685 строки
20 KiB
C
685 строки
20 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1994, 1995 Waldorf GmbH
|
|
* Copyright (C) 1994 - 2000 Ralf Baechle
|
|
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
|
|
* Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
|
|
* Author: Maciej W. Rozycki <macro@mips.com>
|
|
*/
|
|
#ifndef _ASM_IO_H
|
|
#define _ASM_IO_H
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/addrspace.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cpu-features.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable-bits.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/string.h>
|
|
|
|
#include <ioremap.h>
|
|
#include <mangle-port.h>
|
|
|
|
/*
|
|
* Slowdown I/O port space accesses for antique hardware.
|
|
*/
|
|
#undef CONF_SLOWDOWN_IO
|
|
|
|
/*
|
|
* Raw operations are never swapped in software. OTOH values that raw
|
|
* operations are working on may or may not have been swapped by the bus
|
|
* hardware. An example use would be for flash memory that's used for
|
|
* execute in place.
|
|
*/
|
|
# define __raw_ioswabb(x) (x)
|
|
# define __raw_ioswabw(x) (x)
|
|
# define __raw_ioswabl(x) (x)
|
|
# define __raw_ioswabq(x) (x)
|
|
# define ____raw_ioswabq(x) (x)
|
|
|
|
/*
|
|
* Sane hardware offers swapping of PCI/ISA I/O space accesses in hardware;
|
|
* less sane hardware forces software to fiddle with this...
|
|
*
|
|
* Regardless, if the host bus endianness mismatches that of PCI/ISA, then
|
|
* you can't have the numerical value of data and byte addresses within
|
|
* multibyte quantities both preserved at the same time. Hence two
|
|
* variations of functions: non-prefixed ones that preserve the value
|
|
* and prefixed ones that preserve byte addresses. The latters are
|
|
* typically used for moving raw data between a peripheral and memory (cf.
|
|
* string I/O functions), hence the "mem_" prefix.
|
|
*/
|
|
#if defined(CONFIG_SWAP_IO_SPACE)
|
|
|
|
# define ioswabb(x) (x)
|
|
# define mem_ioswabb(x) (x)
|
|
# ifdef CONFIG_SGI_IP22
|
|
/*
|
|
* IP22 seems braindead enough to swap 16bits values in hardware, but
|
|
* not 32bits. Go figure... Can't tell without documentation.
|
|
*/
|
|
# define ioswabw(x) (x)
|
|
# define mem_ioswabw(x) le16_to_cpu(x)
|
|
# else
|
|
# define ioswabw(x) le16_to_cpu(x)
|
|
# define mem_ioswabw(x) (x)
|
|
# endif
|
|
# define ioswabl(x) le32_to_cpu(x)
|
|
# define mem_ioswabl(x) (x)
|
|
# define ioswabq(x) le64_to_cpu(x)
|
|
# define mem_ioswabq(x) (x)
|
|
|
|
#else
|
|
|
|
# define ioswabb(x) (x)
|
|
# define mem_ioswabb(x) (x)
|
|
# define ioswabw(x) (x)
|
|
# define mem_ioswabw(x) cpu_to_le16(x)
|
|
# define ioswabl(x) (x)
|
|
# define mem_ioswabl(x) cpu_to_le32(x)
|
|
# define ioswabq(x) (x)
|
|
# define mem_ioswabq(x) cpu_to_le32(x)
|
|
|
|
#endif
|
|
|
|
#define IO_SPACE_LIMIT 0xffff
|
|
|
|
/*
|
|
* On MIPS I/O ports are memory mapped, so we access them using normal
|
|
* load/store instructions. mips_io_port_base is the virtual address to
|
|
* which all ports are being mapped. For sake of efficiency some code
|
|
* assumes that this is an address that can be loaded with a single lui
|
|
* instruction, so the lower 16 bits must be zero. Should be true on
|
|
* on any sane architecture; generic code does not use this assumption.
|
|
*/
|
|
extern const unsigned long mips_io_port_base;
|
|
|
|
#define set_io_port_base(base) \
|
|
do { * (unsigned long *) &mips_io_port_base = (base); } while (0)
|
|
|
|
/*
|
|
* Thanks to James van Artsdalen for a better timing-fix than
|
|
* the two short jumps: using outb's to a nonexistent port seems
|
|
* to guarantee better timings even on fast machines.
