2702 строки
76 KiB
C
2702 строки
76 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* Copyright (c) 2013 Red Hat, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_da_format.h"
|
|
#include "xfs_da_btree.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_attr_remote.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_attr_leaf.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_dir2.h"
|
|
|
|
|
|
/*
|
|
* xfs_attr_leaf.c
|
|
*
|
|
* Routines to implement leaf blocks of attributes as Btrees of hashed names.
|
|
*/
|
|
|
|
/*========================================================================
|
|
* Function prototypes for the kernel.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Routines used for growing the Btree.
|
|
*/
|
|
STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
|
|
xfs_dablk_t which_block, struct xfs_buf **bpp);
|
|
STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
|
|
struct xfs_attr3_icleaf_hdr *ichdr,
|
|
struct xfs_da_args *args, int freemap_index);
|
|
STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
|
|
struct xfs_attr3_icleaf_hdr *ichdr,
|
|
struct xfs_buf *leaf_buffer);
|
|
STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
|
|
xfs_da_state_blk_t *blk1,
|
|
xfs_da_state_blk_t *blk2);
|
|
STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
|
|
xfs_da_state_blk_t *leaf_blk_1,
|
|
struct xfs_attr3_icleaf_hdr *ichdr1,
|
|
xfs_da_state_blk_t *leaf_blk_2,
|
|
struct xfs_attr3_icleaf_hdr *ichdr2,
|
|
int *number_entries_in_blk1,
|
|
int *number_usedbytes_in_blk1);
|
|
|
|
/*
|
|
* Utility routines.
|
|
*/
|
|
STATIC void xfs_attr3_leaf_moveents(struct xfs_attr_leafblock *src_leaf,
|
|
struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
|
|
struct xfs_attr_leafblock *dst_leaf,
|
|
struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
|
|
int move_count, struct xfs_mount *mp);
|
|
STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
|
|
|
|
void
|
|
xfs_attr3_leaf_hdr_from_disk(
|
|
struct xfs_attr3_icleaf_hdr *to,
|
|
struct xfs_attr_leafblock *from)
|
|
{
|
|
int i;
|
|
|
|
ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
|
|
from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
|
|
|
|
if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
|
|
struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
|
|
|
|
to->forw = be32_to_cpu(hdr3->info.hdr.forw);
|
|
to->back = be32_to_cpu(hdr3->info.hdr.back);
|
|
to->magic = be16_to_cpu(hdr3->info.hdr.magic);
|
|
to->count = be16_to_cpu(hdr3->count);
|
|
to->usedbytes = be16_to_cpu(hdr3->usedbytes);
|
|
to->firstused = be16_to_cpu(hdr3->firstused);
|
|
to->holes = hdr3->holes;
|
|
|
|
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
|
|
to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
|
|
to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
|
|
}
|
|
return;
|
|
}
|
|
to->forw = be32_to_cpu(from->hdr.info.forw);
|
|
to->back = be32_to_cpu(from->hdr.info.back);
|
|
to->magic = be16_to_cpu(from->hdr.info.magic);
|
|
to->count = be16_to_cpu(from->hdr.count);
|
|
to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
|
|
to->firstused = be16_to_cpu(from->hdr.firstused);
|
|
to->holes = from->hdr.holes;
|
|
|
|
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
|
|
to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
|
|
to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_attr3_leaf_hdr_to_disk(
|
|
struct xfs_attr_leafblock *to,
|
|
struct xfs_attr3_icleaf_hdr *from)
|
|
{
|
|
int i;
|
|
|
|
ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
|
|
from->magic == XFS_ATTR3_LEAF_MAGIC);
|
|
|
|
if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
|
|
struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
|
|
|
|
hdr3->info.hdr.forw = cpu_to_be32(from->forw);
|
|
hdr3->info.hdr.back = cpu_to_be32(from->back);
|
|
hdr3->info.hdr.magic = cpu_to_be16(from->magic);
|
|
hdr3->count = cpu_to_be16(from->count);
|
|
hdr3->usedbytes = cpu_to_be16(from->usedbytes);
|
|
hdr3->firstused = cpu_to_be16(from->firstused);
|
|
hdr3->holes = from->holes;
|
|
hdr3->pad1 = 0;
|
|
|
|
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
|
|
hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
|
|
hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
|
|
}
|
|
return;
|
|
}
|
|
to->hdr.info.forw = cpu_to_be32(from->forw);
|
|
to->hdr.info.back = cpu_to_be32(from->back);
|
|
to->hdr.info.magic = cpu_to_be16(from->magic);
|
|
to->hdr.count = cpu_to_be16(from->count);
|
|
to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
|
|
to->hdr.firstused = cpu_to_be16(from->firstused);
|
|
to->hdr.holes = from->holes;
|
|
to->hdr.pad1 = 0;
|
|
|
|
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
|
|
to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
|
|
to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
xfs_attr3_leaf_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_attr_leafblock *leaf = bp->b_addr;
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
|
|
|
|
if (ichdr.magic != XFS_ATTR3_LEAF_MAGIC)
|
|
return false;
|
|
|
|
if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid))
|
|
return false;
|
|
if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
|
|
return false;
|
|
} else {
|
|
if (ichdr.magic != XFS_ATTR_LEAF_MAGIC)
|
|
return false;
|
|
}
|
|
if (ichdr.count == 0)
|
|
return false;
|
|
|
|
/* XXX: need to range check rest of attr header values */
|
|
/* XXX: hash order check? */
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
xfs_attr3_leaf_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_buf_log_item *bip = bp->b_fspriv;
|
|
struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
|
|
|
|
if (!xfs_attr3_leaf_verify(bp)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
|
|
xfs_buf_ioerror(bp, EFSCORRUPTED);
|
|
return;
|
|
}
|
|
|
|
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
|
return;
|
|
|
|
if (bip)
|
|
hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
|
|
|
|
xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), XFS_ATTR3_LEAF_CRC_OFF);
|
|
}
|
|
|
|
/*
|
|
* leaf/node format detection on trees is sketchy, so a node read can be done on
|
|
* leaf level blocks when detection identifies the tree as a node format tree
|
|
* incorrectly. In this case, we need to swap the verifier to match the correct
|
|
* format of the block being read.
|
|
*/
|
|
static void
|
|
xfs_attr3_leaf_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
|
|
if ((xfs_sb_version_hascrc(&mp->m_sb) &&
|
|
!xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
|
|
XFS_ATTR3_LEAF_CRC_OFF)) ||
|
|
!xfs_attr3_leaf_verify(bp)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
|
|
xfs_buf_ioerror(bp, EFSCORRUPTED);
|
|
}
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
|
|
.verify_read = xfs_attr3_leaf_read_verify,
|
|
.verify_write = xfs_attr3_leaf_write_verify,
|
|
};
|
|
|
|
int
|
|
xfs_attr3_leaf_read(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *dp,
|
|
xfs_dablk_t bno,
|
|
xfs_daddr_t mappedbno,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
int err;
|
|
|
|
err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
|
|
XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops);
|
|
if (!err && tp)
|
|
xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
|
|
return err;
|
|
}
|
|
|
|
/*========================================================================
|
|
* Namespace helper routines
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* If namespace bits don't match return 0.
|
|
* If all match then return 1.
|
|
*/
|
|
STATIC int
|
|
xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
|
|
{
|
|
return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
|
|
}
|
|
|
|
|
|
/*========================================================================
|
|
* External routines when attribute fork size < XFS_LITINO(mp).
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Query whether the requested number of additional bytes of extended
|
|
* attribute space will be able to fit inline.
|
|
*
|
|
* Returns zero if not, else the di_forkoff fork offset to be used in the
|
|
* literal area for attribute data once the new bytes have been added.
|
|
*
|
|
* di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
|
|
* special case for dev/uuid inodes, they have fixed size data forks.
|
|
*/
|
|
int
|
|
xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
|
|
{
|
|
int offset;
|
|
int minforkoff; /* lower limit on valid forkoff locations */
|
|
int maxforkoff; /* upper limit on valid forkoff locations */
|
|
int dsize;
|
|
xfs_mount_t *mp = dp->i_mount;
|
|
|
|
/* rounded down */
|
|
offset = (XFS_LITINO(mp, dp->i_d.di_version) - bytes) >> 3;
|
|
|
|
switch (dp->i_d.di_format) {
|
|
case XFS_DINODE_FMT_DEV:
|
|
minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
|
|
return (offset >= minforkoff) ? minforkoff : 0;
|
|
case XFS_DINODE_FMT_UUID:
|
|
minforkoff = roundup(sizeof(uuid_t), 8) >> 3;
|
|
return (offset >= minforkoff) ? minforkoff : 0;
|
|
}
|
|
|
|
/*
|
|
* If the requested numbers of bytes is smaller or equal to the
|
|
* current attribute fork size we can always proceed.
|
|
*
|
|
* Note that if_bytes in the data fork might actually be larger than
|
|
* the current data fork size is due to delalloc extents. In that
|
|
* case either the extent count will go down when they are converted
|
|
* to real extents, or the delalloc conversion will take care of the
|
|
* literal area rebalancing.
|
|
*/
|
|
if (bytes <= XFS_IFORK_ASIZE(dp))
|
|
return dp->i_d.di_forkoff;
|
|
|
|
/*
|
|
* For attr2 we can try to move the forkoff if there is space in the
|
|
* literal area, but for the old format we are done if there is no
|
|
* space in the fixed attribute fork.
|
|
*/
|
|
if (!(mp->m_flags & XFS_MOUNT_ATTR2))
|
|
return 0;
|
|
|
|
dsize = dp->i_df.if_bytes;
|
|
|
|
switch (dp->i_d.di_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
/*
|
|
* If there is no attr fork and the data fork is extents,
|
|
* determine if creating the default attr fork will result
|
|
* in the extents form migrating to btree. If so, the
|
|
* minimum offset only needs to be the space required for
|
|
* the btree root.
|
|
*/
|
|
if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
|
|
xfs_default_attroffset(dp))
|
|
dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
/*
|
|
* If we have a data btree then keep forkoff if we have one,
|
|
* otherwise we are adding a new attr, so then we set
|
|
* minforkoff to where the btree root can finish so we have
|
|
* plenty of room for attrs
|
|
*/
|
|
if (dp->i_d.di_forkoff) {
|
|
if (offset < dp->i_d.di_forkoff)
|
|
return 0;
|
|
return dp->i_d.di_forkoff;
|
|
}
|
|
dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* A data fork btree root must have space for at least
|
|
* MINDBTPTRS key/ptr pairs if the data fork is small or empty.
