WSL2-Linux-Kernel/drivers/misc/cxl/pci.c

2312 строки
65 KiB
C
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

/*
* Copyright 2014 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/pci_regs.h>
#include <linux/pci_ids.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/pci.h>
#include <linux/of.h>
#include <linux/delay.h>
#include <asm/opal.h>
#include <asm/msi_bitmap.h>
#include <asm/pnv-pci.h>
#include <asm/io.h>
#include <asm/reg.h>
#include "cxl.h"
#include <misc/cxl.h>
#define CXL_PCI_VSEC_ID 0x1280
#define CXL_VSEC_MIN_SIZE 0x80
#define CXL_READ_VSEC_LENGTH(dev, vsec, dest) \
{ \
pci_read_config_word(dev, vsec + 0x6, dest); \
*dest >>= 4; \
}
#define CXL_READ_VSEC_NAFUS(dev, vsec, dest) \
pci_read_config_byte(dev, vsec + 0x8, dest)
#define CXL_READ_VSEC_STATUS(dev, vsec, dest) \
pci_read_config_byte(dev, vsec + 0x9, dest)
#define CXL_STATUS_SECOND_PORT 0x80
#define CXL_STATUS_MSI_X_FULL 0x40
#define CXL_STATUS_MSI_X_SINGLE 0x20
#define CXL_STATUS_FLASH_RW 0x08
#define CXL_STATUS_FLASH_RO 0x04
#define CXL_STATUS_LOADABLE_AFU 0x02
#define CXL_STATUS_LOADABLE_PSL 0x01
/* If we see these features we won't try to use the card */
#define CXL_UNSUPPORTED_FEATURES \
(CXL_STATUS_MSI_X_FULL | CXL_STATUS_MSI_X_SINGLE)
#define CXL_READ_VSEC_MODE_CONTROL(dev, vsec, dest) \
pci_read_config_byte(dev, vsec + 0xa, dest)
#define CXL_WRITE_VSEC_MODE_CONTROL(dev, vsec, val) \
pci_write_config_byte(dev, vsec + 0xa, val)
#define CXL_WRITE_VSEC_MODE_CONTROL_BUS(bus, devfn, vsec, val) \
pci_bus_write_config_byte(bus, devfn, vsec + 0xa, val)
#define CXL_VSEC_PROTOCOL_MASK 0xe0
#define CXL_VSEC_PROTOCOL_1024TB 0x80
#define CXL_VSEC_PROTOCOL_512TB 0x40
#define CXL_VSEC_PROTOCOL_256TB 0x20 /* Power 8/9 uses this */
#define CXL_VSEC_PROTOCOL_ENABLE 0x01
#define CXL_READ_VSEC_PSL_REVISION(dev, vsec, dest) \
pci_read_config_word(dev, vsec + 0xc, dest)
#define CXL_READ_VSEC_CAIA_MINOR(dev, vsec, dest) \
pci_read_config_byte(dev, vsec + 0xe, dest)
#define CXL_READ_VSEC_CAIA_MAJOR(dev, vsec, dest) \
pci_read_config_byte(dev, vsec + 0xf, dest)
#define CXL_READ_VSEC_BASE_IMAGE(dev, vsec, dest) \
pci_read_config_word(dev, vsec + 0x10, dest)
#define CXL_READ_VSEC_IMAGE_STATE(dev, vsec, dest) \
pci_read_config_byte(dev, vsec + 0x13, dest)
#define CXL_WRITE_VSEC_IMAGE_STATE(dev, vsec, val) \
pci_write_config_byte(dev, vsec + 0x13, val)
#define CXL_VSEC_USER_IMAGE_LOADED 0x80 /* RO */
#define CXL_VSEC_PERST_LOADS_IMAGE 0x20 /* RW */
#define CXL_VSEC_PERST_SELECT_USER 0x10 /* RW */
#define CXL_READ_VSEC_AFU_DESC_OFF(dev, vsec, dest) \
pci_read_config_dword(dev, vsec + 0x20, dest)
#define CXL_READ_VSEC_AFU_DESC_SIZE(dev, vsec, dest) \
pci_read_config_dword(dev, vsec + 0x24, dest)
#define CXL_READ_VSEC_PS_OFF(dev, vsec, dest) \
pci_read_config_dword(dev, vsec + 0x28, dest)
#define CXL_READ_VSEC_PS_SIZE(dev, vsec, dest) \
pci_read_config_dword(dev, vsec + 0x2c, dest)
/* This works a little different than the p1/p2 register accesses to make it
* easier to pull out individual fields */
