1789 строки
46 KiB
C
1789 строки
46 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
|
|
*
|
|
* There are examples in here of:
|
|
* * how to set protection keys on memory
|
|
* * how to set/clear bits in pkey registers (the rights register)
|
|
* * how to handle SEGV_PKUERR signals and extract pkey-relevant
|
|
* information from the siginfo
|
|
*
|
|
* Things to add:
|
|
* make sure KSM and KSM COW breaking works
|
|
* prefault pages in at malloc, or not
|
|
* protect MPX bounds tables with protection keys?
|
|
* make sure VMA splitting/merging is working correctly
|
|
* OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
|
|
* look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
|
|
* do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
|
|
*
|
|
* Compile like this:
|
|
* gcc -mxsave -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
|
|
* gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
|
|
*/
|
|
#define _GNU_SOURCE
|
|
#define __SANE_USERSPACE_TYPES__
|
|
#include <errno.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/futex.h>
|
|
#include <time.h>
|
|
#include <sys/time.h>
|
|
#include <sys/syscall.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <signal.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <ucontext.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/ptrace.h>
|
|
#include <setjmp.h>
|
|
|
|
#include "pkey-helpers.h"
|
|
|
|
int iteration_nr = 1;
|
|
int test_nr;
|
|
|
|
u64 shadow_pkey_reg;
|
|
int dprint_in_signal;
|
|
char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
|
|
|
|
void cat_into_file(char *str, char *file)
|
|
{
|
|
int fd = open(file, O_RDWR);
|
|
int ret;
|
|
|
|
dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
|
|
/*
|
|
* these need to be raw because they are called under
|
|
* pkey_assert()
|
|
*/
|
|
if (fd < 0) {
|
|
fprintf(stderr, "error opening '%s'\n", str);
|
|
perror("error: ");
|
|
exit(__LINE__);
|
|
}
|
|
|
|
ret = write(fd, str, strlen(str));
|
|
if (ret != strlen(str)) {
|
|
perror("write to file failed");
|
|
fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
|
|
exit(__LINE__);
|
|
}
|
|
close(fd);
|
|
}
|
|
|
|
#if CONTROL_TRACING > 0
|
|
static int warned_tracing;
|
|
int tracing_root_ok(void)
|
|
{
|
|
if (geteuid() != 0) {
|
|
if (!warned_tracing)
|
|
fprintf(stderr, "WARNING: not run as root, "
|
|
"can not do tracing control\n");
|
|
warned_tracing = 1;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
void tracing_on(void)
|
|
{
|
|
#if CONTROL_TRACING > 0
|
|
#define TRACEDIR "/sys/kernel/debug/tracing"
|
|
char pidstr[32];
|
|
|
|
if (!tracing_root_ok())
|
|
return;
|
|
|
|
sprintf(pidstr, "%d", getpid());
|
|
cat_into_file("0", TRACEDIR "/tracing_on");
|
|
cat_into_file("\n", TRACEDIR "/trace");
|
|
if (1) {
|
|
cat_into_file("function_graph", TRACEDIR "/current_tracer");
|
|
cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
|
|
} else {
|
|
cat_into_file("nop", TRACEDIR "/current_tracer");
|
|
}
|
|
cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
|
|
cat_into_file("1", TRACEDIR "/tracing_on");
|
|
dprintf1("enabled tracing\n");
|
|
#endif
|
|
}
|
|
|
|
void tracing_off(void)
|
|
{
|
|
#if CONTROL_TRACING > 0
|
|
if (!tracing_root_ok())
|
|
return;
|
|
cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
|
|
#endif
|
|
}
|
|
|
|
void abort_hooks(void)
|
|
{
|
|
fprintf(stderr, "running %s()...\n", __func__);
|
|
tracing_off();
|
|
#ifdef SLEEP_ON_ABORT
|
|
sleep(SLEEP_ON_ABORT);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This attempts to have roughly a page of instructions followed by a few
|
|
* instructions that do a write, and another page of instructions. That
|
|
* way, we are pretty sure that the write is in the second page of
|
|
* instructions and has at least a page of padding behind it.
|
|
*
|
|
* *That* lets us be sure to madvise() away the write instruction, which
|
|
* will then fault, which makes sure that the fault code handles
|
|
* execute-only memory properly.
|
|
*/
|
|
#ifdef __powerpc64__
|
|
/* This way, both 4K and 64K alignment are maintained */
|
|
__attribute__((__aligned__(65536)))
|
|
#else
|
|
__attribute__((__aligned__(PAGE_SIZE)))
|
|
#endif
|
|
void lots_o_noops_around_write(int *write_to_me)
|
|
{
|
|
dprintf3("running %s()\n", __func__);
|
|
__page_o_noops();
|
|
/* Assume this happens in the second page of instructions: */
|
|
*write_to_me = __LINE__;
|
|
/* pad out by another page: */
|
|
__page_o_noops();
|
|
dprintf3("%s() done\n", __func__);
|
|
}
|
|
|
|
void dump_mem(void *dumpme, int len_bytes)
|
|
{
|
|
char *c = (void *)dumpme;
|
|
int i;
|
|
|
|
for (i = 0; i < len_bytes; i += sizeof(u64)) {
|
|
u64 *ptr = (u64 *)(c + i);
|
|
dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
|
|
}
|
|
}
|
|
|
|
static u32 hw_pkey_get(int pkey, unsigned long flags)
|
|
{
|
|
u64 pkey_reg = __read_pkey_reg();
|
|
|
|
dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
|
|
__func__, pkey, flags, 0, 0);
|
|
dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
|
|
|
|
return (u32) get_pkey_bits(pkey_reg, pkey);
|
|
}
|
|
|
|
static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
|
|
{
|
|
u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
|
|
u64 old_pkey_reg = __read_pkey_reg();
|
|
u64 new_pkey_reg;
|
|
|
|
/* make sure that 'rights' only contains the bits we expect: */
|
|
assert(!(rights & ~mask));
|
|
|
|
/* modify bits accordingly in old pkey_reg and assign it */
|
|
new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
|
|
|
|
__write_pkey_reg(new_pkey_reg);
|
|
|
|
dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
|
|
" pkey_reg now: %016llx old_pkey_reg: %016llx\n",
|
|
__func__, pkey, rights, flags, 0, __read_pkey_reg(),
|
|
old_pkey_reg);
|
|
return 0;
|
|
}
|
|
|
|
void pkey_disable_set(int pkey, int flags)
|
|
{
|
|
unsigned long syscall_flags = 0;
|
|
int ret;
|
|
int pkey_rights;
|
|
u64 orig_pkey_reg = read_pkey_reg();
|
|
|
|
dprintf1("START->%s(%d, 0x%x)\n", __func__,
|
|
pkey, flags);
|
|
pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
|
|
|
|
pkey_rights = hw_pkey_get(pkey, syscall_flags);