|
|
*/
|
|
minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
|
|
minforkoff = roundup(minforkoff, 8) >> 3;
|
|
|
|
/* attr fork btree root can have at least this many key/ptr pairs */
|
|
maxforkoff = XFS_LITINO(mp, dp->i_d.di_version) -
|
|
XFS_BMDR_SPACE_CALC(MINABTPTRS);
|
|
maxforkoff = maxforkoff >> 3; /* rounded down */
|
|
|
|
if (offset >= maxforkoff)
|
|
return maxforkoff;
|
|
if (offset >= minforkoff)
|
|
return offset;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Switch on the ATTR2 superblock bit (implies also FEATURES2)
|
|
*/
|
|
STATIC void
|
|
xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
|
|
{
|
|
if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
|
|
!(xfs_sb_version_hasattr2(&mp->m_sb))) {
|
|
spin_lock(&mp->m_sb_lock);
|
|
if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
|
|
xfs_sb_version_addattr2(&mp->m_sb);
|
|
spin_unlock(&mp->m_sb_lock);
|
|
xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2);
|
|
} else
|
|
spin_unlock(&mp->m_sb_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the initial contents of a shortform attribute list.
|
|
*/
|
|
void
|
|
xfs_attr_shortform_create(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_sf_hdr_t *hdr;
|
|
xfs_inode_t *dp;
|
|
xfs_ifork_t *ifp;
|
|
|
|
trace_xfs_attr_sf_create(args);
|
|
|
|
dp = args->dp;
|
|
ASSERT(dp != NULL);
|
|
ifp = dp->i_afp;
|
|
ASSERT(ifp != NULL);
|
|
ASSERT(ifp->if_bytes == 0);
|
|
if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
|
|
ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
|
|
dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
|
|
ifp->if_flags |= XFS_IFINLINE;
|
|
} else {
|
|
ASSERT(ifp->if_flags & XFS_IFINLINE);
|
|
}
|
|
xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
|
|
hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
|
|
hdr->count = 0;
|
|
hdr->totsize = cpu_to_be16(sizeof(*hdr));
|
|
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
|
|
}
|
|
|
|
/*
|
|
* Add a name/value pair to the shortform attribute list.
|
|
* Overflow from the inode has already been checked for.
|
|
*/
|
|
void
|
|
xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
|
|
{
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
int i, offset, size;
|
|
xfs_mount_t *mp;
|
|
xfs_inode_t *dp;
|
|
xfs_ifork_t *ifp;
|
|
|
|
trace_xfs_attr_sf_add(args);
|
|
|
|
dp = args->dp;
|
|
mp = dp->i_mount;
|
|
dp->i_d.di_forkoff = forkoff;
|
|
|
|
ifp = dp->i_afp;
|
|
ASSERT(ifp->if_flags & XFS_IFINLINE);
|
|
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
|
|
sfe = &sf->list[0];
|
|
for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
|
|
#ifdef DEBUG
|
|
if (sfe->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
|
|
continue;
|
|
ASSERT(0);
|
|
#endif
|
|
}
|
|
|
|
offset = (char *)sfe - (char *)sf;
|
|
size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
|
|
xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
|
|
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
|
|
sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
|
|
|
|
sfe->namelen = args->namelen;
|
|
sfe->valuelen = args->valuelen;
|
|
sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
|
|
memcpy(sfe->nameval, args->name, args->namelen);
|
|
memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
|
|
sf->hdr.count++;
|
|
be16_add_cpu(&sf->hdr.totsize, size);
|
|
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
|
|
|
|
xfs_sbversion_add_attr2(mp, args->trans);
|
|
}
|
|
|
|
/*
|
|
* After the last attribute is removed revert to original inode format,
|
|
* making all literal area available to the data fork once more.
|
|
*/
|
|
STATIC void
|
|
xfs_attr_fork_reset(
|
|
struct xfs_inode *ip,
|
|
struct xfs_trans *tp)
|
|
{
|
|
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
|
|
ip->i_d.di_forkoff = 0;
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
|
|
|
ASSERT(ip->i_d.di_anextents == 0);
|
|
ASSERT(ip->i_afp == NULL);
|
|
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
}
|
|
|
|
/*
|
|
* Remove an attribute from the shortform attribute list structure.
|
|
*/
|
|
int
|
|
xfs_attr_shortform_remove(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
int base, size=0, end, totsize, i;
|
|
xfs_mount_t *mp;
|
|
xfs_inode_t *dp;
|
|
|
|
trace_xfs_attr_sf_remove(args);
|
|
|
|
dp = args->dp;
|
|
mp = dp->i_mount;
|
|
base = sizeof(xfs_attr_sf_hdr_t);
|
|
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
|
|
sfe = &sf->list[0];
|
|
end = sf->hdr.count;
|
|
for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
|
|
base += size, i++) {
|
|
size = XFS_ATTR_SF_ENTSIZE(sfe);
|
|
if (sfe->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
|
|
continue;
|
|
break;
|
|
}
|
|
if (i == end)
|
|
return(XFS_ERROR(ENOATTR));
|
|
|
|
/*
|
|
* Fix up the attribute fork data, covering the hole
|
|
*/
|
|
end = base + size;
|
|
totsize = be16_to_cpu(sf->hdr.totsize);
|
|
if (end != totsize)
|
|
memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
|
|
sf->hdr.count--;
|
|
be16_add_cpu(&sf->hdr.totsize, -size);
|
|
|
|
/*
|
|
* Fix up the start offset of the attribute fork
|
|
*/
|
|
totsize -= size;
|
|
if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
|
|
(mp->m_flags & XFS_MOUNT_ATTR2) &&
|
|
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
|
|
!(args->op_flags & XFS_DA_OP_ADDNAME)) {
|
|
xfs_attr_fork_reset(dp, args->trans);
|
|
} else {
|
|
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
|
|
dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
|
|
ASSERT(dp->i_d.di_forkoff);
|
|
ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
|
|
(args->op_flags & XFS_DA_OP_ADDNAME) ||
|
|
!(mp->m_flags & XFS_MOUNT_ATTR2) ||
|
|
dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
|
|
xfs_trans_log_inode(args->trans, dp,
|
|
XFS_ILOG_CORE | XFS_ILOG_ADATA);
|
|
}
|
|
|
|
xfs_sbversion_add_attr2(mp, args->trans);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Look up a name in a shortform attribute list structure.
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
xfs_attr_shortform_lookup(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
int i;
|
|
xfs_ifork_t *ifp;
|
|
|
|
trace_xfs_attr_sf_lookup(args);
|
|
|
|
ifp = args->dp->i_afp;
|
|
ASSERT(ifp->if_flags & XFS_IFINLINE);
|
|
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
|
|
sfe = &sf->list[0];
|
|
for (i = 0; i < sf->hdr.count;
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
|
|
if (sfe->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
|
|
continue;
|
|
return(XFS_ERROR(EEXIST));
|
|
}
|
|
return(XFS_ERROR(ENOATTR));
|
|
}
|
|
|
|
/*
|
|
* Look up a name in a shortform attribute list structure.
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
xfs_attr_shortform_getvalue(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
int i;
|
|
|
|
ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE);
|
|
sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
|
|
sfe = &sf->list[0];
|
|
for (i = 0; i < sf->hdr.count;
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
|
|
if (sfe->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
|
|
continue;
|
|
if (args->flags & ATTR_KERNOVAL) {
|
|
args->valuelen = sfe->valuelen;
|
|
return(XFS_ERROR(EEXIST));
|
|
}
|
|
if (args->valuelen < sfe->valuelen) {
|
|
args->valuelen = sfe->valuelen;
|
|
return(XFS_ERROR(ERANGE));
|
|
}
|
|
args->valuelen = sfe->valuelen;
|
|
memcpy(args->value, &sfe->nameval[args->namelen],
|
|
args->valuelen);
|
|
return(XFS_ERROR(EEXIST));
|
|
}
|
|
return(XFS_ERROR(ENOATTR));
|
|
}
|
|
|
|
/*
|
|
* Convert from using the shortform to the leaf.
|
|
*/
|
|
int
|
|
xfs_attr_shortform_to_leaf(xfs_da_args_t *args)
|
|
{
|
|
xfs_inode_t *dp;
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
xfs_da_args_t nargs;
|
|
char *tmpbuffer;
|
|
int error, i, size;
|
|
xfs_dablk_t blkno;
|
|
struct xfs_buf *bp;
|
|
xfs_ifork_t *ifp;
|
|
|
|
trace_xfs_attr_sf_to_leaf(args);
|
|
|
|
dp = args->dp;
|
|
ifp = dp->i_afp;
|
|
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
|
|
size = be16_to_cpu(sf->hdr.totsize);
|
|
tmpbuffer = kmem_alloc(size, KM_SLEEP);
|
|
ASSERT(tmpbuffer != NULL);
|
|
memcpy(tmpbuffer, ifp->if_u1.if_data, size);
|
|
sf = (xfs_attr_shortform_t *)tmpbuffer;
|
|
|
|
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
|
|
xfs_bmap_local_to_extents_empty(dp, XFS_ATTR_FORK);
|
|
|
|
bp = NULL;
|
|
error = xfs_da_grow_inode(args, &blkno);
|
|
if (error) {
|
|
/*
|
|
* If we hit an IO error middle of the transaction inside
|
|
* grow_inode(), we may have inconsistent data. Bail out.
|
|
*/
|
|
if (error == EIO)
|
|
goto out;
|
|
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
|
|
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(blkno == 0);
|
|
error = xfs_attr3_leaf_create(args, blkno, &bp);
|
|
if (error) {
|
|
error = xfs_da_shrink_inode(args, 0, bp);
|
|
bp = NULL;
|
|
if (error)
|
|
goto out;
|
|
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
|
|
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
|
|
goto out;
|
|
}
|
|
|
|
memset((char *)&nargs, 0, sizeof(nargs));
|
|
nargs.dp = dp;
|
|
nargs.firstblock = args->firstblock;
|
|
nargs.flist = args->flist;
|
|
nargs.total = args->total;
|
|
nargs.whichfork = XFS_ATTR_FORK;
|
|
nargs.trans = args->trans;
|
|
nargs.op_flags = XFS_DA_OP_OKNOENT;
|
|
|
|
sfe = &sf->list[0];
|
|
for (i = 0; i < sf->hdr.count; i++) {
|
|
nargs.name = sfe->nameval;
|
|
nargs.namelen = sfe->namelen;
|
|
nargs.value = &sfe->nameval[nargs.namelen];
|
|
nargs.valuelen = sfe->valuelen;
|
|
nargs.hashval = xfs_da_hashname(sfe->nameval,
|
|
sfe->namelen);
|
|
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
|
|
error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
|
|
ASSERT(error == ENOATTR);
|
|
error = xfs_attr3_leaf_add(bp, &nargs);
|
|
ASSERT(error != ENOSPC);
|
|
if (error)
|
|
goto out;
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
|
|
}
|
|
error = 0;
|
|
|
|
out:
|
|
kmem_free(tmpbuffer);
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Check a leaf attribute block to see if all the entries would fit into
|
|
* a shortform attribute list.