#define AFUD_READ(afu, off) in_be64(afu->native->afu_desc_mmio + off)
#define AFUD_READ_LE(afu, off) in_le64(afu->native->afu_desc_mmio + off)
#define EXTRACT_PPC_BIT(val, bit) (!!(val & PPC_BIT(bit)))
#define EXTRACT_PPC_BITS(val, bs, be) ((val & PPC_BITMASK(bs, be)) >> PPC_BITLSHIFT(be))
#define AFUD_READ_INFO(afu) AFUD_READ(afu, 0x0)
#define AFUD_NUM_INTS_PER_PROC(val) EXTRACT_PPC_BITS(val, 0, 15)
#define AFUD_NUM_PROCS(val) EXTRACT_PPC_BITS(val, 16, 31)
#define AFUD_NUM_CRS(val) EXTRACT_PPC_BITS(val, 32, 47)
#define AFUD_MULTIMODE(val) EXTRACT_PPC_BIT(val, 48)
#define AFUD_PUSH_BLOCK_TRANSFER(val) EXTRACT_PPC_BIT(val, 55)
#define AFUD_DEDICATED_PROCESS(val) EXTRACT_PPC_BIT(val, 59)
#define AFUD_AFU_DIRECTED(val) EXTRACT_PPC_BIT(val, 61)
#define AFUD_TIME_SLICED(val) EXTRACT_PPC_BIT(val, 63)
#define AFUD_READ_CR(afu) AFUD_READ(afu, 0x20)
#define AFUD_CR_LEN(val) EXTRACT_PPC_BITS(val, 8, 63)
#define AFUD_READ_CR_OFF(afu) AFUD_READ(afu, 0x28)
#define AFUD_READ_PPPSA(afu) AFUD_READ(afu, 0x30)
#define AFUD_PPPSA_PP(val) EXTRACT_PPC_BIT(val, 6)
#define AFUD_PPPSA_PSA(val) EXTRACT_PPC_BIT(val, 7)
#define AFUD_PPPSA_LEN(val) EXTRACT_PPC_BITS(val, 8, 63)
#define AFUD_READ_PPPSA_OFF(afu) AFUD_READ(afu, 0x38)
#define AFUD_READ_EB(afu) AFUD_READ(afu, 0x40)
#define AFUD_EB_LEN(val) EXTRACT_PPC_BITS(val, 8, 63)
#define AFUD_READ_EB_OFF(afu) AFUD_READ(afu, 0x48)
static const struct pci_device_id cxl_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0477), },
{ PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x044b), },
{ PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x04cf), },
{ PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0601), },
{ PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0623), },
{ PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0628), },
{ PCI_DEVICE_CLASS(0x120000, ~0), },
{ }
};
MODULE_DEVICE_TABLE(pci, cxl_pci_tbl);
/*
* Mostly using these wrappers to avoid confusion:
* priv 1 is BAR2, while priv 2 is BAR0
*/
static inline resource_size_t p1_base(struct pci_dev *dev)
{
return pci_resource_start(dev, 2);
}
static inline resource_size_t p1_size(struct pci_dev *dev)
{
return pci_resource_len(dev, 2);
}
static inline resource_size_t p2_base(struct pci_dev *dev)
{
return pci_resource_start(dev, 0);
}
static inline resource_size_t p2_size(struct pci_dev *dev)
{
return pci_resource_len(dev, 0);
}
static int find_cxl_vsec(struct pci_dev *dev)
{
int vsec = 0;
u16 val;
while ((vsec = pci_find_next_ext_capability(dev, vsec, PCI_EXT_CAP_ID_VNDR))) {
pci_read_config_word(dev, vsec + 0x4, &val);
if (val == CXL_PCI_VSEC_ID)
return vsec;
}
return 0;
}
static void dump_cxl_config_space(struct pci_dev *dev)
{
int vsec;
u32 val;
dev_info(&dev->dev, "dump_cxl_config_space\n");
pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, &val);
dev_info(&dev->dev, "BAR0: %#.8x\n", val);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &val);
dev_info(&dev->dev, "BAR1: %#.8x\n", val);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_2, &val);