|
|
*
|
|
* On the other hand, I'd like to be sure of a non-existent port:
|
|
* I feel a bit unsafe about using 0x80 (should be safe, though)
|
|
*
|
|
* Linus
|
|
*
|
|
*/
|
|
|
|
#define __SLOW_DOWN_IO \
|
|
__asm__ __volatile__( \
|
|
"sb\t$0,0x80(%0)" \
|
|
: : "r" (mips_io_port_base));
|
|
|
|
#ifdef CONF_SLOWDOWN_IO
|
|
#ifdef REALLY_SLOW_IO
|
|
#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
|
|
#else
|
|
#define SLOW_DOWN_IO __SLOW_DOWN_IO
|
|
#endif
|
|
#else
|
|
#define SLOW_DOWN_IO
|
|
#endif
|
|
|
|
/*
|
|
* virt_to_phys - map virtual addresses to physical
|
|
* @address: address to remap
|
|
*
|
|
* The returned physical address is the physical (CPU) mapping for
|
|
* the memory address given. It is only valid to use this function on
|
|
* addresses directly mapped or allocated via kmalloc.
|
|
*
|
|
* This function does not give bus mappings for DMA transfers. In
|
|
* almost all conceivable cases a device driver should not be using
|
|
* this function
|
|
*/
|
|
static inline unsigned long virt_to_phys(volatile void * address)
|
|
{
|
|
return (unsigned long)address - PAGE_OFFSET;
|
|
}
|
|
|
|
/*
|
|
* phys_to_virt - map physical address to virtual
|
|
* @address: address to remap
|
|
*
|
|
* The returned virtual address is a current CPU mapping for
|
|
* the memory address given. It is only valid to use this function on
|
|
* addresses that have a kernel mapping
|
|
*
|
|
* This function does not handle bus mappings for DMA transfers. In
|
|
* almost all conceivable cases a device driver should not be using
|
|
* this function
|
|
*/
|
|
static inline void * phys_to_virt(unsigned long address)
|
|
{
|
|
return (void *)(address + PAGE_OFFSET);
|
|
}
|
|
|
|
/*
|
|
* ISA I/O bus memory addresses are 1:1 with the physical address.
|
|
*/
|
|
static inline unsigned long isa_virt_to_bus(volatile void * address)
|
|
{
|
|
return (unsigned long)address - PAGE_OFFSET;
|
|
}
|
|
|
|
static inline void * isa_bus_to_virt(unsigned long address)
|
|
{
|
|
return (void *)(address + PAGE_OFFSET);
|
|
}
|
|
|
|
#define isa_page_to_bus page_to_phys
|
|
|
|
/*
|
|
* However PCI ones are not necessarily 1:1 and therefore these interfaces
|
|
* are forbidden in portable PCI drivers.
|
|
*
|
|
* Allow them for x86 for legacy drivers, though.
|
|
*/
|
|
#define virt_to_bus virt_to_phys
|
|
#define bus_to_virt phys_to_virt
|
|
|
|
/*
|
|
* isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
|
|
* for the processor. This implies the assumption that there is only
|
|
* one of these busses.
|
|
*/
|
|
extern unsigned long isa_slot_offset;
|
|
|
|
/*
|
|
* Change "struct page" to physical address.
|
|
*/
|
|
#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
|
|
|
|
extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
|
|
extern void __iounmap(volatile void __iomem *addr);
|
|
|
|
static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
#define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
|
|
|
|
if (cpu_has_64bit_addresses) {
|
|
u64 base = UNCAC_BASE;
|
|
|
|
/*
|
|
* R10000 supports a 2 bit uncached attribute therefore
|
|
* UNCAC_BASE may not equal IO_BASE.