|
|
*/
|
|
int
|
|
xfs_attr_shortform_allfit(
|
|
struct xfs_buf *bp,
|
|
struct xfs_inode *dp)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
struct xfs_attr3_icleaf_hdr leafhdr;
|
|
int bytes;
|
|
int i;
|
|
|
|
leaf = bp->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&leafhdr, leaf);
|
|
entry = xfs_attr3_leaf_entryp(leaf);
|
|
|
|
bytes = sizeof(struct xfs_attr_sf_hdr);
|
|
for (i = 0; i < leafhdr.count; entry++, i++) {
|
|
if (entry->flags & XFS_ATTR_INCOMPLETE)
|
|
continue; /* don't copy partial entries */
|
|
if (!(entry->flags & XFS_ATTR_LOCAL))
|
|
return(0);
|
|
name_loc = xfs_attr3_leaf_name_local(leaf, i);
|
|
if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
|
|
return(0);
|
|
if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
|
|
return(0);
|
|
bytes += sizeof(struct xfs_attr_sf_entry) - 1
|
|
+ name_loc->namelen
|
|
+ be16_to_cpu(name_loc->valuelen);
|
|
}
|
|
if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
|
|
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
|
|
(bytes == sizeof(struct xfs_attr_sf_hdr)))
|
|
return -1;
|
|
return xfs_attr_shortform_bytesfit(dp, bytes);
|
|
}
|
|
|
|
/*
|
|
* Convert a leaf attribute list to shortform attribute list
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_to_shortform(
|
|
struct xfs_buf *bp,
|
|
struct xfs_da_args *args,
|
|
int forkoff)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
struct xfs_attr_leaf_name_local *name_loc;
|
|
struct xfs_da_args nargs;
|
|
struct xfs_inode *dp = args->dp;
|
|
char *tmpbuffer;
|
|
int error;
|
|
int i;
|
|
|
|
trace_xfs_attr_leaf_to_sf(args);
|
|
|
|
tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP);
|
|
if (!tmpbuffer)
|
|
return ENOMEM;
|
|
|
|
memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(dp->i_mount));
|
|
|
|
leaf = (xfs_attr_leafblock_t *)tmpbuffer;
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
entry = xfs_attr3_leaf_entryp(leaf);
|
|
|
|
/* XXX (dgc): buffer is about to be marked stale - why zero it? */
|
|
memset(bp->b_addr, 0, XFS_LBSIZE(dp->i_mount));
|
|
|
|
/*
|
|
* Clean out the prior contents of the attribute list.
|
|
*/
|
|
error = xfs_da_shrink_inode(args, 0, bp);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (forkoff == -1) {
|
|
ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
|
|
ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
|
|
xfs_attr_fork_reset(dp, args->trans);
|
|
goto out;
|
|
}
|
|
|
|
xfs_attr_shortform_create(args);
|
|
|
|
/*
|
|
* Copy the attributes
|
|
*/
|
|
memset((char *)&nargs, 0, sizeof(nargs));
|
|
nargs.dp = dp;
|
|
nargs.firstblock = args->firstblock;
|
|
nargs.flist = args->flist;
|
|
nargs.total = args->total;
|
|
nargs.whichfork = XFS_ATTR_FORK;
|
|
nargs.trans = args->trans;
|
|
nargs.op_flags = XFS_DA_OP_OKNOENT;
|
|
|
|
for (i = 0; i < ichdr.count; entry++, i++) {
|
|
if (entry->flags & XFS_ATTR_INCOMPLETE)
|
|
continue; /* don't copy partial entries */
|
|
if (!entry->nameidx)
|
|
continue;
|
|
ASSERT(entry->flags & XFS_ATTR_LOCAL);
|
|
name_loc = xfs_attr3_leaf_name_local(leaf, i);
|
|
nargs.name = name_loc->nameval;
|
|
nargs.namelen = name_loc->namelen;
|
|
nargs.value = &name_loc->nameval[nargs.namelen];
|
|
nargs.valuelen = be16_to_cpu(name_loc->valuelen);
|
|
nargs.hashval = be32_to_cpu(entry->hashval);
|
|
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
|
|
xfs_attr_shortform_add(&nargs, forkoff);
|
|
}
|
|
error = 0;
|
|
|
|
out:
|
|
kmem_free(tmpbuffer);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Convert from using a single leaf to a root node and a leaf.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_to_node(
|
|
struct xfs_da_args *args)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr3_icleaf_hdr icleafhdr;
|
|
struct xfs_attr_leaf_entry *entries;
|
|
struct xfs_da_node_entry *btree;
|
|
struct xfs_da3_icnode_hdr icnodehdr;
|
|
struct xfs_da_intnode *node;
|
|
struct xfs_inode *dp = args->dp;
|
|
struct xfs_mount *mp = dp->i_mount;
|
|
struct xfs_buf *bp1 = NULL;
|
|
struct xfs_buf *bp2 = NULL;
|
|
xfs_dablk_t blkno;
|
|
int error;
|
|
|
|
trace_xfs_attr_leaf_to_node(args);
|
|
|
|
error = xfs_da_grow_inode(args, &blkno);
|
|
if (error)
|
|
goto out;
|
|
error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* copy leaf to new buffer, update identifiers */
|
|
xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
|
|
bp2->b_ops = bp1->b_ops;
|
|
memcpy(bp2->b_addr, bp1->b_addr, XFS_LBSIZE(mp));
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
|
|
hdr3->blkno = cpu_to_be64(bp2->b_bn);
|
|
}
|
|
xfs_trans_log_buf(args->trans, bp2, 0, XFS_LBSIZE(mp) - 1);
|
|
|
|
/*
|
|
* Set up the new root node.
|
|
*/
|
|
error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
|
|
if (error)
|
|
goto out;
|
|
node = bp1->b_addr;
|
|
dp->d_ops->node_hdr_from_disk(&icnodehdr, node);
|
|
btree = dp->d_ops->node_tree_p(node);
|
|
|
|
leaf = bp2->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&icleafhdr, leaf);
|
|
entries = xfs_attr3_leaf_entryp(leaf);
|
|
|
|
/* both on-disk, don't endian-flip twice */
|
|
btree[0].hashval = entries[icleafhdr.count - 1].hashval;
|
|
btree[0].before = cpu_to_be32(blkno);
|
|
icnodehdr.count = 1;
|
|
dp->d_ops->node_hdr_to_disk(node, &icnodehdr);
|
|
xfs_trans_log_buf(args->trans, bp1, 0, XFS_LBSIZE(mp) - 1);
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*========================================================================
|
|
* Routines used for growing the Btree.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Create the initial contents of a leaf attribute list
|
|
* or a leaf in a node attribute list.
|
|
*/
|
|
STATIC int
|
|
xfs_attr3_leaf_create(
|
|
struct xfs_da_args *args,
|
|
xfs_dablk_t blkno,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
struct xfs_inode *dp = args->dp;
|
|
struct xfs_mount *mp = dp->i_mount;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
|
|
trace_xfs_attr_leaf_create(args);
|
|
|
|
error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
|
|
XFS_ATTR_FORK);
|
|
if (error)
|
|
return error;
|
|
bp->b_ops = &xfs_attr3_leaf_buf_ops;
|
|
xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
|
|
leaf = bp->b_addr;
|
|
memset(leaf, 0, XFS_LBSIZE(mp));
|
|
|
|
memset(&ichdr, 0, sizeof(ichdr));
|
|
ichdr.firstused = XFS_LBSIZE(mp);
|
|
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
|
|
|
|
ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
|
|
|
|
hdr3->blkno = cpu_to_be64(bp->b_bn);
|
|
hdr3->owner = cpu_to_be64(dp->i_ino);
|
|
uuid_copy(&hdr3->uuid, &mp->m_sb.sb_uuid);
|
|
|
|
ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
|
|
} else {
|
|
ichdr.magic = XFS_ATTR_LEAF_MAGIC;
|
|
ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
|
|
}
|
|
ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
|
|
|
|
xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
|
|
xfs_trans_log_buf(args->trans, bp, 0, XFS_LBSIZE(mp) - 1);
|
|
|
|
*bpp = bp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Split the leaf node, rebalance, then add the new entry.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_split(
|
|
struct xfs_da_state *state,
|
|
struct xfs_da_state_blk *oldblk,
|
|
struct xfs_da_state_blk *newblk)
|
|
{
|
|
xfs_dablk_t blkno;
|
|
int error;
|
|
|
|
trace_xfs_attr_leaf_split(state->args);
|
|
|
|
/*
|
|
* Allocate space for a new leaf node.
|
|
*/
|
|
ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
|
|
error = xfs_da_grow_inode(state->args, &blkno);
|
|
if (error)
|
|
return(error);
|
|
error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
|
|
if (error)
|
|
return(error);
|
|
newblk->blkno = blkno;
|
|
newblk->magic = XFS_ATTR_LEAF_MAGIC;
|
|
|
|
/*
|
|
* Rebalance the entries across the two leaves.
|
|
* NOTE: rebalance() currently depends on the 2nd block being empty.
|
|
*/
|
|
xfs_attr3_leaf_rebalance(state, oldblk, newblk);
|
|
error = xfs_da3_blk_link(state, oldblk, newblk);
|
|
if (error)
|
|
return(error);
|
|
|
|
/*
|
|
* Save info on "old" attribute for "atomic rename" ops, leaf_add()
|
|
* modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
|
|
* "new" attrs info. Will need the "old" info to remove it later.
|
|
*
|
|
* Insert the "new" entry in the correct block.
|
|
*/
|
|
if (state->inleaf) {
|
|
trace_xfs_attr_leaf_add_old(state->args);
|
|
error = xfs_attr3_leaf_add(oldblk->bp, state->args);
|
|
} else {
|
|
trace_xfs_attr_leaf_add_new(state->args);
|
|
error = xfs_attr3_leaf_add(newblk->bp, state->args);
|
|
}
|
|
|
|
/*
|
|
* Update last hashval in each block since we added the name.
|
|
*/
|
|
oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
|
|
newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Add a name to the leaf attribute list structure.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_add(
|
|
struct xfs_buf *bp,
|
|
struct xfs_da_args *args)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
int tablesize;
|
|
int entsize;
|
|
int sum;
|
|
int tmp;
|
|
int i;
|
|
|
|
trace_xfs_attr_leaf_add(args);
|
|
|
|
leaf = bp->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
ASSERT(args->index >= 0 && args->index <= ichdr.count);
|
|
entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
|
|
args->trans->t_mountp->m_sb.sb_blocksize, NULL);
|
|
|
|
/*
|
|
* Search through freemap for first-fit on new name length.
