WSL2-Linux-Kernel/mm/hugetlb.c

865 строки
21 KiB
C

/*
* Generic hugetlb support.
* (C) William Irwin, April 2004
*/
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <linux/hugetlb.h>
#include "internal.h"
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
unsigned long max_huge_pages;
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
/*
* Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
*/
static DEFINE_SPINLOCK(hugetlb_lock);
static void clear_huge_page(struct page *page, unsigned long addr)
{
int i;
might_sleep();
for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
cond_resched();
clear_user_highpage(page + i, addr);
}
}
static void copy_huge_page(struct page *dst, struct page *src,
unsigned long addr, struct vm_area_struct *vma)
{
int i;
might_sleep();
for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
cond_resched();
copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
}
}
static void enqueue_huge_page(struct page *page)
{
int nid = page_to_nid(page);
list_add(&page->lru, &hugepage_freelists[nid]);
free_huge_pages++;
free_huge_pages_node[nid]++;
}
static struct page *dequeue_huge_page(struct vm_area_struct *vma,
unsigned long address)
{
int nid = numa_node_id();
struct page *page = NULL;
struct zonelist *zonelist = huge_zonelist(vma, address);
struct zone **z;
for (z = zonelist->zones; *z; z++) {
nid = zone_to_nid(*z);
if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
!list_empty(&hugepage_freelists[nid]))
break;
}
if (*z) {
page = list_entry(hugepage_freelists[nid].next,
struct page, lru);
list_del(&page->lru);
free_huge_pages--;
free_huge_pages_node[nid]--;
}
return page;
}
static void free_huge_page(struct page *page)
{
BUG_ON(page_count(page));
INIT_LIST_HEAD(&page->lru);
spin_lock(&hugetlb_lock);
enqueue_huge_page(page);
spin_unlock(&hugetlb_lock);
}
static int alloc_fresh_huge_page(void)
{
static int nid = 0;
struct page *page;
page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
HUGETLB_PAGE_ORDER);
nid = next_node(nid, node_online_map);
if (nid == MAX_NUMNODES)
nid = first_node(node_online_map);
if (page) {
set_compound_page_dtor(page, free_huge_page);
spin_lock(&hugetlb_lock);
nr_huge_pages++;
nr_huge_pages_node[page_to_nid(page)]++;
spin_unlock(&hugetlb_lock);
put_page(page); /* free it into the hugepage allocator */
return 1;
}
return 0;
}
static struct page *alloc_huge_page(struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
spin_lock(&hugetlb_lock);
if (vma->vm_flags & VM_MAYSHARE)
resv_huge_pages--;
else if (free_huge_pages <= resv_huge_pages)
goto fail;
page = dequeue_huge_page(vma, addr);
if (!page)
goto fail;
spin_unlock(&hugetlb_lock);
set_page_refcounted(page);
return page;
fail:
if (vma->vm_flags & VM_MAYSHARE)
resv_huge_pages++;
spin_unlock(&hugetlb_lock);
return NULL;
}
static int __init hugetlb_init(void)
{
unsigned long i;
if (HPAGE_SHIFT == 0)
return 0;
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&hugepage_freelists[i]);
for (i = 0; i < max_huge_pages; ++i) {
if (!alloc_fresh_huge_page())
break;
}
max_huge_pages = free_huge_pages = nr_huge_pages = i;
printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
return 0;
}
module_init(hugetlb_init);
static int __init hugetlb_setup(char *s)
{
if (sscanf(s, "%lu", &max_huge_pages) <= 0)
max_huge_pages = 0;
return 1;
}
__setup("hugepages=", hugetlb_setup);
static unsigned int cpuset_mems_nr(unsigned int *array)
{
int node;
unsigned int nr = 0;
for_each_node_mask(node, cpuset_current_mems_allowed)
nr += array[node];
return nr;
}
#ifdef CONFIG_SYSCTL
static void update_and_free_page(struct page *page)
{
int i;
nr_huge_pages--;
nr_huge_pages_node[page_to_nid(page)]--;
for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
1 << PG_private | 1<< PG_writeback);