|
|
*/
|
|
if (flags == _CACHE_UNCACHED)
|
|
base = (u64) IO_BASE;
|
|
return (void __iomem *) (unsigned long) (base + offset);
|
|
} else if (__builtin_constant_p(offset) &&
|
|
__builtin_constant_p(size) && __builtin_constant_p(flags)) {
|
|
phys_t phys_addr, last_addr;
|
|
|
|
phys_addr = fixup_bigphys_addr(offset, size);
|
|
|
|
/* Don't allow wraparound or zero size. */
|
|
last_addr = phys_addr + size - 1;
|
|
if (!size || last_addr < phys_addr)
|
|
return NULL;
|
|
|
|
/*
|
|
* Map uncached objects in the low 512MB of address
|
|
* space using KSEG1.
|
|
*/
|
|
if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
|
|
flags == _CACHE_UNCACHED)
|
|
return (void __iomem *)CKSEG1ADDR(phys_addr);
|
|
}
|
|
|
|
return __ioremap(offset, size, flags);
|
|
|
|
#undef __IS_LOW512
|
|
}
|
|
|
|
/*
|
|
* ioremap - map bus memory into CPU space
|
|
* @offset: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* ioremap performs a platform specific sequence of operations to
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
* address is not guaranteed to be usable directly as a virtual
|
|
* address.
|
|
*/
|
|
#define ioremap(offset, size) \
|
|
__ioremap_mode((offset), (size), _CACHE_UNCACHED)
|
|
|
|
/*
|
|
* ioremap_nocache - map bus memory into CPU space
|
|
* @offset: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* ioremap_nocache performs a platform specific sequence of operations to
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
* address is not guaranteed to be usable directly as a virtual
|
|
* address.
|
|
*
|
|
* This version of ioremap ensures that the memory is marked uncachable
|
|
* on the CPU as well as honouring existing caching rules from things like
|
|
* the PCI bus. Note that there are other caches and buffers on many
|
|
* busses. In paticular driver authors should read up on PCI writes
|
|
*
|
|
* It's useful if some control registers are in such an area and
|
|
* write combining or read caching is not desirable:
|
|
*/
|
|
#define ioremap_nocache(offset, size) \
|
|
__ioremap_mode((offset), (size), _CACHE_UNCACHED)
|
|
|
|
/*
|
|
* These two are MIPS specific ioremap variant. ioremap_cacheable_cow
|
|
* requests a cachable mapping, ioremap_uncached_accelerated requests a
|
|
* mapping using the uncached accelerated mode which isn't supported on
|
|
* all processors.
|
|
*/
|
|
#define ioremap_cacheable_cow(offset, size) \
|
|
__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
|
|
#define ioremap_uncached_accelerated(offset, size) \
|
|
__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
|
|
|
|
static inline void iounmap(volatile void __iomem *addr)
|
|
{
|
|
#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
|
|
|
|
if (cpu_has_64bit_addresses ||
|
|
(__builtin_constant_p(addr) && __IS_KSEG1(addr)))
|
|
return;
|
|
|
|
__iounmap(addr);
|
|
|
|
#undef __IS_KSEG1
|
|
}
|
|
|
|
#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
|
|
\
|
|
static inline void pfx##write##bwlq(type val, \
|
|
volatile void __iomem *mem) \
|
|
{ \
|
|
volatile type *__mem; \
|
|
type __val; \
|
|
\
|
|
__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
|
|
\
|
|
__val = pfx##ioswab##bwlq(val); \
|
|
\
|
|
if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
|
|
*__mem = __val; \
|
|
else if (cpu_has_64bits) { \
|
|
unsigned long __flags; \
|
|
type __tmp; \
|
|
\
|
|
if (irq) \
|
|
local_irq_save(__flags); \
|
|
__asm__ __volatile__( \
|
|
".set mips3" "\t\t# __writeq""\n\t" \
|
|
"dsll32 %L0, %L0, 0" "\n\t" \
|
|
"dsrl32 %L0, %L0, 0" "\n\t" \
|
|
"dsll32 %M0, %M0, 0" "\n\t" \