|
|
|
|
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
|
|
pkey, pkey, pkey_rights);
|
|
|
|
pkey_assert(pkey_rights >= 0);
|
|
|
|
pkey_rights |= flags;
|
|
|
|
ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
|
|
assert(!ret);
|
|
/* pkey_reg and flags have the same format */
|
|
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
|
|
dprintf1("%s(%d) shadow: 0x%016llx\n",
|
|
__func__, pkey, shadow_pkey_reg);
|
|
|
|
pkey_assert(ret >= 0);
|
|
|
|
pkey_rights = hw_pkey_get(pkey, syscall_flags);
|
|
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
|
|
pkey, pkey, pkey_rights);
|
|
|
|
dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
|
|
__func__, pkey, read_pkey_reg());
|
|
if (flags)
|
|
pkey_assert(read_pkey_reg() >= orig_pkey_reg);
|
|
dprintf1("END<---%s(%d, 0x%x)\n", __func__,
|
|
pkey, flags);
|
|
}
|
|
|
|
void pkey_disable_clear(int pkey, int flags)
|
|
{
|
|
unsigned long syscall_flags = 0;
|
|
int ret;
|
|
int pkey_rights = hw_pkey_get(pkey, syscall_flags);
|
|
u64 orig_pkey_reg = read_pkey_reg();
|
|
|
|
pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
|
|
|
|
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
|
|
pkey, pkey, pkey_rights);
|
|
pkey_assert(pkey_rights >= 0);
|
|
|
|
pkey_rights &= ~flags;
|
|
|
|
ret = hw_pkey_set(pkey, pkey_rights, 0);
|
|
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
|
|
pkey_assert(ret >= 0);
|
|
|
|
pkey_rights = hw_pkey_get(pkey, syscall_flags);
|
|
dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
|
|
pkey, pkey, pkey_rights);
|
|
|
|
dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
|
|
pkey, read_pkey_reg());
|
|
if (flags)
|
|
assert(read_pkey_reg() <= orig_pkey_reg);
|
|
}
|
|
|
|
void pkey_write_allow(int pkey)
|
|
{
|
|
pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
|
|
}
|
|
void pkey_write_deny(int pkey)
|
|
{
|
|
pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
|
|
}
|
|
void pkey_access_allow(int pkey)
|
|
{
|
|
pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
|
|
}
|
|
void pkey_access_deny(int pkey)
|
|
{
|
|
pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
|
|
}
|
|
|
|
/* Failed address bound checks: */
|
|
#ifndef SEGV_BNDERR
|
|
# define SEGV_BNDERR 3
|
|
#endif
|
|
|
|
#ifndef SEGV_PKUERR
|
|
# define SEGV_PKUERR 4
|
|
#endif
|
|
|
|
static char *si_code_str(int si_code)
|
|
{
|
|
if (si_code == SEGV_MAPERR)
|
|
return "SEGV_MAPERR";
|
|
if (si_code == SEGV_ACCERR)
|
|
return "SEGV_ACCERR";
|
|
if (si_code == SEGV_BNDERR)
|
|
return "SEGV_BNDERR";
|
|
if (si_code == SEGV_PKUERR)
|
|
return "SEGV_PKUERR";
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
int pkey_faults;
|
|
int last_si_pkey = -1;
|
|
void signal_handler(int signum, siginfo_t *si, void *vucontext)
|
|
{
|
|
ucontext_t *uctxt = vucontext;
|
|
int trapno;
|
|
unsigned long ip;
|
|
char *fpregs;
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
u32 *pkey_reg_ptr;
|
|
int pkey_reg_offset;
|
|
#endif /* arch */
|
|
u64 siginfo_pkey;
|
|
u32 *si_pkey_ptr;
|
|
|
|
dprint_in_signal = 1;
|
|
dprintf1(">>>>===============SIGSEGV============================\n");
|
|
dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
|
|
__func__, __LINE__,
|
|
__read_pkey_reg(), shadow_pkey_reg);
|
|
|
|
trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
|
|
ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
|
|
fpregs = (char *) uctxt->uc_mcontext.fpregs;
|
|
|
|
dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
|
|
__func__, trapno, ip, si_code_str(si->si_code),
|
|
si->si_code);
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
#ifdef __i386__
|
|
/*
|
|
* 32-bit has some extra padding so that userspace can tell whether
|
|
* the XSTATE header is present in addition to the "legacy" FPU
|
|
* state. We just assume that it is here.
|
|
*/
|
|
fpregs += 0x70;
|
|
#endif /* i386 */
|
|
pkey_reg_offset = pkey_reg_xstate_offset();
|
|
pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
|
|
|
|
/*
|
|
* If we got a PKEY fault, we *HAVE* to have at least one bit set in
|
|
* here.
|
|
*/
|
|
dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
|
|
if (DEBUG_LEVEL > 4)
|
|
dump_mem(pkey_reg_ptr - 128, 256);
|
|
pkey_assert(*pkey_reg_ptr);
|
|
#endif /* arch */
|
|
|
|
dprintf1("siginfo: %p\n", si);
|
|
dprintf1(" fpregs: %p\n", fpregs);
|
|
|
|
if ((si->si_code == SEGV_MAPERR) ||
|
|
(si->si_code == SEGV_ACCERR) ||
|
|
(si->si_code == SEGV_BNDERR)) {
|
|
printf("non-PK si_code, exiting...\n");
|
|
exit(4);
|
|
}
|
|
|
|
si_pkey_ptr = siginfo_get_pkey_ptr(si);
|
|
dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
|
|
dump_mem((u8 *)si_pkey_ptr - 8, 24);
|
|
siginfo_pkey = *si_pkey_ptr;
|
|
pkey_assert(siginfo_pkey < NR_PKEYS);
|
|
last_si_pkey = siginfo_pkey;
|
|
|
|
/*
|
|
* need __read_pkey_reg() version so we do not do shadow_pkey_reg
|
|
* checking
|
|
*/
|
|
dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
|
|
__read_pkey_reg());
|
|
dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
|
|
*(u64 *)pkey_reg_ptr = 0x00000000;
|
|
dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
|
|
#elif defined(__powerpc64__) /* arch */
|
|
/* restore access and let the faulting instruction continue */
|
|
pkey_access_allow(siginfo_pkey);
|
|
#endif /* arch */
|
|
pkey_faults++;
|
|
dprintf1("<<<<==================================================\n");
|
|
dprint_in_signal = 0;
|
|
}
|
|
|
|
int wait_all_children(void)
|
|
{
|
|
int status;
|
|
return waitpid(-1, &status, 0);
|
|
}
|
|
|
|
void sig_chld(int x)
|
|
{
|
|
dprint_in_signal = 1;
|
|
dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
|
|
dprint_in_signal = 0;
|
|
}
|
|
|
|
void setup_sigsegv_handler(void)
|
|
{
|
|
int r, rs;
|
|
struct sigaction newact;
|
|
struct sigaction oldact;
|
|
|
|
/* #PF is mapped to sigsegv */
|
|
int signum = SIGSEGV;
|
|
|
|
newact.sa_handler = 0;
|
|
newact.sa_sigaction = signal_handler;
|
|
|
|
/*sigset_t - signals to block while in the handler */
|
|
/* get the old signal mask. */
|
|
rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
|
|
pkey_assert(rs == 0);
|
|
|
|