|
|
* (may need to figure in size of entry struct too)
|
|
*/
|
|
tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
|
|
+ xfs_attr3_leaf_hdr_size(leaf);
|
|
for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
|
|
if (tablesize > ichdr.firstused) {
|
|
sum += ichdr.freemap[i].size;
|
|
continue;
|
|
}
|
|
if (!ichdr.freemap[i].size)
|
|
continue; /* no space in this map */
|
|
tmp = entsize;
|
|
if (ichdr.freemap[i].base < ichdr.firstused)
|
|
tmp += sizeof(xfs_attr_leaf_entry_t);
|
|
if (ichdr.freemap[i].size >= tmp) {
|
|
tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
|
|
goto out_log_hdr;
|
|
}
|
|
sum += ichdr.freemap[i].size;
|
|
}
|
|
|
|
/*
|
|
* If there are no holes in the address space of the block,
|
|
* and we don't have enough freespace, then compaction will do us
|
|
* no good and we should just give up.
|
|
*/
|
|
if (!ichdr.holes && sum < entsize)
|
|
return XFS_ERROR(ENOSPC);
|
|
|
|
/*
|
|
* Compact the entries to coalesce free space.
|
|
* This may change the hdr->count via dropping INCOMPLETE entries.
|
|
*/
|
|
xfs_attr3_leaf_compact(args, &ichdr, bp);
|
|
|
|
/*
|
|
* After compaction, the block is guaranteed to have only one
|
|
* free region, in freemap[0]. If it is not big enough, give up.
|
|
*/
|
|
if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
|
|
tmp = ENOSPC;
|
|
goto out_log_hdr;
|
|
}
|
|
|
|
tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
|
|
|
|
out_log_hdr:
|
|
xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, &leaf->hdr,
|
|
xfs_attr3_leaf_hdr_size(leaf)));
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Add a name to a leaf attribute list structure.
|
|
*/
|
|
STATIC int
|
|
xfs_attr3_leaf_add_work(
|
|
struct xfs_buf *bp,
|
|
struct xfs_attr3_icleaf_hdr *ichdr,
|
|
struct xfs_da_args *args,
|
|
int mapindex)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
struct xfs_attr_leaf_name_local *name_loc;
|
|
struct xfs_attr_leaf_name_remote *name_rmt;
|
|
struct xfs_mount *mp;
|
|
int tmp;
|
|
int i;
|
|
|
|
trace_xfs_attr_leaf_add_work(args);
|
|
|
|
leaf = bp->b_addr;
|
|
ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
|
|
ASSERT(args->index >= 0 && args->index <= ichdr->count);
|
|
|
|
/*
|
|
* Force open some space in the entry array and fill it in.
|
|
*/
|
|
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
|
|
if (args->index < ichdr->count) {
|
|
tmp = ichdr->count - args->index;
|
|
tmp *= sizeof(xfs_attr_leaf_entry_t);
|
|
memmove(entry + 1, entry, tmp);
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
|
|
}
|
|
ichdr->count++;
|
|
|
|
/*
|
|
* Allocate space for the new string (at the end of the run).
|
|
*/
|
|
mp = args->trans->t_mountp;
|
|
ASSERT(ichdr->freemap[mapindex].base < XFS_LBSIZE(mp));
|
|
ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
|
|
ASSERT(ichdr->freemap[mapindex].size >=
|
|
xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
|
|
mp->m_sb.sb_blocksize, NULL));
|
|
ASSERT(ichdr->freemap[mapindex].size < XFS_LBSIZE(mp));
|
|
ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
|
|
|
|
ichdr->freemap[mapindex].size -=
|
|
xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
|
|
mp->m_sb.sb_blocksize, &tmp);
|
|
|
|
entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
|
|
ichdr->freemap[mapindex].size);
|
|
entry->hashval = cpu_to_be32(args->hashval);
|
|
entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
|
|
entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
|
|
if (args->op_flags & XFS_DA_OP_RENAME) {
|
|
entry->flags |= XFS_ATTR_INCOMPLETE;
|
|
if ((args->blkno2 == args->blkno) &&
|
|
(args->index2 <= args->index)) {
|
|
args->index2++;
|
|
}
|
|
}
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
|
|
ASSERT((args->index == 0) ||
|
|
(be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
|
|
ASSERT((args->index == ichdr->count - 1) ||
|
|
(be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
|
|
|
|
/*
|
|
* For "remote" attribute values, simply note that we need to
|
|
* allocate space for the "remote" value. We can't actually
|
|
* allocate the extents in this transaction, and we can't decide
|
|
* which blocks they should be as we might allocate more blocks
|
|
* as part of this transaction (a split operation for example).
|
|
*/
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
|
|
name_loc->namelen = args->namelen;
|
|
name_loc->valuelen = cpu_to_be16(args->valuelen);
|
|
memcpy((char *)name_loc->nameval, args->name, args->namelen);
|
|
memcpy((char *)&name_loc->nameval[args->namelen], args->value,
|
|
be16_to_cpu(name_loc->valuelen));
|
|
} else {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
|
|
name_rmt->namelen = args->namelen;
|
|
memcpy((char *)name_rmt->name, args->name, args->namelen);
|
|
entry->flags |= XFS_ATTR_INCOMPLETE;
|
|
/* just in case */
|
|
name_rmt->valuelen = 0;
|
|
name_rmt->valueblk = 0;
|
|
args->rmtblkno = 1;
|
|
args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
|
|
}
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
|
|
xfs_attr_leaf_entsize(leaf, args->index)));
|
|
|
|
/*
|
|
* Update the control info for this leaf node
|
|
*/
|
|
if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
|
|
ichdr->firstused = be16_to_cpu(entry->nameidx);
|
|
|
|
ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
|
|
+ xfs_attr3_leaf_hdr_size(leaf));
|
|
tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
|
|
+ xfs_attr3_leaf_hdr_size(leaf);
|
|
|
|
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
|
|
if (ichdr->freemap[i].base == tmp) {
|
|
ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
|
|
ichdr->freemap[i].size -= sizeof(xfs_attr_leaf_entry_t);
|
|
}
|
|
}
|
|
ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Garbage collect a leaf attribute list block by copying it to a new buffer.
|
|
*/
|
|
STATIC void
|
|
xfs_attr3_leaf_compact(
|
|
struct xfs_da_args *args,
|
|
struct xfs_attr3_icleaf_hdr *ichdr_dst,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_attr_leafblock *leaf_src;
|
|
struct xfs_attr_leafblock *leaf_dst;
|
|
struct xfs_attr3_icleaf_hdr ichdr_src;
|
|
struct xfs_trans *trans = args->trans;
|
|
struct xfs_mount *mp = trans->t_mountp;
|
|
char *tmpbuffer;
|
|
|
|
trace_xfs_attr_leaf_compact(args);
|
|
|
|
tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP);
|
|
memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(mp));
|
|
memset(bp->b_addr, 0, XFS_LBSIZE(mp));
|
|
leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
|
|
leaf_dst = bp->b_addr;
|
|
|
|
/*
|
|
* Copy the on-disk header back into the destination buffer to ensure
|
|
* all the information in the header that is not part of the incore
|
|
* header structure is preserved.
|
|
*/
|
|
memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
|
|
|
|
/* Initialise the incore headers */
|
|
ichdr_src = *ichdr_dst; /* struct copy */
|
|
ichdr_dst->firstused = XFS_LBSIZE(mp);
|
|
ichdr_dst->usedbytes = 0;
|
|
ichdr_dst->count = 0;
|
|
ichdr_dst->holes = 0;
|
|
ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
|
|
ichdr_dst->freemap[0].size = ichdr_dst->firstused -
|
|
ichdr_dst->freemap[0].base;
|
|
|
|
/* write the header back to initialise the underlying buffer */
|
|
xfs_attr3_leaf_hdr_to_disk(leaf_dst, ichdr_dst);
|
|
|
|
/*
|
|
* Copy all entry's in the same (sorted) order,
|
|
* but allocate name/value pairs packed and in sequence.
|
|
*/
|
|
xfs_attr3_leaf_moveents(leaf_src, &ichdr_src, 0, leaf_dst, ichdr_dst, 0,
|
|
ichdr_src.count, mp);
|
|
/*
|
|
* this logs the entire buffer, but the caller must write the header
|
|
* back to the buffer when it is finished modifying it.
|
|
*/
|
|
xfs_trans_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1);
|
|
|
|
kmem_free(tmpbuffer);
|
|
}
|
|
|
|
/*
|
|
* Compare two leaf blocks "order".
|
|
* Return 0 unless leaf2 should go before leaf1.
|
|
*/
|
|
static int
|
|
xfs_attr3_leaf_order(
|
|
struct xfs_buf *leaf1_bp,
|
|
struct xfs_attr3_icleaf_hdr *leaf1hdr,
|
|
struct xfs_buf *leaf2_bp,
|
|
struct xfs_attr3_icleaf_hdr *leaf2hdr)
|
|
{
|
|
struct xfs_attr_leaf_entry *entries1;
|
|
struct xfs_attr_leaf_entry *entries2;
|
|
|
|
entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
|
|
entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
|
|
if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
|
|
((be32_to_cpu(entries2[0].hashval) <
|
|
be32_to_cpu(entries1[0].hashval)) ||
|
|
(be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
|
|
be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_attr_leaf_order(
|
|
struct xfs_buf *leaf1_bp,
|
|
struct xfs_buf *leaf2_bp)
|
|
{
|
|
struct xfs_attr3_icleaf_hdr ichdr1;
|
|
struct xfs_attr3_icleaf_hdr ichdr2;
|
|
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1_bp->b_addr);
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2_bp->b_addr);
|
|
return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
|
|
}
|
|
|
|
/*
|
|
* Redistribute the attribute list entries between two leaf nodes,
|
|
* taking into account the size of the new entry.
|
|
*
|
|
* NOTE: if new block is empty, then it will get the upper half of the
|
|
* old block. At present, all (one) callers pass in an empty second block.
|
|
*
|
|
* This code adjusts the args->index/blkno and args->index2/blkno2 fields
|
|
* to match what it is doing in splitting the attribute leaf block. Those
|
|
* values are used in "atomic rename" operations on attributes. Note that
|
|
* the "new" and "old" values can end up in different blocks.
|
|
*/
|
|
STATIC void
|
|
xfs_attr3_leaf_rebalance(
|
|
struct xfs_da_state *state,
|
|
struct xfs_da_state_blk *blk1,
|
|
struct xfs_da_state_blk *blk2)
|
|
{
|
|
struct xfs_da_args *args;
|
|
struct xfs_attr_leafblock *leaf1;
|
|
struct xfs_attr_leafblock *leaf2;
|
|
struct xfs_attr3_icleaf_hdr ichdr1;
|
|
struct xfs_attr3_icleaf_hdr ichdr2;
|
|
struct xfs_attr_leaf_entry *entries1;
|
|
struct xfs_attr_leaf_entry *entries2;
|
|
int count;
|
|
int totallen;
|
|
int max;
|
|
int space;
|
|
int swap;
|
|
|
|
/*
|
|
* Set up environment.