|
|
"or %L0, %L0, %M0" "\n\t" \
|
|
"sd %L0, %2" "\n\t" \
|
|
".set mips0" "\n" \
|
|
: "=r" (__tmp) \
|
|
: "0" (__val), "m" (*__mem)); \
|
|
if (irq) \
|
|
local_irq_restore(__flags); \
|
|
} else \
|
|
BUG(); \
|
|
} \
|
|
\
|
|
static inline type pfx##read##bwlq(volatile void __iomem *mem) \
|
|
{ \
|
|
volatile type *__mem; \
|
|
type __val; \
|
|
\
|
|
__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
|
|
\
|
|
if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
|
|
__val = *__mem; \
|
|
else if (cpu_has_64bits) { \
|
|
unsigned long __flags; \
|
|
\
|
|
if (irq) \
|
|
local_irq_save(__flags); \
|
|
__asm__ __volatile__( \
|
|
".set mips3" "\t\t# __readq" "\n\t" \
|
|
"ld %L0, %1" "\n\t" \
|
|
"dsra32 %M0, %L0, 0" "\n\t" \
|
|
"sll %L0, %L0, 0" "\n\t" \
|
|
".set mips0" "\n" \
|
|
: "=r" (__val) \
|
|
: "m" (*__mem)); \
|
|
if (irq) \
|
|
local_irq_restore(__flags); \
|
|
} else { \
|
|
__val = 0; \
|
|
BUG(); \
|
|
} \
|
|
\
|
|
return pfx##ioswab##bwlq(__val); \
|
|
}
|
|
|
|
#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
|
|
\
|
|
static inline void pfx##out##bwlq##p(type val, unsigned long port) \
|
|
{ \
|
|
volatile type *__addr; \
|
|
type __val; \
|
|
\
|
|
port = __swizzle_addr_##bwlq(port); \
|
|
__addr = (void *)(mips_io_port_base + port); \
|
|
\
|
|
__val = pfx##ioswab##bwlq(val); \
|
|
\
|
|
/* Really, we want this to be atomic */ \
|
|
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
|
|
\
|
|
*__addr = __val; \
|
|
slow; \
|
|
} \
|
|
\
|
|
static inline type pfx##in##bwlq##p(unsigned long port) \
|
|
{ \
|
|
volatile type *__addr; \
|
|
type __val; \
|
|
\
|
|
port = __swizzle_addr_##bwlq(port); \
|
|
__addr = (void *)(mips_io_port_base + port); \
|
|
\
|
|
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
|
|
\
|
|
__val = *__addr; \
|
|
slow; \
|
|
\
|
|
return pfx##ioswab##bwlq(__val); \
|
|
}
|
|
|
|
#define __BUILD_MEMORY_PFX(bus, bwlq, type) \
|
|
\
|
|
__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
|
|
|
|
#define BUILDIO_MEM(bwlq, type) \
|
|
\
|
|
__BUILD_MEMORY_PFX(__raw_, bwlq, type) \
|
|
__BUILD_MEMORY_PFX(, bwlq, type) \
|
|
__BUILD_MEMORY_PFX(mem_, bwlq, type) \
|
|
|
|
BUILDIO_MEM(b, u8)
|
|
BUILDIO_MEM(w, u16)
|
|
BUILDIO_MEM(l, u32)
|
|
BUILDIO_MEM(q, u64)
|
|
|
|
#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
|
|
__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
|
|
__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
|
|
|
|
#define BUILDIO_IOPORT(bwlq, type) \
|
|
__BUILD_IOPORT_PFX(, bwlq, type) \
|
|
__BUILD_IOPORT_PFX(mem_, bwlq, type)
|
|
|
|
BUILDIO_IOPORT(b, u8)
|
|
BUILDIO_IOPORT(w, u16)
|
|
BUILDIO_IOPORT(l, u32)
|
|
#ifdef CONFIG_64BIT
|
|
BUILDIO_IOPORT(q, u64)
|
|
#endif
|
|
|
|
#define __BUILDIO(bwlq, type) \
|
|
\
|
|
__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
|
|
|
|
__BUILDIO(q, u64)
|
|
|
|
#define readb_relaxed readb
|
|
#define readw_relaxed readw
|
|
#define readl_relaxed readl
|
|
#define readq_relaxed readq
|
|
|
|
/*
|
|
* Some code tests for these symbols
|
|
*/
|
|
#define readq readq
|
|
#define writeq writeq
|
|
|
|
#define __BUILD_MEMORY_STRING(bwlq, type) \
|
|
\
|
|
static inline void writes##bwlq(volatile void __iomem *mem, \
|
|
const void *addr, unsigned int count) \
|
|
{ \
|
|
const volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
mem_write##bwlq(*__addr, mem); \
|
|
__addr++; \
|
|
} \
|
|
} \
|
|
\
|
|
static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
|
|
unsigned int count) \
|
|
{ \
|
|
volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