/* call sa_sigaction, not sa_handler*/
|
|
newact.sa_flags = SA_SIGINFO;
|
|
|
|
newact.sa_restorer = 0; /* void(*)(), obsolete */
|
|
r = sigaction(signum, &newact, &oldact);
|
|
r = sigaction(SIGALRM, &newact, &oldact);
|
|
pkey_assert(r == 0);
|
|
}
|
|
|
|
void setup_handlers(void)
|
|
{
|
|
signal(SIGCHLD, &sig_chld);
|
|
setup_sigsegv_handler();
|
|
}
|
|
|
|
pid_t fork_lazy_child(void)
|
|
{
|
|
pid_t forkret;
|
|
|
|
forkret = fork();
|
|
pkey_assert(forkret >= 0);
|
|
dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
|
|
|
|
if (!forkret) {
|
|
/* in the child */
|
|
while (1) {
|
|
dprintf1("child sleeping...\n");
|
|
sleep(30);
|
|
}
|
|
}
|
|
return forkret;
|
|
}
|
|
|
|
int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
|
|
unsigned long pkey)
|
|
{
|
|
int sret;
|
|
|
|
dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
|
|
ptr, size, orig_prot, pkey);
|
|
|
|
errno = 0;
|
|
sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
|
|
if (errno) {
|
|
dprintf2("SYS_mprotect_key sret: %d\n", sret);
|
|
dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
|
|
dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
|
|
if (DEBUG_LEVEL >= 2)
|
|
perror("SYS_mprotect_pkey");
|
|
}
|
|
return sret;
|
|
}
|
|
|
|
int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
|
|
{
|
|
int ret = syscall(SYS_pkey_alloc, flags, init_val);
|
|
dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
|
|
__func__, flags, init_val, ret, errno);
|
|
return ret;
|
|
}
|
|
|
|
int alloc_pkey(void)
|
|
{
|
|
int ret;
|
|
unsigned long init_val = 0x0;
|
|
|
|
dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
|
|
__func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
|
|
ret = sys_pkey_alloc(0, init_val);
|
|
/*
|
|
* pkey_alloc() sets PKEY register, so we need to reflect it in
|
|
* shadow_pkey_reg:
|
|
*/
|
|
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
if (ret > 0) {
|
|
/* clear both the bits: */
|
|
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
|
|
~PKEY_MASK);
|
|
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__,
|
|
__LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
/*
|
|
* move the new state in from init_val
|
|
* (remember, we cheated and init_val == pkey_reg format)
|
|
*/
|
|
shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
|
|
init_val);
|
|
}
|
|
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
|
|
/* for shadow checking: */
|
|
read_pkey_reg();
|
|
dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
return ret;
|
|
}
|
|
|
|
int sys_pkey_free(unsigned long pkey)
|
|
{
|
|
int ret = syscall(SYS_pkey_free, pkey);
|
|
dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* I had a bug where pkey bits could be set by mprotect() but
|
|
* not cleared. This ensures we get lots of random bit sets
|
|
* and clears on the vma and pte pkey bits.
|
|
*/
|
|
int alloc_random_pkey(void)
|
|
{
|
|
int max_nr_pkey_allocs;
|
|
int ret;
|
|
int i;
|
|
int alloced_pkeys[NR_PKEYS];
|
|
int nr_alloced = 0;
|
|
int random_index;
|
|
memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
|
|
|
|
/* allocate every possible key and make a note of which ones we got */
|
|
max_nr_pkey_allocs = NR_PKEYS;
|
|
for (i = 0; i < max_nr_pkey_allocs; i++) {
|
|
int new_pkey = alloc_pkey();
|
|
if (new_pkey < 0)
|
|
break;
|
|
alloced_pkeys[nr_alloced++] = new_pkey;
|
|
}
|
|
|
|
pkey_assert(nr_alloced > 0);
|
|
/* select a random one out of the allocated ones */
|
|
random_index = rand() % nr_alloced;
|
|
ret = alloced_pkeys[random_index];
|
|
/* now zero it out so we don't free it next */
|
|
alloced_pkeys[random_index] = 0;
|
|
|
|
/* go through the allocated ones that we did not want and free them */
|
|
for (i = 0; i < nr_alloced; i++) {
|
|
int free_ret;
|
|
if (!alloced_pkeys[i])
|
|
continue;
|
|
free_ret = sys_pkey_free(alloced_pkeys[i]);
|
|
pkey_assert(!free_ret);
|
|
}
|
|
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n", __func__,
|
|
__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
|
|
return ret;
|
|
}
|
|
|
|
int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
|
|
unsigned long pkey)
|
|
{
|
|
int nr_iterations = random() % 100;
|
|
int ret;
|
|
|
|
while (0) {
|
|
int rpkey = alloc_random_pkey();
|
|
ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
|
|
dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
|
|
ptr, size, orig_prot, pkey, ret);
|
|
if (nr_iterations-- < 0)
|
|
break;
|
|
|
|
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
sys_pkey_free(rpkey);
|
|
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, ret, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
}
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
|
|
ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
|
|
dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
|
|
ptr, size, orig_prot, pkey, ret);
|
|
pkey_assert(!ret);
|
|
dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n", __func__,
|
|
__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
|
|
return ret;
|
|
}
|
|
|
|
struct pkey_malloc_record {
|
|
void *ptr;
|
|
long size;
|
|
int prot;
|
|
};
|
|
struct pkey_malloc_record *pkey_malloc_records;
|
|
struct pkey_malloc_record *pkey_last_malloc_record;
|
|
long nr_pkey_malloc_records;
|
|
void record_pkey_malloc(void *ptr, long size, int prot)
|
|
{
|
|
long i;
|
|
struct pkey_malloc_record *rec = NULL;
|
|
|
|
for (i = 0; i < nr_pkey_malloc_records; i++) {
|
|
rec = &pkey_malloc_records[i];
|
|
/* find a free record */
|
|
if (rec)
|
|
break;
|
|
}
|
|
if (!rec) {
|
|
/* every record is full */
|
|
size_t old_nr_records = nr_pkey_malloc_records;
|
|
size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
|
|
size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
|
|
dprintf2("new_nr_records: %zd\n", new_nr_records);
|
|
dprintf2("new_size: %zd\n", new_size);
|
|
pkey_malloc_records = realloc(pkey_malloc_records, new_size);
|
|
pkey_assert(pkey_malloc_records != NULL);
|
|
rec = &pkey_malloc_records[nr_pkey_malloc_records];
|
|
/*
|
|
* realloc() does not initialize memory, so zero it from
|
|
* the first new record all the way to the end.
