ceudev->subdevs[i];
/*
* Make sure we can generate output image formats and apply
* default one.
*/
ret = ceu_init_mbus_fmt(ceudev);
if (ret) {
ceudev->sd = ceu_sd_old;
return -EINVAL;
}
ret = ceu_set_default_fmt(ceudev);
if (ret) {
ceudev->sd = ceu_sd_old;
return -EINVAL;
}
/* Now that we're sure we can use the sensor, power off the old one. */
v4l2_subdev_call(ceu_sd_old->v4l2_sd, core, s_power, 0);
v4l2_subdev_call(ceudev->sd->v4l2_sd, core, s_power, 1);
ceudev->sd_index = i;
return 0;
}
static int ceu_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct ceu_device *ceudev = video_drvdata(file);
return v4l2_g_parm_cap(video_devdata(file), ceudev->sd->v4l2_sd, a);
}
static int ceu_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct ceu_device *ceudev = video_drvdata(file);
return v4l2_s_parm_cap(video_devdata(file), ceudev->sd->v4l2_sd, a);
}
static int ceu_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct ceu_device *ceudev = video_drvdata(file);
struct ceu_subdev *ceu_sd = ceudev->sd;
const struct ceu_fmt *ceu_fmt;
struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
int ret;
struct v4l2_subdev_frame_size_enum fse = {
.code = ceu_sd->mbus_fmt.mbus_code,
.index = fsize->index,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
/* Just check if user supplied pixel format is supported. */
ceu_fmt = get_ceu_fmt_from_fourcc(fsize->pixel_format);
if (!ceu_fmt)
return -EINVAL;
ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_size,
NULL, &fse);
if (ret)
return ret;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = CEU_W_MAX(fse.max_width);
fsize->discrete.height = CEU_H_MAX(fse.max_height);
return 0;
}
static int ceu_enum_frameintervals(struct file *file, void *fh,
struct v4l2_frmivalenum *fival)
{
struct ceu_device *ceudev = video_drvdata(file);
struct ceu_subdev *ceu_sd = ceudev->sd;
const struct ceu_fmt *ceu_fmt;
struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
int ret;
struct v4l2_subdev_frame_interval_enum fie = {
.code = ceu_sd->mbus_fmt.mbus_code,
.index = fival->index,
.width = fival->width,
.height = fival->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
/* Just check if user supplied pixel format is supported. */
ceu_fmt = get_ceu_fmt_from_fourcc(fival->pixel_format);
if (!ceu_fmt)
return -EINVAL;
ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_interval, NULL,
&fie);
if (ret)
return ret;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = fie.interval;
return 0;
}
static const struct v4l2_ioctl_ops ceu_ioctl_ops = {
.vidioc_querycap = ceu_querycap,
.vidioc_enum_fmt_vid_cap = ceu_enum_fmt_vid_cap,
.vidioc_try_fmt_vid_cap_mplane = ceu_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap_mplane = ceu_s_fmt_vid_cap,
.vidioc_g_fmt_vid_cap_mplane = ceu_g_fmt_vid_cap,
.vidioc_enum_input = ceu_enum_input,
.vidioc_g_input = ceu_g_input,
.vidioc_s_input = ceu_s_input,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_g_parm = ceu_g_parm,
.vidioc_s_parm = ceu_s_parm,
.vidioc_enum_framesizes = ceu_enum_framesizes,
.vidioc_enum_frameintervals = ceu_enum_frameintervals,
.vidioc_log_status = v4l2_ctrl_log_status,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/*
* ceu_vdev_release() - release CEU video device memory when last reference
* to this driver is closed
*/
static void ceu_vdev_release(struct video_device *vdev)
{
struct ceu_device *ceudev = video_get_drvdata(vdev);
kfree(ceudev);
}
static int ceu_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *v4l2_sd,
struct v4l2_async_subdev *asd)
{
struct v4l2_device *v4l2_dev = notifier->v4l2_dev;
struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev);
struct ceu_subdev *ceu_sd = to_ceu_subdev(asd);
ceu_sd->v4l2_sd = v4l2_sd;
ceudev->num_sd++;
return 0;
}
static int ceu_notify_complete(struct v4l2_async_notifier *notifier)
{
struct v4l2_device *v4l2_dev = notifier->v4l2_dev;
struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev);
struct video_device *vdev = &ceudev->vdev;
struct vb2_queue *q = &ceudev->vb2_vq;
struct v4l2_subdev *v4l2_sd;
int ret;
/* Initialize vb2 queue. */
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
q->io_modes = VB2_MMAP | VB2_DMABUF;
q->drv_priv = ceudev;
q->ops = &ceu_vb2_ops;
q->mem_ops = &vb2_dma_contig_memops;
q->buf_struct_size = sizeof(struct ceu_buffer);
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->min_buffers_needed = 2;
q->lock = &ceudev->mlock;
q->dev = ceudev->v4l2_dev.dev;
ret = vb2_queue_init(q);
if (ret)
return ret;
/*
* Make sure at least one sensor is primary and use it to initialize
* ceu formats.