dev_info(&dev->dev, "BAR2: %#.8x\n", val);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_3, &val);
dev_info(&dev->dev, "BAR3: %#.8x\n", val);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_4, &val);
dev_info(&dev->dev, "BAR4: %#.8x\n", val);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_5, &val);
dev_info(&dev->dev, "BAR5: %#.8x\n", val);
dev_info(&dev->dev, "p1 regs: %#llx, len: %#llx\n",
p1_base(dev), p1_size(dev));
dev_info(&dev->dev, "p2 regs: %#llx, len: %#llx\n",
p2_base(dev), p2_size(dev));
dev_info(&dev->dev, "BAR 4/5: %#llx, len: %#llx\n",
pci_resource_start(dev, 4), pci_resource_len(dev, 4));
if (!(vsec = find_cxl_vsec(dev)))
return;
#define show_reg(name, what) \
dev_info(&dev->dev, "cxl vsec: %30s: %#x\n", name, what)
pci_read_config_dword(dev, vsec + 0x0, &val);
show_reg("Cap ID", (val >> 0) & 0xffff);
show_reg("Cap Ver", (val >> 16) & 0xf);
show_reg("Next Cap Ptr", (val >> 20) & 0xfff);
pci_read_config_dword(dev, vsec + 0x4, &val);
show_reg("VSEC ID", (val >> 0) & 0xffff);
show_reg("VSEC Rev", (val >> 16) & 0xf);
show_reg("VSEC Length", (val >> 20) & 0xfff);
pci_read_config_dword(dev, vsec + 0x8, &val);
show_reg("Num AFUs", (val >> 0) & 0xff);
show_reg("Status", (val >> 8) & 0xff);
show_reg("Mode Control", (val >> 16) & 0xff);
show_reg("Reserved", (val >> 24) & 0xff);
pci_read_config_dword(dev, vsec + 0xc, &val);
show_reg("PSL Rev", (val >> 0) & 0xffff);
show_reg("CAIA Ver", (val >> 16) & 0xffff);
pci_read_config_dword(dev, vsec + 0x10, &val);
show_reg("Base Image Rev", (val >> 0) & 0xffff);
show_reg("Reserved", (val >> 16) & 0x0fff);
show_reg("Image Control", (val >> 28) & 0x3);
show_reg("Reserved", (val >> 30) & 0x1);
show_reg("Image Loaded", (val >> 31) & 0x1);
pci_read_config_dword(dev, vsec + 0x14, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x18, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x1c, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x20, &val);
show_reg("AFU Descriptor Offset", val);
pci_read_config_dword(dev, vsec + 0x24, &val);
show_reg("AFU Descriptor Size", val);
pci_read_config_dword(dev, vsec + 0x28, &val);
show_reg("Problem State Offset", val);
pci_read_config_dword(dev, vsec + 0x2c, &val);
show_reg("Problem State Size", val);
pci_read_config_dword(dev, vsec + 0x30, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x34, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x38, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x3c, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x40, &val);
show_reg("PSL Programming Port", val);
pci_read_config_dword(dev, vsec + 0x44, &val);
show_reg("PSL Programming Control", val);
pci_read_config_dword(dev, vsec + 0x48, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x4c, &val);
show_reg("Reserved", val);
pci_read_config_dword(dev, vsec + 0x50, &val);
show_reg("Flash Address Register", val);
pci_read_config_dword(dev, vsec + 0x54, &val);
show_reg("Flash Size Register", val);
pci_read_config_dword(dev, vsec + 0x58, &val);
