WSL2-Linux-Kernel/drivers/net/phy/bcm54140.c

887 строки
23 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/* Broadcom BCM54140 Quad SGMII/QSGMII Copper/Fiber Gigabit PHY
*
* Copyright (c) 2020 Michael Walle <michael@walle.cc>
*/
#include <linux/bitfield.h>
#include <linux/brcmphy.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/phy.h>
#include "bcm-phy-lib.h"
/* RDB per-port registers
*/
#define BCM54140_RDB_ISR 0x00a /* interrupt status */
#define BCM54140_RDB_IMR 0x00b /* interrupt mask */
#define BCM54140_RDB_INT_LINK BIT(1) /* link status changed */
#define BCM54140_RDB_INT_SPEED BIT(2) /* link speed change */
#define BCM54140_RDB_INT_DUPLEX BIT(3) /* duplex mode changed */
#define BCM54140_RDB_SPARE1 0x012 /* spare control 1 */
#define BCM54140_RDB_SPARE1_LSLM BIT(2) /* link speed LED mode */
#define BCM54140_RDB_SPARE2 0x014 /* spare control 2 */
#define BCM54140_RDB_SPARE2_WS_RTRY_DIS BIT(8) /* wirespeed retry disable */
#define BCM54140_RDB_SPARE2_WS_RTRY_LIMIT GENMASK(4, 2) /* retry limit */
#define BCM54140_RDB_SPARE3 0x015 /* spare control 3 */
#define BCM54140_RDB_SPARE3_BIT0 BIT(0)
#define BCM54140_RDB_LED_CTRL 0x019 /* LED control */
#define BCM54140_RDB_LED_CTRL_ACTLINK0 BIT(4)
#define BCM54140_RDB_LED_CTRL_ACTLINK1 BIT(8)
#define BCM54140_RDB_C_APWR 0x01a /* auto power down control */
#define BCM54140_RDB_C_APWR_SINGLE_PULSE BIT(8) /* single pulse */
#define BCM54140_RDB_C_APWR_APD_MODE_DIS 0 /* ADP disable */
#define BCM54140_RDB_C_APWR_APD_MODE_EN 1 /* ADP enable */
#define BCM54140_RDB_C_APWR_APD_MODE_DIS2 2 /* ADP disable */
#define BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG 3 /* ADP enable w/ aneg */
#define BCM54140_RDB_C_APWR_APD_MODE_MASK GENMASK(6, 5)
#define BCM54140_RDB_C_APWR_SLP_TIM_MASK BIT(4)/* sleep timer */
#define BCM54140_RDB_C_APWR_SLP_TIM_2_7 0 /* 2.7s */
#define BCM54140_RDB_C_APWR_SLP_TIM_5_4 1 /* 5.4s */
#define BCM54140_RDB_C_PWR 0x02a /* copper power control */
#define BCM54140_RDB_C_PWR_ISOLATE BIT(5) /* super isolate mode */
#define BCM54140_RDB_C_MISC_CTRL 0x02f /* misc copper control */
#define BCM54140_RDB_C_MISC_CTRL_WS_EN BIT(4) /* wirespeed enable */
/* RDB global registers
*/
#define BCM54140_RDB_TOP_IMR 0x82d /* interrupt mask */
#define BCM54140_RDB_TOP_IMR_PORT0 BIT(4)
#define BCM54140_RDB_TOP_IMR_PORT1 BIT(5)
#define BCM54140_RDB_TOP_IMR_PORT2 BIT(6)
#define BCM54140_RDB_TOP_IMR_PORT3 BIT(7)
#define BCM54140_RDB_MON_CTRL 0x831 /* monitor control */
#define BCM54140_RDB_MON_CTRL_V_MODE BIT(3) /* voltage mode */
#define BCM54140_RDB_MON_CTRL_SEL_MASK GENMASK(2, 1)
#define BCM54140_RDB_MON_CTRL_SEL_TEMP 0 /* meassure temperature */
#define BCM54140_RDB_MON_CTRL_SEL_1V0 1 /* meassure AVDDL 1.0V */
#define BCM54140_RDB_MON_CTRL_SEL_3V3 2 /* meassure AVDDH 3.3V */
#define BCM54140_RDB_MON_CTRL_SEL_RR 3 /* meassure all round-robin */
#define BCM54140_RDB_MON_CTRL_PWR_DOWN BIT(0) /* power-down monitor */
#define BCM54140_RDB_MON_TEMP_VAL 0x832 /* temperature value */
#define BCM54140_RDB_MON_TEMP_MAX 0x833 /* temperature high thresh */