*/
if (!ceudev->sd) {
ceudev->sd = ceudev->subdevs[0];
ceudev->sd_index = 0;
}
v4l2_sd = ceudev->sd->v4l2_sd;
ret = ceu_init_mbus_fmt(ceudev);
if (ret)
return ret;
ret = ceu_set_default_fmt(ceudev);
if (ret)
return ret;
/* Register the video device. */
strscpy(vdev->name, DRIVER_NAME, sizeof(vdev->name));
vdev->v4l2_dev = v4l2_dev;
vdev->lock = &ceudev->mlock;
vdev->queue = &ceudev->vb2_vq;
vdev->ctrl_handler = v4l2_sd->ctrl_handler;
vdev->fops = &ceu_fops;
vdev->ioctl_ops = &ceu_ioctl_ops;
vdev->release = ceu_vdev_release;
vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
V4L2_CAP_STREAMING;
video_set_drvdata(vdev, ceudev);
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret < 0) {
v4l2_err(vdev->v4l2_dev,
"video_register_device failed: %d\n", ret);
return ret;
}
return 0;
}
static const struct v4l2_async_notifier_operations ceu_notify_ops = {
.bound = ceu_notify_bound,
.complete = ceu_notify_complete,
};
/*
* ceu_init_async_subdevs() - Initialize CEU subdevices and async_subdevs in
* ceu device. Both DT and platform data parsing use
* this routine.
*
* Returns 0 for success, -ENOMEM for failure.
*/
static int ceu_init_async_subdevs(struct ceu_device *ceudev, unsigned int n_sd)
{
/* Reserve memory for 'n_sd' ceu_subdev descriptors. */
ceudev->subdevs = devm_kcalloc(ceudev->dev, n_sd,
sizeof(*ceudev->subdevs), GFP_KERNEL);
if (!ceudev->subdevs)
return -ENOMEM;
ceudev->sd = NULL;
ceudev->sd_index = 0;
ceudev->num_sd = 0;
return 0;
}
/*
* ceu_parse_platform_data() - Initialize async_subdevices using platform
* device provided data.
*/
static int ceu_parse_platform_data(struct ceu_device *ceudev,
const struct ceu_platform_data *pdata)
{
const struct ceu_async_subdev *async_sd;
struct ceu_subdev *ceu_sd;
unsigned int i;
int ret;
if (pdata->num_subdevs == 0)
return -ENODEV;
ret = ceu_init_async_subdevs(ceudev, pdata->num_subdevs);
if (ret)
return ret;
for (i = 0; i < pdata->num_subdevs; i++) {
/* Setup the ceu subdevice and the async subdevice. */
async_sd = &pdata->subdevs[i];
ceu_sd = v4l2_async_notifier_add_i2c_subdev(&ceudev->notifier,
async_sd->i2c_adapter_id,
async_sd->i2c_address,
struct ceu_subdev);
if (IS_ERR(ceu_sd)) {
v4l2_async_notifier_cleanup(&ceudev->notifier);
return PTR_ERR(ceu_sd);
}
ceu_sd->mbus_flags = async_sd->flags;
ceudev->subdevs[i] = ceu_sd;
}
return pdata->num_subdevs;
}
/*
* ceu_parse_dt() - Initialize async_subdevs parsing device tree graph.
*/
static int ceu_parse_dt(struct ceu_device *ceudev)
{
struct device_node *of = ceudev->dev->of_node;
struct device_node *ep;
struct ceu_subdev *ceu_sd;
unsigned int i;
int num_ep;
int ret;
num_ep = of_graph_get_endpoint_count(of);
if (!num_ep)
return -ENODEV;
ret = ceu_init_async_subdevs(ceudev, num_ep);
if (ret)
return ret;
for (i = 0; i < num_ep; i++) {
struct v4l2_fwnode_endpoint fw_ep = {
.bus_type = V4L2_MBUS_PARALLEL,
.bus = {
.parallel = {
.flags = V4L2_MBUS_HSYNC_ACTIVE_HIGH |
V4L2_MBUS_VSYNC_ACTIVE_HIGH,
.bus_width = 8,
},
},
};
ep = of_graph_get_endpoint_by_regs(of, 0, i);
if (!ep) {
dev_err(ceudev->dev,
"No subdevice connected on endpoint %u.\n", i);
ret = -ENODEV;
goto error_cleanup;
}
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &fw_ep);
if (ret) {
dev_err(ceudev->dev,
"Unable to parse endpoint #%u: %d.\n", i, ret);
goto error_cleanup;
}
/* Setup the ceu subdevice and the async subdevice. */
ceu_sd = v4l2_async_notifier_add_fwnode_remote_subdev(
&ceudev->notifier, of_fwnode_handle(ep),
struct ceu_subdev);
if (IS_ERR(ceu_sd)) {
ret = PTR_ERR(ceu_sd);
goto error_cleanup;
}
ceu_sd->mbus_flags = fw_ep.bus.parallel.flags;
ceudev->subdevs[i] = ceu_sd;
of_node_put(ep);
}
return num_ep;
error_cleanup:
v4l2_async_notifier_cleanup(&ceudev->notifier);
of_node_put(ep);
return ret;
}
/*
* struct ceu_data - Platform specific CEU data
* @irq_mask: CETCR mask with all interrupt sources enabled. The mask differs
* between SH4 and RZ platforms.