|
|
*/
|
|
for (i = 0; i < new_nr_records - old_nr_records; i++)
|
|
memset(rec + i, 0, sizeof(*rec));
|
|
}
|
|
dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
|
|
(int)(rec - pkey_malloc_records), rec, ptr, size);
|
|
rec->ptr = ptr;
|
|
rec->size = size;
|
|
rec->prot = prot;
|
|
pkey_last_malloc_record = rec;
|
|
nr_pkey_malloc_records++;
|
|
}
|
|
|
|
void free_pkey_malloc(void *ptr)
|
|
{
|
|
long i;
|
|
int ret;
|
|
dprintf3("%s(%p)\n", __func__, ptr);
|
|
for (i = 0; i < nr_pkey_malloc_records; i++) {
|
|
struct pkey_malloc_record *rec = &pkey_malloc_records[i];
|
|
dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
|
|
ptr, i, rec, rec->ptr, rec->size);
|
|
if ((ptr < rec->ptr) ||
|
|
(ptr >= rec->ptr + rec->size))
|
|
continue;
|
|
|
|
dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
|
|
ptr, i, rec, rec->ptr, rec->size);
|
|
nr_pkey_malloc_records--;
|
|
ret = munmap(rec->ptr, rec->size);
|
|
dprintf3("munmap ret: %d\n", ret);
|
|
pkey_assert(!ret);
|
|
dprintf3("clearing rec->ptr, rec: %p\n", rec);
|
|
rec->ptr = NULL;
|
|
dprintf3("done clearing rec->ptr, rec: %p\n", rec);
|
|
return;
|
|
}
|
|
pkey_assert(false);
|
|
}
|
|
|
|
|
|
void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
|
|
{
|
|
void *ptr;
|
|
int ret;
|
|
|
|
read_pkey_reg();
|
|
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
|
|
size, prot, pkey);
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
pkey_assert(ptr != (void *)-1);
|
|
ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
|
|
pkey_assert(!ret);
|
|
record_pkey_malloc(ptr, size, prot);
|
|
read_pkey_reg();
|
|
|
|
dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
|
|
return ptr;
|
|
}
|
|
|
|
void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
|
|
{
|
|
int ret;
|
|
void *ptr;
|
|
|
|
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
|
|
size, prot, pkey);
|
|
/*
|
|
* Guarantee we can fit at least one huge page in the resulting
|
|
* allocation by allocating space for 2:
|
|
*/
|
|
size = ALIGN_UP(size, HPAGE_SIZE * 2);
|
|
ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
pkey_assert(ptr != (void *)-1);
|
|
record_pkey_malloc(ptr, size, prot);
|
|
mprotect_pkey(ptr, size, prot, pkey);
|
|
|
|
dprintf1("unaligned ptr: %p\n", ptr);
|
|
ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
|
|
dprintf1(" aligned ptr: %p\n", ptr);
|
|
ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
|
|
dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
|
|
ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
|
|
dprintf1("MADV_WILLNEED ret: %d\n", ret);
|
|
memset(ptr, 0, HPAGE_SIZE);
|
|
|
|
dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
|
|
return ptr;
|
|
}
|
|
|
|
int hugetlb_setup_ok;
|
|
#define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
|
|
#define GET_NR_HUGE_PAGES 10
|
|
void setup_hugetlbfs(void)
|
|
{
|
|
int err;
|
|
int fd;
|
|
char buf[256];
|
|
long hpagesz_kb;
|
|
long hpagesz_mb;
|
|
|
|
if (geteuid() != 0) {
|
|
fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
|
|
return;
|
|
}
|
|
|
|
cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
|
|
|
|
/*
|
|
* Now go make sure that we got the pages and that they
|
|
* are PMD-level pages. Someone might have made PUD-level
|
|
* pages the default.
|
|
*/
|
|
hpagesz_kb = HPAGE_SIZE / 1024;
|
|
hpagesz_mb = hpagesz_kb / 1024;
|
|
sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
|
|
fd = open(buf, O_RDONLY);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
|
|
hpagesz_mb, strerror(errno));
|
|
return;
|
|
}
|
|
|
|
/* -1 to guarantee leaving the trailing \0 */
|
|
err = read(fd, buf, sizeof(buf)-1);
|
|
close(fd);
|
|
if (err <= 0) {
|
|
fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
|
|
hpagesz_mb, strerror(errno));
|
|
return;
|
|
}
|
|
|
|
if (atoi(buf) != GET_NR_HUGE_PAGES) {
|
|
fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
|
|
hpagesz_mb, buf, GET_NR_HUGE_PAGES);
|
|
return;
|
|
}
|
|
|
|
hugetlb_setup_ok = 1;
|
|
}
|
|
|
|
void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
|
|
{
|
|
void *ptr;
|
|
int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
|
|
|
|
if (!hugetlb_setup_ok)
|
|
return PTR_ERR_ENOTSUP;
|
|
|
|
dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
|
|
size = ALIGN_UP(size, HPAGE_SIZE * 2);
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
|
|
pkey_assert(ptr != (void *)-1);
|
|
mprotect_pkey(ptr, size, prot, pkey);
|
|
|
|
record_pkey_malloc(ptr, size, prot);
|
|
|
|
dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
|
|
return ptr;
|
|
}
|
|
|
|
void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
|
|
{
|
|
void *ptr;
|
|
int fd;
|
|
|
|
dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
|
|
size, prot, pkey);
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
fd = open("/dax/foo", O_RDWR);
|
|
pkey_assert(fd >= 0);
|
|
|
|
ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
|
|
pkey_assert(ptr != (void *)-1);
|
|
|
|
mprotect_pkey(ptr, size, prot, pkey);
|
|
|
|
record_pkey_malloc(ptr, size, prot);
|
|
|
|
dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
|
|
close(fd);
|
|
return ptr;
|
|
}
|
|
|
|
void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
|
|
|
|
malloc_pkey_with_mprotect,
|
|
malloc_pkey_with_mprotect_subpage,
|
|
malloc_pkey_anon_huge,
|
|
malloc_pkey_hugetlb
|
|
/* can not do direct with the pkey_mprotect() API:
|
|
malloc_pkey_mmap_direct,
|
|
malloc_pkey_mmap_dax,
|
|
*/
|
|
};
|
|
|
|
void *malloc_pkey(long size, int prot, u16 pkey)
|
|
{
|
|
void *ret;
|
|
static int malloc_type;
|
|
int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
|
|
|
|
pkey_assert(pkey < NR_PKEYS);
|
|
|
|
while (1) {
|
|
pkey_assert(malloc_type < nr_malloc_types);
|
|
|
|
ret = pkey_malloc[malloc_type](size, prot, pkey);
|
|
pkey_assert(ret != (void *)-1);
|
|
|
|
malloc_type++;
|
|
if (malloc_type >= nr_malloc_types)
|
|
malloc_type = (random()%nr_malloc_types);
|
|
|
|
/* try again if the malloc_type we tried is unsupported */
|
|
if (ret == PTR_ERR_ENOTSUP)
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
|
|
size, prot, pkey, ret);
|
|
return ret;
|
|
}
|
|
|
|
int last_pkey_faults;
|
|
#define UNKNOWN_PKEY -2
|
|
void expected_pkey_fault(int pkey)
|
|
{
|
|
dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
|
|
__func__, last_pkey_faults, pkey_faults);
|
|
dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
|
|
pkey_assert(last_pkey_faults + 1 == pkey_faults);
|
|
|
|
/*
|
|
* For exec-only memory, we do not know the pkey in
|
|
* advance, so skip this check.
|
|
*/
|
|
if (pkey != UNKNOWN_PKEY)
|
|
pkey_assert(last_si_pkey == pkey);
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
/*
|
|
* The signal handler shold have cleared out PKEY register to let the
|
|
* test program continue. We now have to restore it.