*__addr = mem_read##bwlq(mem); \
|
|
__addr++; \
|
|
} \
|
|
}
|
|
|
|
#define __BUILD_IOPORT_STRING(bwlq, type) \
|
|
\
|
|
static inline void outs##bwlq(unsigned long port, const void *addr, \
|
|
unsigned int count) \
|
|
{ \
|
|
const volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
mem_out##bwlq(*__addr, port); \
|
|
__addr++; \
|
|
} \
|
|
} \
|
|
\
|
|
static inline void ins##bwlq(unsigned long port, void *addr, \
|
|
unsigned int count) \
|
|
{ \
|
|
volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
*__addr = mem_in##bwlq(port); \
|
|
__addr++; \
|
|
} \
|
|
}
|
|
|
|
#define BUILDSTRING(bwlq, type) \
|
|
\
|
|
__BUILD_MEMORY_STRING(bwlq, type) \
|
|
__BUILD_IOPORT_STRING(bwlq, type)
|
|
|
|
BUILDSTRING(b, u8)
|
|
BUILDSTRING(w, u16)
|
|
BUILDSTRING(l, u32)
|
|
#ifdef CONFIG_64BIT
|
|
BUILDSTRING(q, u64)
|
|
#endif
|
|
|
|
|
|
/* Depends on MIPS II instruction set */
|
|
#define mmiowb() asm volatile ("sync" ::: "memory")
|
|
|
|
static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
|
|
{
|
|
memset((void __force *) addr, val, count);
|
|
}
|
|
static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
|
|
{
|
|
memcpy(dst, (void __force *) src, count);
|
|
}
|
|
static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
|
|
{
|
|
memcpy((void __force *) dst, src, count);
|
|
}
|
|
|
|
/*
|
|
* Memory Mapped I/O
|
|
*/
|
|
#define ioread8(addr) readb(addr)
|
|
#define ioread16(addr) readw(addr)
|
|
#define ioread32(addr) readl(addr)
|
|
|
|
#define iowrite8(b,addr) writeb(b,addr)
|
|
#define iowrite16(w,addr) writew(w,addr)
|
|
#define iowrite32(l,addr) writel(l,addr)
|
|
|
|
#define ioread8_rep(a,b,c) readsb(a,b,c)
|
|
#define ioread16_rep(a,b,c) readsw(a,b,c)
|
|
#define ioread32_rep(a,b,c) readsl(a,b,c)
|
|
|
|
#define iowrite8_rep(a,b,c) writesb(a,b,c)
|
|
#define iowrite16_rep(a,b,c) writesw(a,b,c)
|
|
#define iowrite32_rep(a,b,c) writesl(a,b,c)
|
|
|
|
/* Create a virtual mapping cookie for an IO port range */
|
|
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
|
|
extern void ioport_unmap(void __iomem *);
|
|
|
|
/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
|
|
struct pci_dev;
|
|
extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max);
|
|
extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
|
|
|
|
/*
|
|
* ISA space is 'always mapped' on currently supported MIPS systems, no need
|
|
* to explicitly ioremap() it. The fact that the ISA IO space is mapped
|
|
* to PAGE_OFFSET is pure coincidence - it does not mean ISA values
|
|
* are physical addresses. The following constant pointer can be
|
|
* used as the IO-area pointer (it can be iounmapped as well, so the
|
|
* analogy with PCI is quite large):
|
|
*/
|
|
#define __ISA_IO_base ((char *)(isa_slot_offset))
|
|
|
|
#define isa_readb(a) readb(__ISA_IO_base + (a))
|
|
#define isa_readw(a) readw(__ISA_IO_base + (a))
|
|
#define isa_readl(a) readl(__ISA_IO_base + (a))
|
|
#define isa_readq(a) readq(__ISA_IO_base + (a))
|
|
#define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a))
|
|
#define isa_writew(w,a) writew(w,__ISA_IO_base + (a))
|
|
#define isa_writel(l,a) writel(l,__ISA_IO_base + (a))
|
|
#define isa_writeq(q,a) writeq(q,__ISA_IO_base + (a))
|
|
#define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c))
|
|
#define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c))
|
|
#define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c))
|
|
|
|
/*
|
|
* We don't have csum_partial_copy_fromio() yet, so we cheat here and
|
|
* just copy it. The net code will then do the checksum later.