|
|
*/
|
|
ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
|
|
leaf1 = blk1->bp->b_addr;
|
|
leaf2 = blk2->bp->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1);
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2);
|
|
ASSERT(ichdr2.count == 0);
|
|
args = state->args;
|
|
|
|
trace_xfs_attr_leaf_rebalance(args);
|
|
|
|
/*
|
|
* Check ordering of blocks, reverse if it makes things simpler.
|
|
*
|
|
* NOTE: Given that all (current) callers pass in an empty
|
|
* second block, this code should never set "swap".
|
|
*/
|
|
swap = 0;
|
|
if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
|
|
struct xfs_da_state_blk *tmp_blk;
|
|
struct xfs_attr3_icleaf_hdr tmp_ichdr;
|
|
|
|
tmp_blk = blk1;
|
|
blk1 = blk2;
|
|
blk2 = tmp_blk;
|
|
|
|
/* struct copies to swap them rather than reconverting */
|
|
tmp_ichdr = ichdr1;
|
|
ichdr1 = ichdr2;
|
|
ichdr2 = tmp_ichdr;
|
|
|
|
leaf1 = blk1->bp->b_addr;
|
|
leaf2 = blk2->bp->b_addr;
|
|
swap = 1;
|
|
}
|
|
|
|
/*
|
|
* Examine entries until we reduce the absolute difference in
|
|
* byte usage between the two blocks to a minimum. Then get
|
|
* the direction to copy and the number of elements to move.
|
|
*
|
|
* "inleaf" is true if the new entry should be inserted into blk1.
|
|
* If "swap" is also true, then reverse the sense of "inleaf".
|
|
*/
|
|
state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
|
|
blk2, &ichdr2,
|
|
&count, &totallen);
|
|
if (swap)
|
|
state->inleaf = !state->inleaf;
|
|
|
|
/*
|
|
* Move any entries required from leaf to leaf:
|
|
*/
|
|
if (count < ichdr1.count) {
|
|
/*
|
|
* Figure the total bytes to be added to the destination leaf.
|
|
*/
|
|
/* number entries being moved */
|
|
count = ichdr1.count - count;
|
|
space = ichdr1.usedbytes - totallen;
|
|
space += count * sizeof(xfs_attr_leaf_entry_t);
|
|
|
|
/*
|
|
* leaf2 is the destination, compact it if it looks tight.
|
|
*/
|
|
max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
|
|
max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
|
|
if (space > max)
|
|
xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
|
|
|
|
/*
|
|
* Move high entries from leaf1 to low end of leaf2.
|
|
*/
|
|
xfs_attr3_leaf_moveents(leaf1, &ichdr1, ichdr1.count - count,
|
|
leaf2, &ichdr2, 0, count, state->mp);
|
|
|
|
} else if (count > ichdr1.count) {
|
|
/*
|
|
* I assert that since all callers pass in an empty
|
|
* second buffer, this code should never execute.
|
|
*/
|
|
ASSERT(0);
|
|
|
|
/*
|
|
* Figure the total bytes to be added to the destination leaf.
|
|
*/
|
|
/* number entries being moved */
|
|
count -= ichdr1.count;
|
|
space = totallen - ichdr1.usedbytes;
|
|
space += count * sizeof(xfs_attr_leaf_entry_t);
|
|
|
|
/*
|
|
* leaf1 is the destination, compact it if it looks tight.
|
|
*/
|
|
max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
|
|
max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
|
|
if (space > max)
|
|
xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
|
|
|
|
/*
|
|
* Move low entries from leaf2 to high end of leaf1.
|
|
*/
|
|
xfs_attr3_leaf_moveents(leaf2, &ichdr2, 0, leaf1, &ichdr1,
|
|
ichdr1.count, count, state->mp);
|
|
}
|
|
|
|
xfs_attr3_leaf_hdr_to_disk(leaf1, &ichdr1);
|
|
xfs_attr3_leaf_hdr_to_disk(leaf2, &ichdr2);
|
|
xfs_trans_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
|
|
xfs_trans_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
|
|
|
|
/*
|
|
* Copy out last hashval in each block for B-tree code.
|
|
*/
|
|
entries1 = xfs_attr3_leaf_entryp(leaf1);
|
|
entries2 = xfs_attr3_leaf_entryp(leaf2);
|
|
blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
|
|
blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
|
|
|
|
/*
|
|
* Adjust the expected index for insertion.
|
|
* NOTE: this code depends on the (current) situation that the
|
|
* second block was originally empty.
|
|
*
|
|
* If the insertion point moved to the 2nd block, we must adjust
|
|
* the index. We must also track the entry just following the
|
|
* new entry for use in an "atomic rename" operation, that entry
|
|
* is always the "old" entry and the "new" entry is what we are
|
|
* inserting. The index/blkno fields refer to the "old" entry,
|
|
* while the index2/blkno2 fields refer to the "new" entry.
|
|
*/
|
|
if (blk1->index > ichdr1.count) {
|
|
ASSERT(state->inleaf == 0);
|
|
blk2->index = blk1->index - ichdr1.count;
|
|
args->index = args->index2 = blk2->index;
|
|
args->blkno = args->blkno2 = blk2->blkno;
|
|
} else if (blk1->index == ichdr1.count) {
|
|
if (state->inleaf) {
|
|
args->index = blk1->index;
|
|
args->blkno = blk1->blkno;
|
|
args->index2 = 0;
|
|
args->blkno2 = blk2->blkno;
|
|
} else {
|
|
/*
|
|
* On a double leaf split, the original attr location
|
|
* is already stored in blkno2/index2, so don't
|
|
* overwrite it overwise we corrupt the tree.
|
|
*/
|
|
blk2->index = blk1->index - ichdr1.count;
|
|
args->index = blk2->index;
|
|
args->blkno = blk2->blkno;
|
|
if (!state->extravalid) {
|
|
/*
|
|
* set the new attr location to match the old
|
|
* one and let the higher level split code
|
|
* decide where in the leaf to place it.
|
|
*/
|
|
args->index2 = blk2->index;
|
|
args->blkno2 = blk2->blkno;
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT(state->inleaf == 1);
|
|
args->index = args->index2 = blk1->index;
|
|
args->blkno = args->blkno2 = blk1->blkno;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Examine entries until we reduce the absolute difference in
|
|
* byte usage between the two blocks to a minimum.
|
|
* GROT: Is this really necessary? With other than a 512 byte blocksize,
|
|
* GROT: there will always be enough room in either block for a new entry.
|
|
* GROT: Do a double-split for this case?
|
|
*/
|
|
STATIC int
|
|
xfs_attr3_leaf_figure_balance(
|
|
struct xfs_da_state *state,
|
|
struct xfs_da_state_blk *blk1,
|
|
struct xfs_attr3_icleaf_hdr *ichdr1,
|
|
struct xfs_da_state_blk *blk2,
|
|
struct xfs_attr3_icleaf_hdr *ichdr2,
|
|
int *countarg,
|
|
int *usedbytesarg)
|
|
{
|
|
struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
|
|
struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
int count;
|
|
int max;
|
|
int index;
|
|
int totallen = 0;
|
|
int half;
|
|
int lastdelta;
|
|
int foundit = 0;
|
|
int tmp;
|
|
|
|
/*
|
|
* Examine entries until we reduce the absolute difference in
|
|
* byte usage between the two blocks to a minimum.
|
|
*/
|
|
max = ichdr1->count + ichdr2->count;
|
|
half = (max + 1) * sizeof(*entry);
|
|
half += ichdr1->usedbytes + ichdr2->usedbytes +
|
|
xfs_attr_leaf_newentsize(state->args->namelen,
|
|
state->args->valuelen,
|
|
state->blocksize, NULL);
|
|
half /= 2;
|
|
lastdelta = state->blocksize;
|
|
entry = xfs_attr3_leaf_entryp(leaf1);
|
|
for (count = index = 0; count < max; entry++, index++, count++) {
|
|
|
|
#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
|
|
/*
|
|
* The new entry is in the first block, account for it.
|
|
*/
|
|
if (count == blk1->index) {
|
|
tmp = totallen + sizeof(*entry) +
|
|
xfs_attr_leaf_newentsize(
|
|
state->args->namelen,
|
|
state->args->valuelen,
|
|
state->blocksize, NULL);
|
|
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
|
|
break;
|
|
lastdelta = XFS_ATTR_ABS(half - tmp);
|
|
totallen = tmp;
|
|
foundit = 1;
|
|
}
|
|
|
|
/*
|
|
* Wrap around into the second block if necessary.
|
|
*/
|
|
if (count == ichdr1->count) {
|
|
leaf1 = leaf2;
|
|
entry = xfs_attr3_leaf_entryp(leaf1);
|
|
index = 0;
|
|
}
|
|
|
|
/*
|
|
* Figure out if next leaf entry would be too much.
|
|
*/
|
|
tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
|
|
index);
|
|
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
|
|
break;
|
|
lastdelta = XFS_ATTR_ABS(half - tmp);
|
|
totallen = tmp;
|
|
#undef XFS_ATTR_ABS
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of usedbytes that will end up in lower block.
|
|
* If new entry not in lower block, fix up the count.
|
|
*/
|
|
totallen -= count * sizeof(*entry);
|
|
if (foundit) {
|
|
totallen -= sizeof(*entry) +
|
|
xfs_attr_leaf_newentsize(
|
|
state->args->namelen,
|
|
state->args->valuelen,
|
|
state->blocksize, NULL);
|
|
}
|
|
|
|
*countarg = count;
|
|
*usedbytesarg = totallen;
|
|
return foundit;
|
|
}
|
|
|
|
/*========================================================================
|
|
* Routines used for shrinking the Btree.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Check a leaf block and its neighbors to see if the block should be
|
|
* collapsed into one or the other neighbor. Always keep the block
|
|
* with the smaller block number.
|
|
* If the current block is over 50% full, don't try to join it, return 0.
|
|
* If the block is empty, fill in the state structure and return 2.
|
|
* If it can be collapsed, fill in the state structure and return 1.
|
|
* If nothing can be done, return 0.
|
|
*
|
|
* GROT: allow for INCOMPLETE entries in calculation.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_toosmall(
|
|
struct xfs_da_state *state,
|
|
int *action)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_da_state_blk *blk;
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
struct xfs_buf *bp;
|
|
xfs_dablk_t blkno;
|
|
int bytes;
|
|
int forward;
|
|
int error;
|
|
int retval;
|
|
int i;
|
|
|
|
trace_xfs_attr_leaf_toosmall(state->args);
|
|
|
|
/*
|
|
* Check for the degenerate case of the block being over 50% full.