|
|
*/
|
|
if (__read_pkey_reg() != 0)
|
|
#else /* arch */
|
|
if (__read_pkey_reg() != shadow_pkey_reg)
|
|
#endif /* arch */
|
|
pkey_assert(0);
|
|
|
|
__write_pkey_reg(shadow_pkey_reg);
|
|
dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
|
|
"nuked it\n", __func__, shadow_pkey_reg);
|
|
last_pkey_faults = pkey_faults;
|
|
last_si_pkey = -1;
|
|
}
|
|
|
|
#define do_not_expect_pkey_fault(msg) do { \
|
|
if (last_pkey_faults != pkey_faults) \
|
|
dprintf0("unexpected PKey fault: %s\n", msg); \
|
|
pkey_assert(last_pkey_faults == pkey_faults); \
|
|
} while (0)
|
|
|
|
int test_fds[10] = { -1 };
|
|
int nr_test_fds;
|
|
void __save_test_fd(int fd)
|
|
{
|
|
pkey_assert(fd >= 0);
|
|
pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
|
|
test_fds[nr_test_fds] = fd;
|
|
nr_test_fds++;
|
|
}
|
|
|
|
int get_test_read_fd(void)
|
|
{
|
|
int test_fd = open("/etc/passwd", O_RDONLY);
|
|
__save_test_fd(test_fd);
|
|
return test_fd;
|
|
}
|
|
|
|
void close_test_fds(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_test_fds; i++) {
|
|
if (test_fds[i] < 0)
|
|
continue;
|
|
close(test_fds[i]);
|
|
test_fds[i] = -1;
|
|
}
|
|
nr_test_fds = 0;
|
|
}
|
|
|
|
#define barrier() __asm__ __volatile__("": : :"memory")
|
|
__attribute__((noinline)) int read_ptr(int *ptr)
|
|
{
|
|
/*
|
|
* Keep GCC from optimizing this away somehow
|
|
*/
|
|
barrier();
|
|
return *ptr;
|
|
}
|
|
|
|
void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
|
|
{
|
|
int i, err;
|
|
int max_nr_pkey_allocs;
|
|
int alloced_pkeys[NR_PKEYS];
|
|
int nr_alloced = 0;
|
|
long size;
|
|
|
|
pkey_assert(pkey_last_malloc_record);
|
|
size = pkey_last_malloc_record->size;
|
|
/*
|
|
* This is a bit of a hack. But mprotect() requires
|
|
* huge-page-aligned sizes when operating on hugetlbfs.
|
|
* So, make sure that we use something that's a multiple
|
|
* of a huge page when we can.
|
|
*/
|
|
if (size >= HPAGE_SIZE)
|
|
size = HPAGE_SIZE;
|
|
|
|
/* allocate every possible key and make sure key-0 never got allocated */
|
|
max_nr_pkey_allocs = NR_PKEYS;
|
|
for (i = 0; i < max_nr_pkey_allocs; i++) {
|
|
int new_pkey = alloc_pkey();
|
|
pkey_assert(new_pkey != 0);
|
|
|
|
if (new_pkey < 0)
|
|
break;
|
|
alloced_pkeys[nr_alloced++] = new_pkey;
|
|
}
|
|
/* free all the allocated keys */
|
|
for (i = 0; i < nr_alloced; i++) {
|
|
int free_ret;
|
|
|
|
if (!alloced_pkeys[i])
|
|
continue;
|
|
free_ret = sys_pkey_free(alloced_pkeys[i]);
|
|
pkey_assert(!free_ret);
|
|
}
|
|
|
|
/* attach key-0 in various modes */
|
|
err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
|
|
pkey_assert(!err);
|
|
err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
|
|
pkey_assert(!err);
|
|
err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
|
|
pkey_assert(!err);
|
|
err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
|
|
pkey_assert(!err);
|
|
err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
|
|
pkey_assert(!err);
|
|
}
|
|
|
|
void test_read_of_write_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ptr_contents;
|
|
|
|
dprintf1("disabling write access to PKEY[1], doing read\n");
|
|
pkey_write_deny(pkey);
|
|
ptr_contents = read_ptr(ptr);
|
|
dprintf1("*ptr: %d\n", ptr_contents);
|
|
dprintf1("\n");
|
|
}
|
|
void test_read_of_access_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ptr_contents;
|
|
|
|
dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
|
|
read_pkey_reg();
|
|
pkey_access_deny(pkey);
|
|
ptr_contents = read_ptr(ptr);
|
|
dprintf1("*ptr: %d\n", ptr_contents);
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
|
|
u16 pkey)
|
|
{
|
|
int ptr_contents;
|
|
|
|
dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
|
|
pkey, ptr);
|
|
ptr_contents = read_ptr(ptr);
|
|
dprintf1("reading ptr before disabling the read : %d\n",
|
|
ptr_contents);
|
|
read_pkey_reg();
|
|
pkey_access_deny(pkey);
|
|
ptr_contents = read_ptr(ptr);
|
|
dprintf1("*ptr: %d\n", ptr_contents);
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
|
|
u16 pkey)
|
|
{
|
|
*ptr = __LINE__;
|
|
dprintf1("disabling write access; after accessing the page, "
|
|
"to PKEY[%02d], doing write\n", pkey);
|
|
pkey_write_deny(pkey);
|
|
*ptr = __LINE__;
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_write_of_write_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
|
|
pkey_write_deny(pkey);
|
|
*ptr = __LINE__;
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
void test_write_of_access_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
|
|
pkey_access_deny(pkey);
|
|
*ptr = __LINE__;
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
|
|
u16 pkey)
|
|
{
|
|
*ptr = __LINE__;
|
|
dprintf1("disabling access; after accessing the page, "
|
|
" to PKEY[%02d], doing write\n", pkey);
|
|
pkey_access_deny(pkey);
|
|
*ptr = __LINE__;
|
|
expected_pkey_fault(pkey);
|
|
}
|
|
|
|
void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ret;
|
|
int test_fd = get_test_read_fd();
|
|
|
|
dprintf1("disabling access to PKEY[%02d], "
|
|
"having kernel read() to buffer\n", pkey);
|
|
pkey_access_deny(pkey);
|
|
ret = read(test_fd, ptr, 1);
|
|
dprintf1("read ret: %d\n", ret);
|
|
pkey_assert(ret);
|
|
}
|
|
void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ret;
|
|
int test_fd = get_test_read_fd();
|
|
|
|
pkey_write_deny(pkey);
|
|
ret = read(test_fd, ptr, 100);
|
|
dprintf1("read ret: %d\n", ret);
|
|
if (ret < 0 && (DEBUG_LEVEL > 0))
|
|
perror("verbose read result (OK for this to be bad)");
|
|
pkey_assert(ret);
|
|
}
|
|
|
|
void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int pipe_ret, vmsplice_ret;
|
|
struct iovec iov;
|
|
int pipe_fds[2];
|
|
|
|
pipe_ret = pipe(pipe_fds);
|
|
|
|
pkey_assert(pipe_ret == 0);
|
|
dprintf1("disabling access to PKEY[%02d], "
|
|
"having kernel vmsplice from buffer\n", pkey);
|
|
pkey_access_deny(pkey);
|
|
iov.iov_base = ptr;
|
|
iov.iov_len = PAGE_SIZE;
|
|
vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
|
|
dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
|
|
pkey_assert(vmsplice_ret == -1);
|
|
|
|
close(pipe_fds[0]);
|
|
close(pipe_fds[1]);
|
|
}
|
|
|
|
void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
|
|
{
|
|
int ignored = 0xdada;
|
|