|
|
*/
|
|
#define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len))
|
|
#define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d))
|
|
|
|
/*
|
|
* check_signature - find BIOS signatures
|
|
* @io_addr: mmio address to check
|
|
* @signature: signature block
|
|
* @length: length of signature
|
|
*
|
|
* Perform a signature comparison with the mmio address io_addr. This
|
|
* address should have been obtained by ioremap.
|
|
* Returns 1 on a match.
|
|
*/
|
|
static inline int check_signature(char __iomem *io_addr,
|
|
const unsigned char *signature, int length)
|
|
{
|
|
int retval = 0;
|
|
do {
|
|
if (readb(io_addr) != *signature)
|
|
goto out;
|
|
io_addr++;
|
|
signature++;
|
|
length--;
|
|
} while (length);
|
|
retval = 1;
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* The caches on some architectures aren't dma-coherent and have need to
|
|
* handle this in software. There are three types of operations that
|
|
* can be applied to dma buffers.
|
|
*
|
|
* - dma_cache_wback_inv(start, size) makes caches and coherent by
|
|
* writing the content of the caches back to memory, if necessary.
|
|
* The function also invalidates the affected part of the caches as
|
|
* necessary before DMA transfers from outside to memory.
|
|
* - dma_cache_wback(start, size) makes caches and coherent by
|
|
* writing the content of the caches back to memory, if necessary.
|
|
* The function also invalidates the affected part of the caches as
|
|
* necessary before DMA transfers from outside to memory.
|
|
* - dma_cache_inv(start, size) invalidates the affected parts of the
|
|
* caches. Dirty lines of the caches may be written back or simply
|
|
* be discarded. This operation is necessary before dma operations
|
|
* to the memory.
|
|
*/
|
|
#ifdef CONFIG_DMA_NONCOHERENT
|
|
|
|
extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
|
|
extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
|
|
extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
|
|
|
|
#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start,size)
|
|
#define dma_cache_wback(start, size) _dma_cache_wback(start,size)
|
|
#define dma_cache_inv(start, size) _dma_cache_inv(start,size)
|
|
|
|
#else /* Sane hardware */
|
|
|
|
#define dma_cache_wback_inv(start,size) \
|
|
do { (void) (start); (void) (size); } while (0)
|
|
#define dma_cache_wback(start,size) \
|
|
do { (void) (start); (void) (size); } while (0)
|
|
#define dma_cache_inv(start,size) \
|
|
do { (void) (start); (void) (size); } while (0)
|
|
|
|
#endif /* CONFIG_DMA_NONCOHERENT */
|
|
|
|
/*
|
|
* Read a 32-bit register that requires a 64-bit read cycle on the bus.
|
|
* Avoid interrupt mucking, just adjust the address for 4-byte access.
|
|
* Assume the addresses are 8-byte aligned.
|
|
*/
|
|
#ifdef __MIPSEB__
|
|
#define __CSR_32_ADJUST 4
|
|
#else
|
|
#define __CSR_32_ADJUST 0
|
|
#endif
|
|
|
|
#define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
|
|
#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
#define xlate_dev_mem_ptr(p) __va(p)
|
|
|
|
/*
|
|
* Convert a virtual cached pointer to an uncached pointer
|
|
*/
|
|
#define xlate_dev_kmem_ptr(p) p
|
|
|
|
#endif /* _ASM_IO_H */
|