}
page[1].lru.next = NULL;
set_page_refcounted(page);
__free_pages(page, HUGETLB_PAGE_ORDER);
}
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
int i;
for (i = 0; i < MAX_NUMNODES; ++i) {
struct page *page, *next;
list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
if (PageHighMem(page))
continue;
list_del(&page->lru);
update_and_free_page(page);
free_huge_pages--;
free_huge_pages_node[page_to_nid(page)]--;
if (count >= nr_huge_pages)
return;
}
}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif
static unsigned long set_max_huge_pages(unsigned long count)
{
while (count > nr_huge_pages) {
if (!alloc_fresh_huge_page())
return nr_huge_pages;
}
if (count >= nr_huge_pages)
return nr_huge_pages;
spin_lock(&hugetlb_lock);
count = max(count, resv_huge_pages);
try_to_free_low(count);
while (count < nr_huge_pages) {
struct page *page = dequeue_huge_page(NULL, 0);
if (!page)
break;
update_and_free_page(page);
}
spin_unlock(&hugetlb_lock);
return nr_huge_pages;
}
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
struct file *file, void __user *buffer,
size_t *length, loff_t *ppos)
{
proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
max_huge_pages = set_max_huge_pages(max_huge_pages);
return 0;
}
#endif /* CONFIG_SYSCTL */
int hugetlb_report_meminfo(char *buf)
{
return sprintf(buf,
"HugePages_Total: %5lu\n"
"HugePages_Free: %5lu\n"
"HugePages_Rsvd: %5lu\n"
"Hugepagesize: %5lu kB\n",
nr_huge_pages,
free_huge_pages,
resv_huge_pages,
HPAGE_SIZE/1024);
}
int hugetlb_report_node_meminfo(int nid, char *buf)
{
return sprintf(buf,
"Node %d HugePages_Total: %5u\n"
"Node %d HugePages_Free: %5u\n",
nid, nr_huge_pages_node[nid],
nid, free_huge_pages_node[nid]);
}
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}
/*
* We cannot handle pagefaults against hugetlb pages at all. They cause
* handle_mm_fault() to try to instantiate regular-sized pages in the
* hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
* this far.
*/
static struct page *hugetlb_nopage(struct vm_area_struct *vma,
unsigned long address, int *unused)
{
BUG();
return NULL;
}
struct vm_operations_struct hugetlb_vm_ops = {
.nopage = hugetlb_nopage,
};
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
int writable)
{
pte_t entry;
if (writable) {
entry =
pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
} else {
entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
}
entry = pte_mkyoung(entry);
entry = pte_mkhuge(entry);
return entry;
}
static void set_huge_ptep_writable(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
pte_t entry;
entry = pte_mkwrite(pte_mkdirty(*ptep));
ptep_set_access_flags(vma, address, ptep, entry, 1);
update_mmu_cache(vma, address, entry);
lazy_mmu_prot_update(entry);
}
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma)
{
pte_t *src_pte, *dst_pte, entry;
struct page *ptepage;
unsigned long addr;
int cow;
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
src_pte = huge_pte_offset(src, addr);
if (!src_pte)
continue;
dst_pte = huge_pte_alloc(dst, addr);
if (!dst_pte)
goto nomem;
spin_lock(&dst->page_table_lock);
spin_lock(&src->page_table_lock);
if (!pte_none(*src_pte)) {
if (cow)
ptep_set_wrprotect(src, addr, src_pte);
entry = *src_pte;
ptepage = pte_page(entry);
get_page(ptepage);
set_huge_pte_at(dst, addr, dst_pte, entry);
}
spin_unlock(&src->page_table_lock);
spin_unlock(&dst->page_table_lock);
}
return 0;
nomem:
return -ENOMEM;
}
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long address;
pte_t *ptep;
pte_t pte;
struct page *page;
struct page *tmp;
/*
* A page gathering list, protected by per file i_mmap_lock. The
* lock is used to avoid list corruption from multiple unmapping
* of the same page since we are using page->lru.