#define BCM54140_RDB_MON_TEMP_MIN 0x834 /* temperature low thresh */
#define BCM54140_RDB_MON_TEMP_DATA_MASK GENMASK(9, 0)
#define BCM54140_RDB_MON_1V0_VAL 0x835 /* AVDDL 1.0V value */
#define BCM54140_RDB_MON_1V0_MAX 0x836 /* AVDDL 1.0V high thresh */
#define BCM54140_RDB_MON_1V0_MIN 0x837 /* AVDDL 1.0V low thresh */
#define BCM54140_RDB_MON_1V0_DATA_MASK GENMASK(10, 0)
#define BCM54140_RDB_MON_3V3_VAL 0x838 /* AVDDH 3.3V value */
#define BCM54140_RDB_MON_3V3_MAX 0x839 /* AVDDH 3.3V high thresh */
#define BCM54140_RDB_MON_3V3_MIN 0x83a /* AVDDH 3.3V low thresh */
#define BCM54140_RDB_MON_3V3_DATA_MASK GENMASK(11, 0)
#define BCM54140_RDB_MON_ISR 0x83b /* interrupt status */
#define BCM54140_RDB_MON_ISR_3V3 BIT(2) /* AVDDH 3.3V alarm */
#define BCM54140_RDB_MON_ISR_1V0 BIT(1) /* AVDDL 1.0V alarm */
#define BCM54140_RDB_MON_ISR_TEMP BIT(0) /* temperature alarm */
/* According to the datasheet the formula is:
* T = 413.35 - (0.49055 * bits[9:0])
*/
#define BCM54140_HWMON_TO_TEMP(v) (413350L - (v) * 491)
#define BCM54140_HWMON_FROM_TEMP(v) DIV_ROUND_CLOSEST_ULL(413350L - (v), 491)
/* According to the datasheet the formula is:
* U = bits[11:0] / 1024 * 220 / 0.2
*
* Normalized:
* U = bits[11:0] / 4096 * 2514
*/
#define BCM54140_HWMON_TO_IN_1V0(v) ((v) * 2514 >> 11)
#define BCM54140_HWMON_FROM_IN_1V0(v) DIV_ROUND_CLOSEST_ULL(((v) << 11), 2514)
/* According to the datasheet the formula is:
* U = bits[10:0] / 1024 * 880 / 0.7
*
* Normalized:
* U = bits[10:0] / 2048 * 4400
*/
#define BCM54140_HWMON_TO_IN_3V3(v) ((v) * 4400 >> 12)
#define BCM54140_HWMON_FROM_IN_3V3(v) DIV_ROUND_CLOSEST_ULL(((v) << 12), 4400)
#define BCM54140_HWMON_TO_IN(ch, v) ((ch) ? BCM54140_HWMON_TO_IN_3V3(v) \
: BCM54140_HWMON_TO_IN_1V0(v))
#define BCM54140_HWMON_FROM_IN(ch, v) ((ch) ? BCM54140_HWMON_FROM_IN_3V3(v) \
: BCM54140_HWMON_FROM_IN_1V0(v))
#define BCM54140_HWMON_IN_MASK(ch) ((ch) ? BCM54140_RDB_MON_3V3_DATA_MASK \
: BCM54140_RDB_MON_1V0_DATA_MASK)
#define BCM54140_HWMON_IN_VAL_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_VAL \
: BCM54140_RDB_MON_1V0_VAL)
#define BCM54140_HWMON_IN_MIN_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MIN \
: BCM54140_RDB_MON_1V0_MIN)
#define BCM54140_HWMON_IN_MAX_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MAX \
: BCM54140_RDB_MON_1V0_MAX)
#define BCM54140_HWMON_IN_ALARM_BIT(ch) ((ch) ? BCM54140_RDB_MON_ISR_3V3 \
: BCM54140_RDB_MON_ISR_1V0)
/* This PHY has two different PHY IDs depening on its MODE_SEL pin. This
* pin choses between 4x SGMII and QSGMII mode:
* AE02_5009 4x SGMII
* AE02_5019 QSGMII
*/
#define BCM54140_PHY_ID_MASK 0xffffffe8
#define BCM54140_PHY_ID_REV(phy_id) ((phy_id) & 0x7)
#define BCM54140_REV_B0 1
#define BCM54140_DEFAULT_DOWNSHIFT 5
#define BCM54140_MAX_DOWNSHIFT 9
struct bcm54140_priv {
int port;
int base_addr;
#if IS_ENABLED(CONFIG_HWMON)
/* protect the alarm bits */
struct mutex alarm_lock;
u16 alarm;
#endif
};
#if IS_ENABLED(CONFIG_HWMON)
static umode_t bcm54140_hwmon_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_in:
switch (attr) {