|
|
* If so, it's not worth even looking to see if we might be able
|
|
* to coalesce with a sibling.
|
|
*/
|
|
blk = &state->path.blk[ state->path.active-1 ];
|
|
leaf = blk->bp->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
bytes = xfs_attr3_leaf_hdr_size(leaf) +
|
|
ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
|
|
ichdr.usedbytes;
|
|
if (bytes > (state->blocksize >> 1)) {
|
|
*action = 0; /* blk over 50%, don't try to join */
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Check for the degenerate case of the block being empty.
|
|
* If the block is empty, we'll simply delete it, no need to
|
|
* coalesce it with a sibling block. We choose (arbitrarily)
|
|
* to merge with the forward block unless it is NULL.
|
|
*/
|
|
if (ichdr.count == 0) {
|
|
/*
|
|
* Make altpath point to the block we want to keep and
|
|
* path point to the block we want to drop (this one).
|
|
*/
|
|
forward = (ichdr.forw != 0);
|
|
memcpy(&state->altpath, &state->path, sizeof(state->path));
|
|
error = xfs_da3_path_shift(state, &state->altpath, forward,
|
|
0, &retval);
|
|
if (error)
|
|
return(error);
|
|
if (retval) {
|
|
*action = 0;
|
|
} else {
|
|
*action = 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Examine each sibling block to see if we can coalesce with
|
|
* at least 25% free space to spare. We need to figure out
|
|
* whether to merge with the forward or the backward block.
|
|
* We prefer coalescing with the lower numbered sibling so as
|
|
* to shrink an attribute list over time.
|
|
*/
|
|
/* start with smaller blk num */
|
|
forward = ichdr.forw < ichdr.back;
|
|
for (i = 0; i < 2; forward = !forward, i++) {
|
|
struct xfs_attr3_icleaf_hdr ichdr2;
|
|
if (forward)
|
|
blkno = ichdr.forw;
|
|
else
|
|
blkno = ichdr.back;
|
|
if (blkno == 0)
|
|
continue;
|
|
error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
|
|
blkno, -1, &bp);
|
|
if (error)
|
|
return(error);
|
|
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr2, bp->b_addr);
|
|
|
|
bytes = state->blocksize - (state->blocksize >> 2) -
|
|
ichdr.usedbytes - ichdr2.usedbytes -
|
|
((ichdr.count + ichdr2.count) *
|
|
sizeof(xfs_attr_leaf_entry_t)) -
|
|
xfs_attr3_leaf_hdr_size(leaf);
|
|
|
|
xfs_trans_brelse(state->args->trans, bp);
|
|
if (bytes >= 0)
|
|
break; /* fits with at least 25% to spare */
|
|
}
|
|
if (i >= 2) {
|
|
*action = 0;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Make altpath point to the block we want to keep (the lower
|
|
* numbered block) and path point to the block we want to drop.
|
|
*/
|
|
memcpy(&state->altpath, &state->path, sizeof(state->path));
|
|
if (blkno < blk->blkno) {
|
|
error = xfs_da3_path_shift(state, &state->altpath, forward,
|
|
0, &retval);
|
|
} else {
|
|
error = xfs_da3_path_shift(state, &state->path, forward,
|
|
0, &retval);
|
|
}
|
|
if (error)
|
|
return(error);
|
|
if (retval) {
|
|
*action = 0;
|
|
} else {
|
|
*action = 1;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Remove a name from the leaf attribute list structure.
|
|
*
|
|
* Return 1 if leaf is less than 37% full, 0 if >= 37% full.
|
|
* If two leaves are 37% full, when combined they will leave 25% free.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_remove(
|
|
struct xfs_buf *bp,
|
|
struct xfs_da_args *args)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
struct xfs_mount *mp = args->trans->t_mountp;
|
|
int before;
|
|
int after;
|
|
int smallest;
|
|
int entsize;
|
|
int tablesize;
|
|
int tmp;
|
|
int i;
|
|
|
|
trace_xfs_attr_leaf_remove(args);
|
|
|
|
leaf = bp->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
|
|
ASSERT(ichdr.count > 0 && ichdr.count < XFS_LBSIZE(mp) / 8);
|
|
ASSERT(args->index >= 0 && args->index < ichdr.count);
|
|
ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
|
|
xfs_attr3_leaf_hdr_size(leaf));
|
|
|
|
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
|
|
|
|
ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
|
|
ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
|
|
|
|
/*
|
|
* Scan through free region table:
|
|
* check for adjacency of free'd entry with an existing one,
|
|
* find smallest free region in case we need to replace it,
|
|
* adjust any map that borders the entry table,
|
|
*/
|
|
tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
|
|
+ xfs_attr3_leaf_hdr_size(leaf);
|
|
tmp = ichdr.freemap[0].size;
|
|
before = after = -1;
|
|
smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
|
|
entsize = xfs_attr_leaf_entsize(leaf, args->index);
|
|
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
|
|
ASSERT(ichdr.freemap[i].base < XFS_LBSIZE(mp));
|
|
ASSERT(ichdr.freemap[i].size < XFS_LBSIZE(mp));
|
|
if (ichdr.freemap[i].base == tablesize) {
|
|
ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
|
|
ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
|
|
}
|
|
|
|
if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
|
|
be16_to_cpu(entry->nameidx)) {
|
|
before = i;
|
|
} else if (ichdr.freemap[i].base ==
|
|
(be16_to_cpu(entry->nameidx) + entsize)) {
|
|
after = i;
|
|
} else if (ichdr.freemap[i].size < tmp) {
|
|
tmp = ichdr.freemap[i].size;
|
|
smallest = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Coalesce adjacent freemap regions,
|
|
* or replace the smallest region.
|
|
*/
|
|
if ((before >= 0) || (after >= 0)) {
|
|
if ((before >= 0) && (after >= 0)) {
|
|
ichdr.freemap[before].size += entsize;
|
|
ichdr.freemap[before].size += ichdr.freemap[after].size;
|
|
ichdr.freemap[after].base = 0;
|
|
ichdr.freemap[after].size = 0;
|
|
} else if (before >= 0) {
|
|
ichdr.freemap[before].size += entsize;
|
|
} else {
|
|
ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
|
|
ichdr.freemap[after].size += entsize;
|
|
}
|
|
} else {
|
|
/*
|
|
* Replace smallest region (if it is smaller than free'd entry)
|
|
*/
|
|
if (ichdr.freemap[smallest].size < entsize) {
|
|
ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
|
|
ichdr.freemap[smallest].size = entsize;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Did we remove the first entry?
|
|
*/
|
|
if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
|
|
smallest = 1;
|
|
else
|
|
smallest = 0;
|
|
|
|
/*
|
|
* Compress the remaining entries and zero out the removed stuff.
|
|
*/
|
|
memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
|
|
ichdr.usedbytes -= entsize;
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
|
|
entsize));
|
|
|
|
tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
|
|
memmove(entry, entry + 1, tmp);
|
|
ichdr.count--;
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
|
|
|
|
entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
|
|
memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
|
|
|
|
/*
|
|
* If we removed the first entry, re-find the first used byte
|
|
* in the name area. Note that if the entry was the "firstused",
|
|
* then we don't have a "hole" in our block resulting from
|
|
* removing the name.
|
|
*/
|
|
if (smallest) {
|
|
tmp = XFS_LBSIZE(mp);
|
|
entry = xfs_attr3_leaf_entryp(leaf);
|
|
for (i = ichdr.count - 1; i >= 0; entry++, i--) {
|
|
ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
|
|
ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
|
|
|
|
if (be16_to_cpu(entry->nameidx) < tmp)
|
|
tmp = be16_to_cpu(entry->nameidx);
|
|
}
|
|
ichdr.firstused = tmp;
|
|
if (!ichdr.firstused)
|
|
ichdr.firstused = tmp - XFS_ATTR_LEAF_NAME_ALIGN;
|
|
} else {
|
|
ichdr.holes = 1; /* mark as needing compaction */
|
|
}
|
|
xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, &leaf->hdr,
|
|
xfs_attr3_leaf_hdr_size(leaf)));
|
|
|
|
/*
|
|
* Check if leaf is less than 50% full, caller may want to
|
|
* "join" the leaf with a sibling if so.
|
|
*/
|
|
tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
|
|
ichdr.count * sizeof(xfs_attr_leaf_entry_t);
|
|
|
|
return tmp < mp->m_attr_magicpct; /* leaf is < 37% full */
|
|
}
|
|
|
|
/*
|
|
* Move all the attribute list entries from drop_leaf into save_leaf.
|
|
*/
|
|
void
|
|
xfs_attr3_leaf_unbalance(
|
|
struct xfs_da_state *state,
|
|
struct xfs_da_state_blk *drop_blk,
|
|
struct xfs_da_state_blk *save_blk)
|
|
{
|
|
struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
|
|
struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
|
|
struct xfs_attr3_icleaf_hdr drophdr;
|
|
struct xfs_attr3_icleaf_hdr savehdr;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
struct xfs_mount *mp = state->mp;
|
|
|
|
trace_xfs_attr_leaf_unbalance(state->args);
|
|
|
|
drop_leaf = drop_blk->bp->b_addr;
|
|
save_leaf = save_blk->bp->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&drophdr, drop_leaf);
|
|
xfs_attr3_leaf_hdr_from_disk(&savehdr, save_leaf);
|
|
entry = xfs_attr3_leaf_entryp(drop_leaf);
|
|
|
|
/*
|
|
* Save last hashval from dying block for later Btree fixup.
|
|
*/
|
|
drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
|
|
|
|
/*
|
|
* Check if we need a temp buffer, or can we do it in place.
|
|
* Note that we don't check "leaf" for holes because we will
|
|
* always be dropping it, toosmall() decided that for us already.
|
|
*/
|
|
if (savehdr.holes == 0) {
|
|
/*
|
|
* dest leaf has no holes, so we add there. May need
|
|
* to make some room in the entry array.
|
|
*/
|
|
if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
|
|
drop_blk->bp, &drophdr)) {
|
|
xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
|
|
save_leaf, &savehdr, 0,
|
|
drophdr.count, mp);
|
|
} else {
|
|
xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
|
|
save_leaf, &savehdr,
|
|
savehdr.count, drophdr.count, mp);
|
|
}
|
|
} else {
|
|
/*
|
|
* Destination has holes, so we make a temporary copy
|
|
* of the leaf and add them both to that.
|
|
*/
|
|
struct xfs_attr_leafblock *tmp_leaf;
|
|
struct xfs_attr3_icleaf_hdr tmphdr;
|
|
|
|
tmp_leaf = kmem_zalloc(state->blocksize, KM_SLEEP);
|
|
|
|
/*
|
|
* Copy the header into the temp leaf so that all the stuff
|
|
* not in the incore header is present and gets copied back in
|
|
* once we've moved all the entries.