*/
LIST_HEAD(page_list);
WARN_ON(!is_vm_hugetlb_page(vma));
BUG_ON(start & ~HPAGE_MASK);
BUG_ON(end & ~HPAGE_MASK);
spin_lock(&mm->page_table_lock);
for (address = start; address < end; address += HPAGE_SIZE) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
if (huge_pmd_unshare(mm, &address, ptep))
continue;
pte = huge_ptep_get_and_clear(mm, address, ptep);
if (pte_none(pte))
continue;
page = pte_page(pte);
if (pte_dirty(pte))
set_page_dirty(page);
list_add(&page->lru, &page_list);
}
spin_unlock(&mm->page_table_lock);
flush_tlb_range(vma, start, end);
list_for_each_entry_safe(page, tmp, &page_list, lru) {
list_del(&page->lru);
put_page(page);
}
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
/*
* It is undesirable to test vma->vm_file as it should be non-null
* for valid hugetlb area. However, vm_file will be NULL in the error
* cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
* do_mmap_pgoff() nullifies vma->vm_file before calling this function
* to clean up. Since no pte has actually been setup, it is safe to
* do nothing in this case.
*/
if (vma->vm_file) {
spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
__unmap_hugepage_range(vma, start, end);
spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
}
}
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, pte_t pte)
{
struct page *old_page, *new_page;
int avoidcopy;
old_page = pte_page(pte);
/* If no-one else is actually using this page, avoid the copy
* and just make the page writable */
avoidcopy = (page_count(old_page) == 1);
if (avoidcopy) {
set_huge_ptep_writable(vma, address, ptep);
return VM_FAULT_MINOR;
}
page_cache_get(old_page);
new_page = alloc_huge_page(vma, address);
if (!new_page) {
page_cache_release(old_page);
return VM_FAULT_OOM;
}
spin_unlock(&mm->page_table_lock);
copy_huge_page(new_page, old_page, address, vma);
spin_lock(&mm->page_table_lock);
ptep = huge_pte_offset(mm, address & HPAGE_MASK);
if (likely(pte_same(*ptep, pte))) {
/* Break COW */
set_huge_pte_at(mm, address, ptep,
make_huge_pte(vma, new_page, 1));
/* Make the old page be freed below */
new_page = old_page;
}
page_cache_release(new_page);
page_cache_release(old_page);
return VM_FAULT_MINOR;
}
int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, int write_access)
{
int ret = VM_FAULT_SIGBUS;
unsigned long idx;
unsigned long size;
struct page *page;
struct address_space *mapping;
pte_t new_pte;
mapping = vma->vm_file->f_mapping;
idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
/*
* Use page lock to guard against racing truncation
* before we get page_table_lock.