case hwmon_in_min:
case hwmon_in_max:
return 0644;
case hwmon_in_label:
case hwmon_in_input:
case hwmon_in_alarm:
return 0444;
default:
return 0;
}
case hwmon_temp:
switch (attr) {
case hwmon_temp_min:
case hwmon_temp_max:
return 0644;
case hwmon_temp_input:
case hwmon_temp_alarm:
return 0444;
default:
return 0;
}
default:
return 0;
}
}
static int bcm54140_hwmon_read_alarm(struct device *dev, unsigned int bit,
long *val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
struct bcm54140_priv *priv = phydev->priv;
int tmp, ret = 0;
mutex_lock(&priv->alarm_lock);
/* latch any alarm bits */
tmp = bcm_phy_read_rdb(phydev, BCM54140_RDB_MON_ISR);
if (tmp < 0) {
ret = tmp;
goto out;
}
priv->alarm |= tmp;
*val = !!(priv->alarm & bit);
priv->alarm &= ~bit;
out:
mutex_unlock(&priv->alarm_lock);
return ret;
}
static int bcm54140_hwmon_read_temp(struct device *dev, u32 attr, long *val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
u16 reg;
int tmp;
switch (attr) {
case hwmon_temp_input:
reg = BCM54140_RDB_MON_TEMP_VAL;
break;
case hwmon_temp_min:
reg = BCM54140_RDB_MON_TEMP_MIN;
break;
case hwmon_temp_max:
reg = BCM54140_RDB_MON_TEMP_MAX;
break;
case hwmon_temp_alarm:
return bcm54140_hwmon_read_alarm(dev,
BCM54140_RDB_MON_ISR_TEMP,
val);
default:
return -EOPNOTSUPP;
}
tmp = bcm_phy_read_rdb(phydev, reg);
if (tmp < 0)
return tmp;
*val = BCM54140_HWMON_TO_TEMP(tmp & BCM54140_RDB_MON_TEMP_DATA_MASK);
return 0;
}
static int bcm54140_hwmon_read_in(struct device *dev, u32 attr,
int channel, long *val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
u16 bit, reg;
int tmp;
switch (attr) {
case hwmon_in_input:
reg = BCM54140_HWMON_IN_VAL_REG(channel);
break;
case hwmon_in_min:
reg = BCM54140_HWMON_IN_MIN_REG(channel);
break;
case hwmon_in_max:
reg = BCM54140_HWMON_IN_MAX_REG(channel);
break;
case hwmon_in_alarm:
bit = BCM54140_HWMON_IN_ALARM_BIT(channel);
return bcm54140_hwmon_read_alarm(dev, bit, val);
default:
return -EOPNOTSUPP;
}
tmp = bcm_phy_read_rdb(phydev, reg);
if (tmp < 0)
return tmp;
tmp &= BCM54140_HWMON_IN_MASK(channel);
*val = BCM54140_HWMON_TO_IN(channel, tmp);
return 0;
}
static int bcm54140_hwmon_read(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
switch (type) {
case hwmon_temp:
return bcm54140_hwmon_read_temp(dev, attr, val);
case hwmon_in:
return bcm54140_hwmon_read_in(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static const char *const bcm54140_hwmon_in_labels[] = {
"AVDDL",
"AVDDH",
};
static int bcm54140_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
switch (type) {
case hwmon_in:
switch (attr) {
case hwmon_in_label:
*str = bcm54140_hwmon_in_labels[channel];
return 0;
default:
return -EOPNOTSUPP;
}
default:
return -EOPNOTSUPP;
}
}
static int bcm54140_hwmon_write_temp(struct device *dev, u32 attr,
int channel, long val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
u16 mask = BCM54140_RDB_MON_TEMP_DATA_MASK;
u16 reg;
val = clamp_val(val, BCM54140_HWMON_TO_TEMP(mask),
BCM54140_HWMON_TO_TEMP(0));
switch (attr) {
case hwmon_temp_min:
reg = BCM54140_RDB_MON_TEMP_MIN;