*/
struct ceu_data {
u32 irq_mask;
};
static const struct ceu_data ceu_data_rz = {
.irq_mask = CEU_CETCR_ALL_IRQS_RZ,
};
static const struct ceu_data ceu_data_sh4 = {
.irq_mask = CEU_CETCR_ALL_IRQS_SH4,
};
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id ceu_of_match[] = {
{ .compatible = "renesas,r7s72100-ceu", .data = &ceu_data_rz },
{ .compatible = "renesas,r8a7740-ceu", .data = &ceu_data_rz },
{ }
};
MODULE_DEVICE_TABLE(of, ceu_of_match);
#endif
static int ceu_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct ceu_data *ceu_data;
struct ceu_device *ceudev;
struct resource *res;
unsigned int irq;
int num_subdevs;
int ret;
ceudev = kzalloc(sizeof(*ceudev), GFP_KERNEL);
if (!ceudev)
return -ENOMEM;
platform_set_drvdata(pdev, ceudev);
ceudev->dev = dev;
INIT_LIST_HEAD(&ceudev->capture);
spin_lock_init(&ceudev->lock);
mutex_init(&ceudev->mlock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ceudev->base = devm_ioremap_resource(dev, res);
if (IS_ERR(ceudev->base)) {
ret = PTR_ERR(ceudev->base);
goto error_free_ceudev;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto error_free_ceudev;
irq = ret;
ret = devm_request_irq(dev, irq, ceu_irq,
0, dev_name(dev), ceudev);
if (ret) {
dev_err(&pdev->dev, "Unable to request CEU interrupt.\n");
goto error_free_ceudev;
}
pm_runtime_enable(dev);
ret = v4l2_device_register(dev, &ceudev->v4l2_dev);
if (ret)
goto error_pm_disable;
v4l2_async_notifier_init(&ceudev->notifier);
if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
ceu_data = of_device_get_match_data(dev);
num_subdevs = ceu_parse_dt(ceudev);
} else if (dev->platform_data) {
/* Assume SH4 if booting with platform data. */
ceu_data = &ceu_data_sh4;
num_subdevs = ceu_parse_platform_data(ceudev,
dev->platform_data);
} else {
num_subdevs = -EINVAL;
}
if (num_subdevs < 0) {
ret = num_subdevs;
goto error_v4l2_unregister;
}
ceudev->irq_mask = ceu_data->irq_mask;
ceudev->notifier.v4l2_dev = &ceudev->v4l2_dev;
ceudev->notifier.ops = &ceu_notify_ops;
ret = v4l2_async_notifier_register(&ceudev->v4l2_dev,
&ceudev->notifier);
if (ret)
goto error_cleanup;
dev_info(dev, "Renesas Capture Engine Unit %s\n", dev_name(dev));
return 0;
error_cleanup:
v4l2_async_notifier_cleanup(&ceudev->notifier);
error_v4l2_unregister:
v4l2_device_unregister(&ceudev->v4l2_dev);
error_pm_disable:
pm_runtime_disable(dev);
error_free_ceudev:
kfree(ceudev);
return ret;
}
static int ceu_remove(struct platform_device *pdev)
{
struct ceu_device *ceudev = platform_get_drvdata(pdev);
pm_runtime_disable(ceudev->dev);
v4l2_async_notifier_unregister(&ceudev->notifier);
v4l2_async_notifier_cleanup(&ceudev->notifier);
v4l2_device_unregister(&ceudev->v4l2_dev);
video_unregister_device(&ceudev->vdev);
return 0;
}
static const struct dev_pm_ops ceu_pm_ops = {
SET_RUNTIME_PM_OPS(ceu_runtime_suspend,
ceu_runtime_resume,
NULL)
};
static struct platform_driver ceu_driver = {
.driver = {
.name = DRIVER_NAME,
.pm = &ceu_pm_ops,
.of_match_table = of_match_ptr(ceu_of_match),
},
.probe = ceu_probe,
.remove = ceu_remove,
};
module_platform_driver(ceu_driver);
MODULE_DESCRIPTION("Renesas CEU camera driver");
MODULE_AUTHOR("Jacopo Mondi <jacopo+renesas@jmondi.org>");
MODULE_LICENSE("GPL v2");