*/
retry:
page = find_lock_page(mapping, idx);
if (!page) {
size = i_size_read(mapping->host) >> HPAGE_SHIFT;
if (idx >= size)
goto out;
if (hugetlb_get_quota(mapping))
goto out;
page = alloc_huge_page(vma, address);
if (!page) {
hugetlb_put_quota(mapping);
ret = VM_FAULT_OOM;
goto out;
}
clear_huge_page(page, address);
if (vma->vm_flags & VM_SHARED) {
int err;
err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
if (err) {
put_page(page);
hugetlb_put_quota(mapping);
if (err == -EEXIST)
goto retry;
goto out;
}
} else
lock_page(page);
}
spin_lock(&mm->page_table_lock);
size = i_size_read(mapping->host) >> HPAGE_SHIFT;
if (idx >= size)
goto backout;
ret = VM_FAULT_MINOR;
if (!pte_none(*ptep))
goto backout;
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
&& (vma->vm_flags & VM_SHARED)));
set_huge_pte_at(mm, address, ptep, new_pte);
if (write_access && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
}
spin_unlock(&mm->page_table_lock);
unlock_page(page);
out:
return ret;
backout:
spin_unlock(&mm->page_table_lock);
hugetlb_put_quota(mapping);
unlock_page(page);
put_page(page);
goto out;
}
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, int write_access)
{
pte_t *ptep;
pte_t entry;
int ret;
static DEFINE_MUTEX(hugetlb_instantiation_mutex);
ptep = huge_pte_alloc(mm, address);
if (!ptep)
return VM_FAULT_OOM;
/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
mutex_lock(&hugetlb_instantiation_mutex);
entry = *ptep;
if (pte_none(entry)) {
ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
mutex_unlock(&hugetlb_instantiation_mutex);
return ret;
}
ret = VM_FAULT_MINOR;
spin_lock(&mm->page_table_lock);
/* Check for a racing update before calling hugetlb_cow */
if (likely(pte_same(entry, *ptep)))
if (write_access && !pte_write(entry))
ret = hugetlb_cow(mm, vma, address, ptep, entry);
spin_unlock(&mm->page_table_lock);
mutex_unlock(&hugetlb_instantiation_mutex);
return ret;
}
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, int *length, int i)
{
unsigned long pfn_offset;
unsigned long vaddr = *position;
int remainder = *length;
spin_lock(&mm->page_table_lock);
while (vaddr < vma->vm_end && remainder) {
pte_t *pte;
struct page *page;
/*
* Some archs (sparc64, sh*) have multiple pte_ts to
* each hugepage. We have to make * sure we get the
* first, for the page indexing below to work.
*/
pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
if (!pte || pte_none(*pte)) {
int ret;
spin_unlock(&mm->page_table_lock);
ret = hugetlb_fault(mm, vma, vaddr, 0);
spin_lock(&mm->page_table_lock);
if (ret == VM_FAULT_MINOR)
continue;
remainder = 0;
if (!i)
i = -EFAULT;
break;
}
pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
page = pte_page(*pte);
same_page:
if (pages) {
get_page(page);
pages[i] = page + pfn_offset;
}
if (vmas)
vmas[i] = vma;
vaddr += PAGE_SIZE;
++pfn_offset;
--remainder;
++i;
if (vaddr < vma->vm_end && remainder &&
pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
/*
* We use pfn_offset to avoid touching the pageframes
* of this compound page.
*/
goto same_page;
}
}
spin_unlock(&mm->page_table_lock);
*length = remainder;
*position = vaddr;
return i;
}
void hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end, pgprot_t newprot)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long start = address;
pte_t *ptep;
pte_t pte;
BUG_ON(address >= end);
flush_cache_range(vma, address, end);
spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
spin_lock(&mm->page_table_lock);
for (; address < end; address += HPAGE_SIZE) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
if (huge_pmd_unshare(mm, &address, ptep))
continue;
if (!pte_none(*ptep)) {
pte = huge_ptep_get_and_clear(mm, address, ptep);
pte = pte_mkhuge(pte_modify(pte, newprot));
set_huge_pte_at(mm, address, ptep, pte);
lazy_mmu_prot_update(pte);
}
}
spin_unlock(&mm->page_table_lock);
spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
flush_tlb_range(vma, start, end);
}
struct file_region {
struct list_head link;
long from;
long to;
};
static long region_add(struct list_head *head, long f, long t)
{
struct file_region *rg, *nrg, *trg;
/* Locate the region we are either in or before. */
list_for_each_entry(rg, head, link)
if (f <= rg->to)
break;
/* Round our left edge to the current segment if it encloses us. */
if (f > rg->from)
f = rg->from;
/* Check for and consume any regions we now overlap with. */
nrg = rg;
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
if (&rg->link == head)
break;
if (rg->from > t)
break;
/* If this area reaches higher then extend our area to
* include it completely. If this is not the first area
* which we intend to reuse, free it. */
if (rg->to > t)
t = rg->to;
if (rg != nrg) {
list_del(&rg->link);
kfree(rg);
}
}
nrg->from = f;
nrg->to = t;
return 0;
}
static long region_chg(struct list_head *head, long f, long t)
{
struct file_region *rg, *nrg;
long chg = 0;
/* Locate the region we are before or in. */
list_for_each_entry(rg, head, link)
if (f <= rg->to)
break;
/* If we are below the current region then a new region is required.