break;
case hwmon_temp_max:
reg = BCM54140_RDB_MON_TEMP_MAX;
break;
default:
return -EOPNOTSUPP;
}
return bcm_phy_modify_rdb(phydev, reg, mask,
BCM54140_HWMON_FROM_TEMP(val));
}
static int bcm54140_hwmon_write_in(struct device *dev, u32 attr,
int channel, long val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
u16 mask = BCM54140_HWMON_IN_MASK(channel);
u16 reg;
val = clamp_val(val, 0, BCM54140_HWMON_TO_IN(channel, mask));
switch (attr) {
case hwmon_in_min:
reg = BCM54140_HWMON_IN_MIN_REG(channel);
break;
case hwmon_in_max:
reg = BCM54140_HWMON_IN_MAX_REG(channel);
break;
default:
return -EOPNOTSUPP;
}
return bcm_phy_modify_rdb(phydev, reg, mask,
BCM54140_HWMON_FROM_IN(channel, val));
}
static int bcm54140_hwmon_write(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, long val)
{
switch (type) {
case hwmon_temp:
return bcm54140_hwmon_write_temp(dev, attr, channel, val);
case hwmon_in:
return bcm54140_hwmon_write_in(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_channel_info *bcm54140_hwmon_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
HWMON_T_ALARM),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM | HWMON_I_LABEL),
NULL
};
static const struct hwmon_ops bcm54140_hwmon_ops = {
.is_visible = bcm54140_hwmon_is_visible,
.read = bcm54140_hwmon_read,
.read_string = bcm54140_hwmon_read_string,
.write = bcm54140_hwmon_write,
};
static const struct hwmon_chip_info bcm54140_chip_info = {
.ops = &bcm54140_hwmon_ops,
.info = bcm54140_hwmon_info,
};
static int bcm54140_enable_monitoring(struct phy_device *phydev)
{
u16 mask, set;
/* 3.3V voltage mode */
set = BCM54140_RDB_MON_CTRL_V_MODE;
/* select round-robin */
mask = BCM54140_RDB_MON_CTRL_SEL_MASK;
set |= FIELD_PREP(BCM54140_RDB_MON_CTRL_SEL_MASK,
BCM54140_RDB_MON_CTRL_SEL_RR);
/* remove power-down bit */
mask |= BCM54140_RDB_MON_CTRL_PWR_DOWN;
return bcm_phy_modify_rdb(phydev, BCM54140_RDB_MON_CTRL, mask, set);
}
static int bcm54140_probe_once(struct phy_device *phydev)
{
struct device *hwmon;
int ret;
/* enable hardware monitoring */
ret = bcm54140_enable_monitoring(phydev);
if (ret)
return ret;
hwmon = devm_hwmon_device_register_with_info(&phydev->mdio.dev,
"BCM54140", phydev,
&bcm54140_chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwmon);
}
#endif
static int bcm54140_base_read_rdb(struct phy_device *phydev, u16 rdb)
{
int ret;
phy_lock_mdio_bus(phydev);
ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
if (ret < 0)
goto out;
ret = __phy_package_read(phydev, MII_BCM54XX_RDB_DATA);
out:
phy_unlock_mdio_bus(phydev);
return ret;
}
static int bcm54140_base_write_rdb(struct phy_device *phydev,
u16 rdb, u16 val)
{
int ret;
phy_lock_mdio_bus(phydev);
ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
if (ret < 0)
goto out;
ret = __phy_package_write(phydev, MII_BCM54XX_RDB_DATA, val);
out:
phy_unlock_mdio_bus(phydev);
return ret;
}
/* Under some circumstances a core PLL may not lock, this will then prevent
* a successful link establishment. Restart the PLL after the voltages are
* stable to workaround this issue.