|
|
*/
|
|
memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
|
|
|
|
memset(&tmphdr, 0, sizeof(tmphdr));
|
|
tmphdr.magic = savehdr.magic;
|
|
tmphdr.forw = savehdr.forw;
|
|
tmphdr.back = savehdr.back;
|
|
tmphdr.firstused = state->blocksize;
|
|
|
|
/* write the header to the temp buffer to initialise it */
|
|
xfs_attr3_leaf_hdr_to_disk(tmp_leaf, &tmphdr);
|
|
|
|
if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
|
|
drop_blk->bp, &drophdr)) {
|
|
xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
|
|
tmp_leaf, &tmphdr, 0,
|
|
drophdr.count, mp);
|
|
xfs_attr3_leaf_moveents(save_leaf, &savehdr, 0,
|
|
tmp_leaf, &tmphdr, tmphdr.count,
|
|
savehdr.count, mp);
|
|
} else {
|
|
xfs_attr3_leaf_moveents(save_leaf, &savehdr, 0,
|
|
tmp_leaf, &tmphdr, 0,
|
|
savehdr.count, mp);
|
|
xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
|
|
tmp_leaf, &tmphdr, tmphdr.count,
|
|
drophdr.count, mp);
|
|
}
|
|
memcpy(save_leaf, tmp_leaf, state->blocksize);
|
|
savehdr = tmphdr; /* struct copy */
|
|
kmem_free(tmp_leaf);
|
|
}
|
|
|
|
xfs_attr3_leaf_hdr_to_disk(save_leaf, &savehdr);
|
|
xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
|
|
state->blocksize - 1);
|
|
|
|
/*
|
|
* Copy out last hashval in each block for B-tree code.
|
|
*/
|
|
entry = xfs_attr3_leaf_entryp(save_leaf);
|
|
save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
|
|
}
|
|
|
|
/*========================================================================
|
|
* Routines used for finding things in the Btree.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Look up a name in a leaf attribute list structure.
|
|
* This is the internal routine, it uses the caller's buffer.
|
|
*
|
|
* Note that duplicate keys are allowed, but only check within the
|
|
* current leaf node. The Btree code must check in adjacent leaf nodes.
|
|
*
|
|
* Return in args->index the index into the entry[] array of either
|
|
* the found entry, or where the entry should have been (insert before
|
|
* that entry).
|
|
*
|
|
* Don't change the args->value unless we find the attribute.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_lookup_int(
|
|
struct xfs_buf *bp,
|
|
struct xfs_da_args *args)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
struct xfs_attr_leaf_entry *entries;
|
|
struct xfs_attr_leaf_name_local *name_loc;
|
|
struct xfs_attr_leaf_name_remote *name_rmt;
|
|
xfs_dahash_t hashval;
|
|
int probe;
|
|
int span;
|
|
|
|
trace_xfs_attr_leaf_lookup(args);
|
|
|
|
leaf = bp->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
entries = xfs_attr3_leaf_entryp(leaf);
|
|
ASSERT(ichdr.count < XFS_LBSIZE(args->dp->i_mount) / 8);
|
|
|
|
/*
|
|
* Binary search. (note: small blocks will skip this loop)
|
|
*/
|
|
hashval = args->hashval;
|
|
probe = span = ichdr.count / 2;
|
|
for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
|
|
span /= 2;
|
|
if (be32_to_cpu(entry->hashval) < hashval)
|
|
probe += span;
|
|
else if (be32_to_cpu(entry->hashval) > hashval)
|
|
probe -= span;
|
|
else
|
|
break;
|
|
}
|
|
ASSERT(probe >= 0 && (!ichdr.count || probe < ichdr.count));
|
|
ASSERT(span <= 4 || be32_to_cpu(entry->hashval) == hashval);
|
|
|
|
/*
|
|
* Since we may have duplicate hashval's, find the first matching
|
|
* hashval in the leaf.
|
|
*/
|
|
while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
|
|
entry--;
|
|
probe--;
|
|
}
|
|
while (probe < ichdr.count &&
|
|
be32_to_cpu(entry->hashval) < hashval) {
|
|
entry++;
|
|
probe++;
|
|
}
|
|
if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
|
|
args->index = probe;
|
|
return XFS_ERROR(ENOATTR);
|
|
}
|
|
|
|
/*
|
|
* Duplicate keys may be present, so search all of them for a match.
|
|
*/
|
|
for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
|
|
entry++, probe++) {
|
|
/*
|
|
* GROT: Add code to remove incomplete entries.
|
|
*/
|
|
/*
|
|
* If we are looking for INCOMPLETE entries, show only those.
|
|
* If we are looking for complete entries, show only those.
|
|
*/
|
|
if ((args->flags & XFS_ATTR_INCOMPLETE) !=
|
|
(entry->flags & XFS_ATTR_INCOMPLETE)) {
|
|
continue;
|
|
}
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = xfs_attr3_leaf_name_local(leaf, probe);
|
|
if (name_loc->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, name_loc->nameval,
|
|
args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, entry->flags))
|
|
continue;
|
|
args->index = probe;
|
|
return XFS_ERROR(EEXIST);
|
|
} else {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
|
|
if (name_rmt->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, name_rmt->name,
|
|
args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, entry->flags))
|
|
continue;
|
|
args->index = probe;
|
|
args->valuelen = be32_to_cpu(name_rmt->valuelen);
|
|
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
|
|
args->rmtblkcnt = xfs_attr3_rmt_blocks(
|
|
args->dp->i_mount,
|
|
args->valuelen);
|
|
return XFS_ERROR(EEXIST);
|
|
}
|
|
}
|
|
args->index = probe;
|
|
return XFS_ERROR(ENOATTR);
|
|
}
|
|
|
|
/*
|
|
* Get the value associated with an attribute name from a leaf attribute
|
|
* list structure.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_getvalue(
|
|
struct xfs_buf *bp,
|
|
struct xfs_da_args *args)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
struct xfs_attr_leaf_name_local *name_loc;
|
|
struct xfs_attr_leaf_name_remote *name_rmt;
|
|
int valuelen;
|
|
|
|
leaf = bp->b_addr;
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
ASSERT(ichdr.count < XFS_LBSIZE(args->dp->i_mount) / 8);
|
|
ASSERT(args->index < ichdr.count);
|
|
|
|
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
|
|
ASSERT(name_loc->namelen == args->namelen);
|
|
ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
|
|
valuelen = be16_to_cpu(name_loc->valuelen);
|
|
if (args->flags & ATTR_KERNOVAL) {
|
|
args->valuelen = valuelen;
|
|
return 0;
|
|
}
|
|
if (args->valuelen < valuelen) {
|
|
args->valuelen = valuelen;
|
|
return XFS_ERROR(ERANGE);
|
|
}
|
|
args->valuelen = valuelen;
|
|
memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
|
|
} else {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
|
|
ASSERT(name_rmt->namelen == args->namelen);
|
|
ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
|
|
valuelen = be32_to_cpu(name_rmt->valuelen);
|
|
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
|
|
args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
|
|
valuelen);
|
|
if (args->flags & ATTR_KERNOVAL) {
|
|
args->valuelen = valuelen;
|
|
return 0;
|
|
}
|
|
if (args->valuelen < valuelen) {
|
|
args->valuelen = valuelen;
|
|
return XFS_ERROR(ERANGE);
|
|
}
|
|
args->valuelen = valuelen;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*========================================================================
|
|
* Utility routines.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Move the indicated entries from one leaf to another.
|
|
* NOTE: this routine modifies both source and destination leaves.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_attr3_leaf_moveents(
|
|
struct xfs_attr_leafblock *leaf_s,
|
|
struct xfs_attr3_icleaf_hdr *ichdr_s,
|
|
int start_s,
|
|
struct xfs_attr_leafblock *leaf_d,
|
|
struct xfs_attr3_icleaf_hdr *ichdr_d,
|
|
int start_d,
|
|
int count,
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_attr_leaf_entry *entry_s;
|
|
struct xfs_attr_leaf_entry *entry_d;
|
|
int desti;
|
|
int tmp;
|
|
int i;
|
|
|
|
/*
|
|
* Check for nothing to do.
|
|
*/
|
|
if (count == 0)
|
|
return;
|
|
|
|
/*
|
|
* Set up environment.
|
|
*/
|
|
ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
|
|
ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
|
|
ASSERT(ichdr_s->magic == ichdr_d->magic);
|
|
ASSERT(ichdr_s->count > 0 && ichdr_s->count < XFS_LBSIZE(mp) / 8);
|
|
ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
|
|
+ xfs_attr3_leaf_hdr_size(leaf_s));
|
|
ASSERT(ichdr_d->count < XFS_LBSIZE(mp) / 8);
|
|
ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
|
|
+ xfs_attr3_leaf_hdr_size(leaf_d));
|
|
|
|
ASSERT(start_s < ichdr_s->count);
|
|
ASSERT(start_d <= ichdr_d->count);
|
|
ASSERT(count <= ichdr_s->count);
|
|
|
|
|
|
/*
|
|
* Move the entries in the destination leaf up to make a hole?
|
|
*/
|
|
if (start_d < ichdr_d->count) {
|
|
tmp = ichdr_d->count - start_d;
|
|
tmp *= sizeof(xfs_attr_leaf_entry_t);
|
|
entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
|
|
entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
|
|
memmove(entry_d, entry_s, tmp);
|
|
}
|
|
|
|
/*
|
|
* Copy all entry's in the same (sorted) order,
|
|
* but allocate attribute info packed and in sequence.
|
|
*/
|
|
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
|
|
entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
|
|
desti = start_d;
|
|
for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
|
|
ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
|
|
tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
|
|
#ifdef GROT
|
|
/*
|
|
* Code to drop INCOMPLETE entries. Difficult to use as we
|
|
* may also need to change the insertion index. Code turned
|
|
* off for 6.2, should be revisited later.
|
|
*/
|
|
if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
|
|
memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
|
|
ichdr_s->usedbytes -= tmp;
|
|
ichdr_s->count -= 1;
|
|
entry_d--; /* to compensate for ++ in loop hdr */
|
|
desti--;
|
|
if ((start_s + i) < offset)
|
|
result++; /* insertion index adjustment */
|
|
} else {
|
|
#endif /* GROT */
|
|
ichdr_d->firstused -= tmp;
|
|
/* both on-disk, don't endian flip twice */
|
|
entry_d->hashval = entry_s->hashval;
|
|
entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
|
|
entry_d->flags = entry_s->flags;
|
|
ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
|
|
<= XFS_LBSIZE(mp));
|
|
memmove(xfs_attr3_leaf_name(leaf_d, desti),
|
|
xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
|
|
ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
|
|
<= XFS_LBSIZE(mp));
|
|
memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
|
|
ichdr_s->usedbytes -= tmp;
|
|
ichdr_d->usedbytes += tmp;
|
|
ichdr_s->count -= 1;
|
|
ichdr_d->count += 1;
|
|
tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
|
|
+ xfs_attr3_leaf_hdr_size(leaf_d);
|
|
ASSERT(ichdr_d->firstused >= tmp);
|
|
#ifdef GROT
|
|
}
|
|
#endif /* GROT */
|
|
}
|
|
|
|
/*
|
|
* Zero out the entries we just copied.