* Subtle, allocate a new region at the position but make it zero
* size such that we can guarentee to record the reservation. */
if (&rg->link == head || t < rg->from) {
nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
if (nrg == 0)
return -ENOMEM;
nrg->from = f;
nrg->to = f;
INIT_LIST_HEAD(&nrg->link);
list_add(&nrg->link, rg->link.prev);
return t - f;
}
/* Round our left edge to the current segment if it encloses us. */
if (f > rg->from)
f = rg->from;
chg = t - f;
/* Check for and consume any regions we now overlap with. */
list_for_each_entry(rg, rg->link.prev, link) {
if (&rg->link == head)
break;
if (rg->from > t)
return chg;
/* We overlap with this area, if it extends futher than
* us then we must extend ourselves. Account for its
* existing reservation. */
if (rg->to > t) {
chg += rg->to - t;
t = rg->to;
}
chg -= rg->to - rg->from;
}
return chg;
}
static long region_truncate(struct list_head *head, long end)
{
struct file_region *rg, *trg;
long chg = 0;
/* Locate the region we are either in or before. */
list_for_each_entry(rg, head, link)
if (end <= rg->to)
break;
if (&rg->link == head)
return 0;
/* If we are in the middle of a region then adjust it. */
if (end > rg->from) {
chg = rg->to - end;
rg->to = end;
rg = list_entry(rg->link.next, typeof(*rg), link);
}
/* Drop any remaining regions. */
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
if (&rg->link == head)
break;
chg += rg->to - rg->from;
list_del(&rg->link);
kfree(rg);
}
return chg;
}
static int hugetlb_acct_memory(long delta)
{
int ret = -ENOMEM;
spin_lock(&hugetlb_lock);
if ((delta + resv_huge_pages) <= free_huge_pages) {
resv_huge_pages += delta;
ret = 0;
}
spin_unlock(&hugetlb_lock);
return ret;
}
int hugetlb_reserve_pages(struct inode *inode, long from, long to)
{
long ret, chg;
chg = region_chg(&inode->i_mapping->private_list, from, to);
if (chg < 0)
return chg;
/*
* When cpuset is configured, it breaks the strict hugetlb page
* reservation as the accounting is done on a global variable. Such
* reservation is completely rubbish in the presence of cpuset because
* the reservation is not checked against page availability for the
* current cpuset. Application can still potentially OOM'ed by kernel
* with lack of free htlb page in cpuset that the task is in.
* Attempt to enforce strict accounting with cpuset is almost
* impossible (or too ugly) because cpuset is too fluid that
* task or memory node can be dynamically moved between cpusets.
*
* The change of semantics for shared hugetlb mapping with cpuset is
* undesirable. However, in order to preserve some of the semantics,
* we fall back to check against current free page availability as
* a best attempt and hopefully to minimize the impact of changing
* semantics that cpuset has.
*/
if (chg > cpuset_mems_nr(free_huge_pages_node))
return -ENOMEM;
ret = hugetlb_acct_memory(chg);
if (ret < 0)
return ret;
region_add(&inode->i_mapping->private_list, from, to);
return 0;
}
void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
long chg = region_truncate(&inode->i_mapping->private_list, offset);
hugetlb_acct_memory(freed - chg);
}