int futex_ret;
|
|
int some_int = __LINE__;
|
|
|
|
dprintf1("disabling write to PKEY[%02d], "
|
|
"doing futex gunk in buffer\n", pkey);
|
|
*ptr = some_int;
|
|
pkey_write_deny(pkey);
|
|
futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
|
|
&ignored, ignored);
|
|
if (DEBUG_LEVEL > 0)
|
|
perror("futex");
|
|
dprintf1("futex() ret: %d\n", futex_ret);
|
|
}
|
|
|
|
/* Assumes that all pkeys other than 'pkey' are unallocated */
|
|
void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
|
|
{
|
|
int err;
|
|
int i;
|
|
|
|
/* Note: 0 is the default pkey, so don't mess with it */
|
|
for (i = 1; i < NR_PKEYS; i++) {
|
|
if (pkey == i)
|
|
continue;
|
|
|
|
dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
|
|
err = sys_pkey_free(i);
|
|
pkey_assert(err);
|
|
|
|
err = sys_pkey_free(i);
|
|
pkey_assert(err);
|
|
|
|
err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
|
|
pkey_assert(err);
|
|
}
|
|
}
|
|
|
|
/* Assumes that all pkeys other than 'pkey' are unallocated */
|
|
void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
|
|
{
|
|
int err;
|
|
int bad_pkey = NR_PKEYS+99;
|
|
|
|
/* pass a known-invalid pkey in: */
|
|
err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
|
|
pkey_assert(err);
|
|
}
|
|
|
|
void become_child(void)
|
|
{
|
|
pid_t forkret;
|
|
|
|
forkret = fork();
|
|
pkey_assert(forkret >= 0);
|
|
dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
|
|
|
|
if (!forkret) {
|
|
/* in the child */
|
|
return;
|
|
}
|
|
exit(0);
|
|
}
|
|
|
|
/* Assumes that all pkeys other than 'pkey' are unallocated */
|
|
void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
|
|
{
|
|
int err;
|
|
int allocated_pkeys[NR_PKEYS] = {0};
|
|
int nr_allocated_pkeys = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_PKEYS*3; i++) {
|
|
int new_pkey;
|
|
dprintf1("%s() alloc loop: %d\n", __func__, i);
|
|
new_pkey = alloc_pkey();
|
|
dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
|
|
" shadow: 0x%016llx\n",
|
|
__func__, __LINE__, err, __read_pkey_reg(),
|
|
shadow_pkey_reg);
|
|
read_pkey_reg(); /* for shadow checking */
|
|
dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
|
|
if ((new_pkey == -1) && (errno == ENOSPC)) {
|
|
dprintf2("%s() failed to allocate pkey after %d tries\n",
|
|
__func__, nr_allocated_pkeys);
|
|
} else {
|
|
/*
|
|
* Ensure the number of successes never
|
|
* exceeds the number of keys supported
|
|
* in the hardware.
|
|
*/
|
|
pkey_assert(nr_allocated_pkeys < NR_PKEYS);
|
|
allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
|
|
}
|
|
|
|
/*
|
|
* Make sure that allocation state is properly
|
|
* preserved across fork().
|
|
*/
|
|
if (i == NR_PKEYS*2)
|
|
become_child();
|
|
}
|
|
|
|
dprintf3("%s()::%d\n", __func__, __LINE__);
|
|
|
|
/*
|
|
* On x86:
|
|
* There are 16 pkeys supported in hardware. Three are
|
|
* allocated by the time we get here:
|
|
* 1. The default key (0)
|
|
* 2. One possibly consumed by an execute-only mapping.
|
|
* 3. One allocated by the test code and passed in via
|
|
* 'pkey' to this function.
|
|
* Ensure that we can allocate at least another 13 (16-3).
|
|
*
|
|
* On powerpc:
|
|
* There are either 5, 28, 29 or 32 pkeys supported in
|
|
* hardware depending on the page size (4K or 64K) and
|
|
* platform (powernv or powervm). Four are allocated by
|
|
* the time we get here. These include pkey-0, pkey-1,
|
|
* exec-only pkey and the one allocated by the test code.
|
|
* Ensure that we can allocate the remaining.
|
|
*/
|
|
pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
|
|
|
|
for (i = 0; i < nr_allocated_pkeys; i++) {
|
|
err = sys_pkey_free(allocated_pkeys[i]);
|
|
pkey_assert(!err);
|
|
read_pkey_reg(); /* for shadow checking */
|
|
}
|
|
}
|
|
|
|
void arch_force_pkey_reg_init(void)
|
|
{
|
|
#if defined(__i386__) || defined(__x86_64__) /* arch */
|
|
u64 *buf;
|
|
|
|
/*
|
|
* All keys should be allocated and set to allow reads and
|
|
* writes, so the register should be all 0. If not, just
|
|
* skip the test.
|
|
*/
|
|
if (read_pkey_reg())
|
|
return;
|
|
|
|
/*
|
|
* Just allocate an absurd about of memory rather than
|
|
* doing the XSAVE size enumeration dance.
|
|
*/
|
|
buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
|
|
/* These __builtins require compiling with -mxsave */
|
|
|
|
/* XSAVE to build a valid buffer: */
|
|
__builtin_ia32_xsave(buf, XSTATE_PKEY);
|
|
/* Clear XSTATE_BV[PKRU]: */
|
|
buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
|
|
/* XRSTOR will likely get PKRU back to the init state: */
|
|
__builtin_ia32_xrstor(buf, XSTATE_PKEY);
|
|
|
|
munmap(buf, 1*MB);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* This is mostly useless on ppc for now. But it will not
|
|
* hurt anything and should give some better coverage as
|
|
* a long-running test that continually checks the pkey
|
|
* register.
|
|
*/
|
|
void test_pkey_init_state(int *ptr, u16 pkey)
|
|
{
|
|
int err;
|
|
int allocated_pkeys[NR_PKEYS] = {0};
|
|
int nr_allocated_pkeys = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_PKEYS; i++) {
|
|
int new_pkey = alloc_pkey();
|
|
|
|
if (new_pkey < 0)
|
|
continue;
|
|
allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
|
|
}
|
|
|
|
dprintf3("%s()::%d\n", __func__, __LINE__);
|
|
|
|
arch_force_pkey_reg_init();
|
|
|
|
/*
|
|
* Loop for a bit, hoping to get exercise the kernel
|
|
* context switch code.
|
|
*/
|
|
for (i = 0; i < 1000000; i++)
|
|
read_pkey_reg();
|
|
|
|
for (i = 0; i < nr_allocated_pkeys; i++) {
|
|
err = sys_pkey_free(allocated_pkeys[i]);
|
|
pkey_assert(!err);
|
|
read_pkey_reg(); /* for shadow checking */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pkey 0 is special. It is allocated by default, so you do not
|
|
* have to call pkey_alloc() to use it first. Make sure that it
|
|
* is usable.
|
|
*/
|
|
void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
|
|
{
|
|
long size;
|
|
int prot;
|
|
|
|
assert(pkey_last_malloc_record);
|
|
size = pkey_last_malloc_record->size;
|
|
/*
|
|
* This is a bit of a hack. But mprotect() requires
|
|
* huge-page-aligned sizes when operating on hugetlbfs.
|
|
* So, make sure that we use something that's a multiple
|
|
* of a huge page when we can.