*/
static int bcm54140_b0_workaround(struct phy_device *phydev)
{
int spare3;
int ret;
spare3 = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE3);
if (spare3 < 0)
return spare3;
spare3 &= ~BCM54140_RDB_SPARE3_BIT0;
ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
if (ret)
return ret;
ret = phy_modify(phydev, MII_BMCR, 0, BMCR_PDOWN);
if (ret)
return ret;
ret = phy_modify(phydev, MII_BMCR, BMCR_PDOWN, 0);
if (ret)
return ret;
spare3 |= BCM54140_RDB_SPARE3_BIT0;
return bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
}
/* The BCM54140 is a quad PHY where only the first port has access to the
* global register. Thus we need to find out its PHY address.
*
*/
static int bcm54140_get_base_addr_and_port(struct phy_device *phydev)
{
struct bcm54140_priv *priv = phydev->priv;
struct mii_bus *bus = phydev->mdio.bus;
int addr, min_addr, max_addr;
int step = 1;
u32 phy_id;
int tmp;
min_addr = phydev->mdio.addr;
max_addr = phydev->mdio.addr;
addr = phydev->mdio.addr;
/* We scan forward and backwards and look for PHYs which have the
* same phy_id like we do. Step 1 will scan forward, step 2
* backwards. Once we are finished, we have a min_addr and
* max_addr which resembles the range of PHY addresses of the same
* type of PHY. There is one caveat; there may be many PHYs of
* the same type, but we know that each PHY takes exactly 4
* consecutive addresses. Therefore we can deduce our offset
* to the base address of this quad PHY.
*/
while (1) {
if (step == 3) {
break;
} else if (step == 1) {
max_addr = addr;
addr++;
} else {
min_addr = addr;
addr--;
}
if (addr < 0 || addr >= PHY_MAX_ADDR) {
addr = phydev->mdio.addr;
step++;
continue;
}
/* read the PHY id */
tmp = mdiobus_read(bus, addr, MII_PHYSID1);
if (tmp < 0)
return tmp;
phy_id = tmp << 16;
tmp = mdiobus_read(bus, addr, MII_PHYSID2);
if (tmp < 0)
return tmp;
phy_id |= tmp;
/* see if it is still the same PHY */
if ((phy_id & phydev->drv->phy_id_mask) !=
(phydev->drv->phy_id & phydev->drv->phy_id_mask)) {
addr = phydev->mdio.addr;
step++;
}
}
/* The range we get should be a multiple of four. Please note that both
* the min_addr and max_addr are inclusive. So we have to add one if we
* subtract them.