|
|
*/
|
|
if (start_s == ichdr_s->count) {
|
|
tmp = count * sizeof(xfs_attr_leaf_entry_t);
|
|
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
|
|
ASSERT(((char *)entry_s + tmp) <=
|
|
((char *)leaf_s + XFS_LBSIZE(mp)));
|
|
memset(entry_s, 0, tmp);
|
|
} else {
|
|
/*
|
|
* Move the remaining entries down to fill the hole,
|
|
* then zero the entries at the top.
|
|
*/
|
|
tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
|
|
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
|
|
entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
|
|
memmove(entry_d, entry_s, tmp);
|
|
|
|
tmp = count * sizeof(xfs_attr_leaf_entry_t);
|
|
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
|
|
ASSERT(((char *)entry_s + tmp) <=
|
|
((char *)leaf_s + XFS_LBSIZE(mp)));
|
|
memset(entry_s, 0, tmp);
|
|
}
|
|
|
|
/*
|
|
* Fill in the freemap information
|
|
*/
|
|
ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
|
|
ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
|
|
ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
|
|
ichdr_d->freemap[1].base = 0;
|
|
ichdr_d->freemap[2].base = 0;
|
|
ichdr_d->freemap[1].size = 0;
|
|
ichdr_d->freemap[2].size = 0;
|
|
ichdr_s->holes = 1; /* leaf may not be compact */
|
|
}
|
|
|
|
/*
|
|
* Pick up the last hashvalue from a leaf block.
|
|
*/
|
|
xfs_dahash_t
|
|
xfs_attr_leaf_lasthash(
|
|
struct xfs_buf *bp,
|
|
int *count)
|
|
{
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
struct xfs_attr_leaf_entry *entries;
|
|
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, bp->b_addr);
|
|
entries = xfs_attr3_leaf_entryp(bp->b_addr);
|
|
if (count)
|
|
*count = ichdr.count;
|
|
if (!ichdr.count)
|
|
return 0;
|
|
return be32_to_cpu(entries[ichdr.count - 1].hashval);
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of bytes used to store the indicated attribute
|
|
* (whether local or remote only calculate bytes in this block).
|
|
*/
|
|
STATIC int
|
|
xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
|
|
{
|
|
struct xfs_attr_leaf_entry *entries;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
int size;
|
|
|
|
entries = xfs_attr3_leaf_entryp(leaf);
|
|
if (entries[index].flags & XFS_ATTR_LOCAL) {
|
|
name_loc = xfs_attr3_leaf_name_local(leaf, index);
|
|
size = xfs_attr_leaf_entsize_local(name_loc->namelen,
|
|
be16_to_cpu(name_loc->valuelen));
|
|
} else {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
|
|
size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of bytes that would be required to store the new
|
|
* attribute (whether local or remote only calculate bytes in this block).
|
|
* This routine decides as a side effect whether the attribute will be
|
|
* a "local" or a "remote" attribute.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local)
|
|
{
|
|
int size;
|
|
|
|
size = xfs_attr_leaf_entsize_local(namelen, valuelen);
|
|
if (size < xfs_attr_leaf_entsize_local_max(blocksize)) {
|
|
if (local) {
|
|
*local = 1;
|
|
}
|
|
} else {
|
|
size = xfs_attr_leaf_entsize_remote(namelen);
|
|
if (local) {
|
|
*local = 0;
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
|
|
/*========================================================================
|
|
* Manage the INCOMPLETE flag in a leaf entry
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Clear the INCOMPLETE flag on an entry in a leaf block.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_clearflag(
|
|
struct xfs_da_args *args)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
struct xfs_attr_leaf_name_remote *name_rmt;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
#ifdef DEBUG
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
int namelen;
|
|
char *name;
|
|
#endif /* DEBUG */
|
|
|
|
trace_xfs_attr_leaf_clearflag(args);
|
|
/*
|
|
* Set up the operation.
|
|
*/
|
|
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
|
|
if (error)
|
|
return(error);
|
|
|
|
leaf = bp->b_addr;
|
|
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
|
|
ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
|
|
|
|
#ifdef DEBUG
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
ASSERT(args->index < ichdr.count);
|
|
ASSERT(args->index >= 0);
|
|
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
|
|
namelen = name_loc->namelen;
|
|
name = (char *)name_loc->nameval;
|
|
} else {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
|
|
namelen = name_rmt->namelen;
|
|
name = (char *)name_rmt->name;
|
|
}
|
|
ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
|
|
ASSERT(namelen == args->namelen);
|
|
ASSERT(memcmp(name, args->name, namelen) == 0);
|
|
#endif /* DEBUG */
|
|
|
|
entry->flags &= ~XFS_ATTR_INCOMPLETE;
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
|
|
|
|
if (args->rmtblkno) {
|
|
ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
|
|
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
|
|
name_rmt->valuelen = cpu_to_be32(args->valuelen);
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
|
|
}
|
|
|
|
/*
|
|
* Commit the flag value change and start the next trans in series.
|
|
*/
|
|
return xfs_trans_roll(&args->trans, args->dp);
|
|
}
|
|
|
|
/*
|
|
* Set the INCOMPLETE flag on an entry in a leaf block.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_setflag(
|
|
struct xfs_da_args *args)
|
|
{
|
|
struct xfs_attr_leafblock *leaf;
|
|
struct xfs_attr_leaf_entry *entry;
|
|
struct xfs_attr_leaf_name_remote *name_rmt;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
#ifdef DEBUG
|
|
struct xfs_attr3_icleaf_hdr ichdr;
|
|
#endif
|
|
|
|
trace_xfs_attr_leaf_setflag(args);
|
|
|
|
/*
|
|
* Set up the operation.
|
|
*/
|
|
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
|
|
if (error)
|
|
return(error);
|
|
|
|
leaf = bp->b_addr;
|
|
#ifdef DEBUG
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
|
|
ASSERT(args->index < ichdr.count);
|
|
ASSERT(args->index >= 0);
|
|
#endif
|
|
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
|
|
|
|
ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
|
|
entry->flags |= XFS_ATTR_INCOMPLETE;
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
|
|
if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
|
|
name_rmt->valueblk = 0;
|
|
name_rmt->valuelen = 0;
|
|
xfs_trans_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
|
|
}
|
|
|
|
/*
|
|
* Commit the flag value change and start the next trans in series.
|
|
*/
|
|
return xfs_trans_roll(&args->trans, args->dp);
|
|
}
|
|
|
|
/*
|
|
* In a single transaction, clear the INCOMPLETE flag on the leaf entry
|
|
* given by args->blkno/index and set the INCOMPLETE flag on the leaf
|
|
* entry given by args->blkno2/index2.
|
|
*
|
|
* Note that they could be in different blocks, or in the same block.
|
|
*/
|
|
int
|
|
xfs_attr3_leaf_flipflags(
|
|
struct xfs_da_args *args)
|
|
{
|
|
struct xfs_attr_leafblock *leaf1;
|
|
struct xfs_attr_leafblock *leaf2;
|
|
struct xfs_attr_leaf_entry *entry1;
|
|
struct xfs_attr_leaf_entry *entry2;
|
|
struct xfs_attr_leaf_name_remote *name_rmt;
|
|
struct xfs_buf *bp1;
|
|
struct xfs_buf *bp2;
|
|
int error;
|
|
#ifdef DEBUG
|
|
struct xfs_attr3_icleaf_hdr ichdr1;
|
|
struct xfs_attr3_icleaf_hdr ichdr2;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
int namelen1, namelen2;
|
|
char *name1, *name2;
|
|
#endif /* DEBUG */
|
|
|
|
trace_xfs_attr_leaf_flipflags(args);
|
|
|
|
/*
|
|
* Read the block containing the "old" attr
|
|
*/
|
|
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Read the block containing the "new" attr, if it is different
|
|
*/
|
|
if (args->blkno2 != args->blkno) {
|
|
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
|
|
-1, &bp2);
|
|
if (error)
|
|
return error;
|
|
} else {
|
|
bp2 = bp1;
|
|
}
|
|
|
|
leaf1 = bp1->b_addr;
|
|
entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
|
|
|
|
leaf2 = bp2->b_addr;
|
|
entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
|
|
|
|
#ifdef DEBUG
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1);
|
|
ASSERT(args->index < ichdr1.count);
|
|
ASSERT(args->index >= 0);
|
|
|
|
xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2);
|
|
ASSERT(args->index2 < ichdr2.count);
|
|
ASSERT(args->index2 >= 0);
|
|
|
|
if (entry1->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
|
|
namelen1 = name_loc->namelen;
|
|
name1 = (char *)name_loc->nameval;
|
|
} else {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
|
|
namelen1 = name_rmt->namelen;
|
|
name1 = (char *)name_rmt->name;
|
|
}
|
|
if (entry2->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
|
|
namelen2 = name_loc->namelen;
|
|
name2 = (char *)name_loc->nameval;
|
|
} else {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
|
|
namelen2 = name_rmt->namelen;
|
|
name2 = (char *)name_rmt->name;
|
|
}
|
|
ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
|
|
ASSERT(namelen1 == namelen2);
|
|
ASSERT(memcmp(name1, name2, namelen1) == 0);
|
|
#endif /* DEBUG */
|
|
|
|
ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
|
|
ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
|
|
|
|
entry1->flags &= ~XFS_ATTR_INCOMPLETE;
|
|
xfs_trans_log_buf(args->trans, bp1,
|
|
XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
|
|
if (args->rmtblkno) {
|
|
ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
|
|
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
|
|
name_rmt->valuelen = cpu_to_be32(args->valuelen);
|
|
xfs_trans_log_buf(args->trans, bp1,
|
|
XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
|
|
}
|
|
|
|
entry2->flags |= XFS_ATTR_INCOMPLETE;
|
|
xfs_trans_log_buf(args->trans, bp2,
|
|
XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
|
|
if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
|
|
name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
|
|
name_rmt->valueblk = 0;
|
|
name_rmt->valuelen = 0;
|
|
xfs_trans_log_buf(args->trans, bp2,
|
|
XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
|
|
}
|
|
|
|
/*
|
|
* Commit the flag value change and start the next trans in series.
|
|
*/
|
|
error = xfs_trans_roll(&args->trans, args->dp);
|
|
|
|
return error;
|
|
}
|