|
|
*/
|
|
if (size >= HPAGE_SIZE)
|
|
size = HPAGE_SIZE;
|
|
prot = pkey_last_malloc_record->prot;
|
|
|
|
/* Use pkey 0 */
|
|
mprotect_pkey(ptr, size, prot, 0);
|
|
|
|
/* Make sure that we can set it back to the original pkey. */
|
|
mprotect_pkey(ptr, size, prot, pkey);
|
|
}
|
|
|
|
void test_ptrace_of_child(int *ptr, u16 pkey)
|
|
{
|
|
__attribute__((__unused__)) int peek_result;
|
|
pid_t child_pid;
|
|
void *ignored = 0;
|
|
long ret;
|
|
int status;
|
|
/*
|
|
* This is the "control" for our little expermient. Make sure
|
|
* we can always access it when ptracing.
|
|
*/
|
|
int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
|
|
int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
|
|
|
|
/*
|
|
* Fork a child which is an exact copy of this process, of course.
|
|
* That means we can do all of our tests via ptrace() and then plain
|
|
* memory access and ensure they work differently.
|
|
*/
|
|
child_pid = fork_lazy_child();
|
|
dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
|
|
|
|
ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
|
|
if (ret)
|
|
perror("attach");
|
|
dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
|
|
pkey_assert(ret != -1);
|
|
ret = waitpid(child_pid, &status, WUNTRACED);
|
|
if ((ret != child_pid) || !(WIFSTOPPED(status))) {
|
|
fprintf(stderr, "weird waitpid result %ld stat %x\n",
|
|
ret, status);
|
|
pkey_assert(0);
|
|
}
|
|
dprintf2("waitpid ret: %ld\n", ret);
|
|
dprintf2("waitpid status: %d\n", status);
|
|
|
|
pkey_access_deny(pkey);
|
|
pkey_write_deny(pkey);
|
|
|
|
/* Write access, untested for now:
|
|
ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
|
|
pkey_assert(ret != -1);
|
|
dprintf1("poke at %p: %ld\n", peek_at, ret);
|
|
*/
|
|
|
|
/*
|
|
* Try to access the pkey-protected "ptr" via ptrace:
|
|
*/
|
|
ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
|
|
/* expect it to work, without an error: */
|
|
pkey_assert(ret != -1);
|
|
/* Now access from the current task, and expect an exception: */
|
|
peek_result = read_ptr(ptr);
|
|
expected_pkey_fault(pkey);
|
|
|
|
/*
|
|
* Try to access the NON-pkey-protected "plain_ptr" via ptrace:
|
|
*/
|
|
ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
|
|
/* expect it to work, without an error: */
|
|
pkey_assert(ret != -1);
|
|
/* Now access from the current task, and expect NO exception: */
|
|
peek_result = read_ptr(plain_ptr);
|
|
do_not_expect_pkey_fault("read plain pointer after ptrace");
|
|
|
|
ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
|
|
pkey_assert(ret != -1);
|
|
|
|
ret = kill(child_pid, SIGKILL);
|
|
pkey_assert(ret != -1);
|
|
|
|
wait(&status);
|
|
|
|
free(plain_ptr_unaligned);
|
|
}
|
|
|
|
void *get_pointer_to_instructions(void)
|
|
{
|
|
void *p1;
|
|
|
|
p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
|
|
dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
|
|
/* lots_o_noops_around_write should be page-aligned already */
|
|
assert(p1 == &lots_o_noops_around_write);
|
|
|
|
/* Point 'p1' at the *second* page of the function: */
|
|
p1 += PAGE_SIZE;
|
|
|
|
/*
|
|
* Try to ensure we fault this in on next touch to ensure
|
|
* we get an instruction fault as opposed to a data one
|
|
*/
|
|
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
|
|
|
|
return p1;
|
|
}
|
|
|
|
void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
|
|
{
|
|
void *p1;
|
|
int scratch;
|
|
int ptr_contents;
|
|
int ret;
|
|
|
|
p1 = get_pointer_to_instructions();
|
|
lots_o_noops_around_write(&scratch);
|
|
ptr_contents = read_ptr(p1);
|
|
dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
|
|
|
|
ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
|
|
pkey_assert(!ret);
|
|
pkey_access_deny(pkey);
|
|
|
|
dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
|
|
|
|
/*
|
|
* Make sure this is an *instruction* fault
|
|
*/
|
|
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
|
|
lots_o_noops_around_write(&scratch);
|
|
do_not_expect_pkey_fault("executing on PROT_EXEC memory");
|
|
expect_fault_on_read_execonly_key(p1, pkey);
|
|
}
|
|
|
|
void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
|
|
{
|
|
void *p1;
|
|
int scratch;
|
|
int ptr_contents;
|
|
int ret;
|
|
|
|
dprintf1("%s() start\n", __func__);
|
|
|
|
p1 = get_pointer_to_instructions();
|
|
lots_o_noops_around_write(&scratch);
|
|
ptr_contents = read_ptr(p1);
|
|
dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
|
|
|
|
/* Use a *normal* mprotect(), not mprotect_pkey(): */
|
|
ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
|
|
pkey_assert(!ret);
|
|
|
|
/*
|
|
* Reset the shadow, assuming that the above mprotect()
|
|
* correctly changed PKRU, but to an unknown value since
|
|
* the actual alllocated pkey is unknown.
|
|
*/
|
|
shadow_pkey_reg = __read_pkey_reg();
|
|
|
|
dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
|
|
|
|
/* Make sure this is an *instruction* fault */
|
|
madvise(p1, PAGE_SIZE, MADV_DONTNEED);
|
|
lots_o_noops_around_write(&scratch);
|
|
do_not_expect_pkey_fault("executing on PROT_EXEC memory");
|
|
expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
|
|
|
|
/*
|
|
* Put the memory back to non-PROT_EXEC. Should clear the
|
|
* exec-only pkey off the VMA and allow it to be readable
|
|
* again. Go to PROT_NONE first to check for a kernel bug
|
|
* that did not clear the pkey when doing PROT_NONE.