*/
if ((max_addr - min_addr + 1) % 4) {
dev_err(&phydev->mdio.dev,
"Detected Quad PHY IDs %d..%d doesn't make sense.\n",
min_addr, max_addr);
return -EINVAL;
}
priv->port = (phydev->mdio.addr - min_addr) % 4;
priv->base_addr = phydev->mdio.addr - priv->port;
return 0;
}
static int bcm54140_probe(struct phy_device *phydev)
{
struct bcm54140_priv *priv;
int ret;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
ret = bcm54140_get_base_addr_and_port(phydev);
if (ret)
return ret;
devm_phy_package_join(&phydev->mdio.dev, phydev, priv->base_addr, 0);
#if IS_ENABLED(CONFIG_HWMON)
mutex_init(&priv->alarm_lock);
if (phy_package_init_once(phydev)) {
ret = bcm54140_probe_once(phydev);
if (ret)
return ret;
}
#endif
phydev_dbg(phydev, "probed (port %d, base PHY address %d)\n",
priv->port, priv->base_addr);
return 0;
}
static int bcm54140_config_init(struct phy_device *phydev)
{
u16 reg = 0xffff;
int ret;
/* Apply hardware errata */
if (BCM54140_PHY_ID_REV(phydev->phy_id) == BCM54140_REV_B0) {
ret = bcm54140_b0_workaround(phydev);
if (ret)
return ret;
}
/* Unmask events we are interested in. */
reg &= ~(BCM54140_RDB_INT_DUPLEX |
BCM54140_RDB_INT_SPEED |
BCM54140_RDB_INT_LINK);
ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_IMR, reg);
if (ret)
return ret;
/* LED1=LINKSPD[1], LED2=LINKSPD[2], LED3=LINK/ACTIVITY */
ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE1,
0, BCM54140_RDB_SPARE1_LSLM);
if (ret)
return ret;
ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_LED_CTRL,
0, BCM54140_RDB_LED_CTRL_ACTLINK0);
if (ret)
return ret;
/* disable super isolate mode */
return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_PWR,
BCM54140_RDB_C_PWR_ISOLATE, 0);
}
static irqreturn_t bcm54140_handle_interrupt(struct phy_device *phydev)
{
int irq_status, irq_mask;
irq_status = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
irq_mask = bcm_phy_read_rdb(phydev, BCM54140_RDB_IMR);
if (irq_mask < 0) {
phy_error(phydev);
return IRQ_NONE;
}
irq_mask = ~irq_mask;
if (!(irq_status & irq_mask))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int bcm54140_ack_intr(struct phy_device *phydev)
{
int reg;
/* clear pending interrupts */
reg = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
if (reg < 0)
return reg;
return 0;
}
static int bcm54140_config_intr(struct phy_device *phydev)
{
struct bcm54140_priv *priv = phydev->priv;
static const u16 port_to_imr_bit[] = {
BCM54140_RDB_TOP_IMR_PORT0, BCM54140_RDB_TOP_IMR_PORT1,
BCM54140_RDB_TOP_IMR_PORT2, BCM54140_RDB_TOP_IMR_PORT3,
};
int reg, err;
if (priv->port >= ARRAY_SIZE(port_to_imr_bit))
return -EINVAL;
reg = bcm54140_base_read_rdb(phydev, BCM54140_RDB_TOP_IMR);
if (reg < 0)
return reg;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = bcm54140_ack_intr(phydev);
if (err)
return err;
reg &= ~port_to_imr_bit[priv->port];
err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);
} else {
reg |= port_to_imr_bit[priv->port];
err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);
if (err)
return err;
err = bcm54140_ack_intr(phydev);
}
return err;
}
static int bcm54140_get_downshift(struct phy_device *phydev, u8 *data)
{
int val;
val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_MISC_CTRL);
if (val < 0)
return val;
if (!(val & BCM54140_RDB_C_MISC_CTRL_WS_EN)) {
*data = DOWNSHIFT_DEV_DISABLE;
return 0;
}
val = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE2);
if (val < 0)
return val;
if (val & BCM54140_RDB_SPARE2_WS_RTRY_DIS)
*data = 1;
else
*data = FIELD_GET(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, val) + 2;
return 0;
}
static int bcm54140_set_downshift(struct phy_device *phydev, u8 cnt)
{
u16 mask, set;
int ret;
if (cnt > BCM54140_MAX_DOWNSHIFT && cnt != DOWNSHIFT_DEV_DEFAULT_COUNT)
return -EINVAL;
if (!cnt)
return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
BCM54140_RDB_C_MISC_CTRL_WS_EN, 0);
if (cnt == DOWNSHIFT_DEV_DEFAULT_COUNT)
cnt = BCM54140_DEFAULT_DOWNSHIFT;
if (cnt == 1) {
mask = 0;
set = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
} else {
mask = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
mask |= BCM54140_RDB_SPARE2_WS_RTRY_LIMIT;
set = FIELD_PREP(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, cnt - 2);
}
ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE2,
mask, set);
if (ret)
return ret;
return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
0, BCM54140_RDB_C_MISC_CTRL_WS_EN);
}
static int bcm54140_get_edpd(struct phy_device *phydev, u16 *tx_interval)
{
int val;
val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_APWR);
if (val < 0)
return val;
switch (FIELD_GET(BCM54140_RDB_C_APWR_APD_MODE_MASK, val)) {
case BCM54140_RDB_C_APWR_APD_MODE_DIS:
case BCM54140_RDB_C_APWR_APD_MODE_DIS2:
*tx_interval = ETHTOOL_PHY_EDPD_DISABLE;
break;
case BCM54140_RDB_C_APWR_APD_MODE_EN:
case BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG:
switch (FIELD_GET(BCM54140_RDB_C_APWR_SLP_TIM_MASK, val)) {
case BCM54140_RDB_C_APWR_SLP_TIM_2_7:
*tx_interval = 2700;
break;
case BCM54140_RDB_C_APWR_SLP_TIM_5_4:
*tx_interval = 5400;
break;
}
}
return 0;
}
static int bcm54140_set_edpd(struct phy_device *phydev, u16 tx_interval)
{
u16 mask, set;
mask = BCM54140_RDB_C_APWR_APD_MODE_MASK;
if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE)
set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
BCM54140_RDB_C_APWR_APD_MODE_DIS);
else
set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG);
/* enable single pulse mode */
set |= BCM54140_RDB_C_APWR_SINGLE_PULSE;
/* set sleep timer */
mask |= BCM54140_RDB_C_APWR_SLP_TIM_MASK;
switch (tx_interval) {
case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS:
case ETHTOOL_PHY_EDPD_DISABLE:
case 2700:
set |= BCM54140_RDB_C_APWR_SLP_TIM_2_7;
break;
case 5400:
set |= BCM54140_RDB_C_APWR_SLP_TIM_5_4;
break;
default:
return -EINVAL;
}
return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_APWR, mask, set);
}
static int bcm54140_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return bcm54140_get_downshift(phydev, data);
case ETHTOOL_PHY_EDPD:
return bcm54140_get_edpd(phydev, data);
default:
return -EOPNOTSUPP;
}
}
static int bcm54140_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, const void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return bcm54140_set_downshift(phydev, *(const u8 *)data);
case ETHTOOL_PHY_EDPD:
return bcm54140_set_edpd(phydev, *(const u16 *)data);
default:
return -EOPNOTSUPP;
}
}
static struct phy_driver bcm54140_drivers[] = {
{
.phy_id = PHY_ID_BCM54140,
.phy_id_mask = BCM54140_PHY_ID_MASK,
.name = "Broadcom BCM54140",
.flags = PHY_POLL_CABLE_TEST,
.features = PHY_GBIT_FEATURES,
.config_init = bcm54140_config_init,
.handle_interrupt = bcm54140_handle_interrupt,
.config_intr = bcm54140_config_intr,
.probe = bcm54140_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.soft_reset = genphy_soft_reset,
.get_tunable = bcm54140_get_tunable,
.set_tunable = bcm54140_set_tunable,
.cable_test_start = bcm_phy_cable_test_start_rdb,
.cable_test_get_status = bcm_phy_cable_test_get_status_rdb,
},
};
module_phy_driver(bcm54140_drivers);
static struct mdio_device_id __maybe_unused bcm54140_tbl[] = {
{ PHY_ID_BCM54140, BCM54140_PHY_ID_MASK },
{ }
};
MODULE_AUTHOR("Michael Walle");
MODULE_DESCRIPTION("Broadcom BCM54140 PHY driver");
MODULE_DEVICE_TABLE(mdio, bcm54140_tbl);
MODULE_LICENSE("GPL");