|
|
*/
|
|
ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
|
|
pkey_assert(!ret);
|
|
|
|
ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
|
|
pkey_assert(!ret);
|
|
ptr_contents = read_ptr(p1);
|
|
do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
|
|
}
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
|
|
{
|
|
u32 new_pkru;
|
|
pid_t child;
|
|
int status, ret;
|
|
int pkey_offset = pkey_reg_xstate_offset();
|
|
size_t xsave_size = cpu_max_xsave_size();
|
|
void *xsave;
|
|
u32 *pkey_register;
|
|
u64 *xstate_bv;
|
|
struct iovec iov;
|
|
|
|
new_pkru = ~read_pkey_reg();
|
|
/* Don't make PROT_EXEC mappings inaccessible */
|
|
new_pkru &= ~3;
|
|
|
|
child = fork();
|
|
pkey_assert(child >= 0);
|
|
dprintf3("[%d] fork() ret: %d\n", getpid(), child);
|
|
if (!child) {
|
|
ptrace(PTRACE_TRACEME, 0, 0, 0);
|
|
/* Stop and allow the tracer to modify PKRU directly */
|
|
raise(SIGSTOP);
|
|
|
|
/*
|
|
* need __read_pkey_reg() version so we do not do shadow_pkey_reg
|
|
* checking
|
|
*/
|
|
if (__read_pkey_reg() != new_pkru)
|
|
exit(1);
|
|
|
|
/* Stop and allow the tracer to clear XSTATE_BV for PKRU */
|
|
raise(SIGSTOP);
|
|
|
|
if (__read_pkey_reg() != 0)
|
|
exit(1);
|
|
|
|
/* Stop and allow the tracer to examine PKRU */
|
|
raise(SIGSTOP);
|
|
|
|
exit(0);
|
|
}
|
|
|
|
pkey_assert(child == waitpid(child, &status, 0));
|
|
dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
|
|
pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
|
|
|
|
xsave = (void *)malloc(xsave_size);
|
|
pkey_assert(xsave > 0);
|
|
|
|
/* Modify the PKRU register directly */
|
|
iov.iov_base = xsave;
|
|
iov.iov_len = xsave_size;
|
|
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
|
|
pkey_assert(ret == 0);
|
|
|
|
pkey_register = (u32 *)(xsave + pkey_offset);
|
|
pkey_assert(*pkey_register == read_pkey_reg());
|
|
|
|
*pkey_register = new_pkru;
|
|
|
|
ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
|
|
pkey_assert(ret == 0);
|
|
|
|
/* Test that the modification is visible in ptrace before any execution */
|
|
memset(xsave, 0xCC, xsave_size);
|
|
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
|
|
pkey_assert(ret == 0);
|
|
pkey_assert(*pkey_register == new_pkru);
|
|
|
|
/* Execute the tracee */
|
|
ret = ptrace(PTRACE_CONT, child, 0, 0);
|
|
pkey_assert(ret == 0);
|
|
|
|
/* Test that the tracee saw the PKRU value change */
|
|
pkey_assert(child == waitpid(child, &status, 0));
|
|
dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
|
|
pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Test that the modification is visible in ptrace after execution */
|
|
memset(xsave, 0xCC, xsave_size);
|
|
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
|
|
pkey_assert(ret == 0);
|
|
pkey_assert(*pkey_register == new_pkru);
|
|
|
|
/* Clear the PKRU bit from XSTATE_BV */
|
|
xstate_bv = (u64 *)(xsave + 512);
|
|
*xstate_bv &= ~(1 << 9);
|
|
|
|
ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
|
|
pkey_assert(ret == 0);
|
|
|
|
/* Test that the modification is visible in ptrace before any execution */
|
|
memset(xsave, 0xCC, xsave_size);
|
|
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
|
|
pkey_assert(ret == 0);
|
|
pkey_assert(*pkey_register == 0);
|
|
|
|
ret = ptrace(PTRACE_CONT, child, 0, 0);
|
|
pkey_assert(ret == 0);
|
|
|
|
/* Test that the tracee saw the PKRU value go to 0 */
|
|
pkey_assert(child == waitpid(child, &status, 0));
|
|
dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
|
|
pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
|
|
|
|
/* Test that the modification is visible in ptrace after execution */
|
|
memset(xsave, 0xCC, xsave_size);
|
|
ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
|
|
pkey_assert(ret == 0);
|
|
pkey_assert(*pkey_register == 0);
|
|
|
|
ret = ptrace(PTRACE_CONT, child, 0, 0);
|
|
pkey_assert(ret == 0);
|
|
pkey_assert(child == waitpid(child, &status, 0));
|
|
dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
|
|
pkey_assert(WIFEXITED(status));
|
|
pkey_assert(WEXITSTATUS(status) == 0);
|
|
free(xsave);
|
|
}
|
|
#endif
|
|
|
|
void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
|
|
{
|
|
int size = PAGE_SIZE;
|
|
int sret;
|
|
|
|
if (cpu_has_pkeys()) {
|
|
dprintf1("SKIP: %s: no CPU support\n", __func__);
|
|
return;
|
|
}
|
|
|
|
sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
|
|
pkey_assert(sret < 0);
|
|
}
|
|
|
|
void (*pkey_tests[])(int *ptr, u16 pkey) = {
|
|
test_read_of_write_disabled_region,
|
|
test_read_of_access_disabled_region,
|
|
test_read_of_access_disabled_region_with_page_already_mapped,
|
|
test_write_of_write_disabled_region,
|
|
test_write_of_write_disabled_region_with_page_already_mapped,
|
|
test_write_of_access_disabled_region,
|
|
test_write_of_access_disabled_region_with_page_already_mapped,
|
|
test_kernel_write_of_access_disabled_region,
|
|
test_kernel_write_of_write_disabled_region,
|
|
test_kernel_gup_of_access_disabled_region,
|
|
test_kernel_gup_write_to_write_disabled_region,
|
|
test_executing_on_unreadable_memory,
|
|
test_implicit_mprotect_exec_only_memory,
|
|
test_mprotect_with_pkey_0,
|
|
test_ptrace_of_child,
|
|
test_pkey_init_state,
|
|
test_pkey_syscalls_on_non_allocated_pkey,
|
|
test_pkey_syscalls_bad_args,
|
|
test_pkey_alloc_exhaust,
|
|
test_pkey_alloc_free_attach_pkey0,
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
test_ptrace_modifies_pkru,
|
|
#endif
|
|
};
|
|
|
|
void run_tests_once(void)
|
|
{
|
|
int *ptr;
|
|
int prot = PROT_READ|PROT_WRITE;
|
|
|
|
for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
|
|
int pkey;
|
|
int orig_pkey_faults = pkey_faults;
|
|
|
|
dprintf1("======================\n");
|
|
dprintf1("test %d preparing...\n", test_nr);
|
|
|
|
tracing_on();
|
|
pkey = alloc_random_pkey();
|
|
dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
|
|
ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
|
|
dprintf1("test %d starting...\n", test_nr);
|
|
pkey_tests[test_nr](ptr, pkey);
|
|
dprintf1("freeing test memory: %p\n", ptr);
|
|
free_pkey_malloc(ptr);
|
|
sys_pkey_free(pkey);
|
|
|
|
dprintf1("pkey_faults: %d\n", pkey_faults);
|
|
dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
|
|
|
|
tracing_off();
|
|
close_test_fds();
|
|
|
|
printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
|
|
dprintf1("======================\n\n");
|
|
}
|
|
iteration_nr++;
|
|
}
|
|
|
|
void pkey_setup_shadow(void)
|
|
{
|
|
shadow_pkey_reg = __read_pkey_reg();
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
int nr_iterations = 22;
|
|
int pkeys_supported = is_pkeys_supported();
|
|
|
|
srand((unsigned int)time(NULL));
|
|
|
|
setup_handlers();
|
|
|
|
printf("has pkeys: %d\n", pkeys_supported);
|
|
|
|
if (!pkeys_supported) {
|
|
int size = PAGE_SIZE;
|
|
int *ptr;
|
|
|
|
printf("running PKEY tests for unsupported CPU/OS\n");
|
|
|
|
ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
assert(ptr != (void *)-1);
|
|
test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
|
|
exit(0);
|
|
}
|
|
|
|
pkey_setup_shadow();
|
|
printf("startup pkey_reg: %016llx\n", read_pkey_reg());
|
|
setup_hugetlbfs();
|
|
|
|
while (nr_iterations-- > 0)
|
|
run_tests_once();
|
|
|
|
printf("done (all tests OK)\n");
|
|
return 0;
|
|
}
|