show_reg("Flash Status/Control Register", val);
pci_read_config_dword(dev, vsec + 0x58, &val);
show_reg("Flash Data Port", val);
#undef show_reg
}
static void dump_afu_descriptor(struct cxl_afu *afu)
{
u64 val, afu_cr_num, afu_cr_off, afu_cr_len;
int i;
#define show_reg(name, what) \
dev_info(&afu->dev, "afu desc: %30s: %#llx\n", name, what)
val = AFUD_READ_INFO(afu);
show_reg("num_ints_per_process", AFUD_NUM_INTS_PER_PROC(val));
show_reg("num_of_processes", AFUD_NUM_PROCS(val));
show_reg("num_of_afu_CRs", AFUD_NUM_CRS(val));
show_reg("req_prog_mode", val & 0xffffULL);
afu_cr_num = AFUD_NUM_CRS(val);
val = AFUD_READ(afu, 0x8);
show_reg("Reserved", val);
val = AFUD_READ(afu, 0x10);
show_reg("Reserved", val);
val = AFUD_READ(afu, 0x18);
show_reg("Reserved", val);
val = AFUD_READ_CR(afu);
show_reg("Reserved", (val >> (63-7)) & 0xff);
show_reg("AFU_CR_len", AFUD_CR_LEN(val));
afu_cr_len = AFUD_CR_LEN(val) * 256;
val = AFUD_READ_CR_OFF(afu);
afu_cr_off = val;
show_reg("AFU_CR_offset", val);
val = AFUD_READ_PPPSA(afu);
show_reg("PerProcessPSA_control", (val >> (63-7)) & 0xff);
show_reg("PerProcessPSA Length", AFUD_PPPSA_LEN(val));
val = AFUD_READ_PPPSA_OFF(afu);
show_reg("PerProcessPSA_offset", val);
val = AFUD_READ_EB(afu);
show_reg("Reserved", (val >> (63-7)) & 0xff);
show_reg("AFU_EB_len", AFUD_EB_LEN(val));
val = AFUD_READ_EB_OFF(afu);
show_reg("AFU_EB_offset", val);
for (i = 0; i < afu_cr_num; i++) {
val = AFUD_READ_LE(afu, afu_cr_off + i * afu_cr_len);
show_reg("CR Vendor", val & 0xffff);
show_reg("CR Device", (val >> 16) & 0xffff);
}
#undef show_reg
}
#define P8_CAPP_UNIT0_ID 0xBA
#define P8_CAPP_UNIT1_ID 0XBE
#define P9_CAPP_UNIT0_ID 0xC0
#define P9_CAPP_UNIT1_ID 0xE0
static int get_phb_index(struct device_node *np, u32 *phb_index)
{
if (of_property_read_u32(np, "ibm,phb-index", phb_index))
return -ENODEV;
return 0;
}
static u64 get_capp_unit_id(struct device_node *np, u32 phb_index)
{
/*
* POWER 8:
* - For chips other than POWER8NVL, we only have CAPP 0,
* irrespective of which PHB is used.
* - For POWER8NVL, assume CAPP 0 is attached to PHB0 and
* CAPP 1 is attached to PHB1.
*/
if (cxl_is_power8()) {
if (!pvr_version_is(PVR_POWER8NVL))
return P8_CAPP_UNIT0_ID;
if (phb_index == 0)
return P8_CAPP_UNIT0_ID;
if (phb_index == 1)
return P8_CAPP_UNIT1_ID;
}
/*
* POWER 9:
* PEC0 (PHB0). Capp ID = CAPP0 (0b1100_0000)
* PEC1 (PHB1 - PHB2). No capi mode
* PEC2 (PHB3 - PHB4 - PHB5): Capi mode on PHB3 only. Capp ID = CAPP1 (0b1110_0000)
*/
if (cxl_is_power9()) {
if (phb_index == 0)
return P9_CAPP_UNIT0_ID;
if (phb_index == 3)
return P9_CAPP_UNIT1_ID;
}
return 0;
}
int cxl_calc_capp_routing(struct pci_dev *dev, u64 *chipid,
u32 *phb_index, u64 *capp_unit_id)
{
int rc;
struct device_node *np;
const __be32 *prop;
if (!(np = pnv_pci_get_phb_node(dev)))
return -ENODEV;
while (np && !(prop = of_get_property(np, "ibm,chip-id", NULL)))
np = of_get_next_parent(np);
if (!np)
return -ENODEV;
*chipid = be32_to_cpup(prop);
rc = get_phb_index(np, phb_index);
if (rc) {
pr_err("cxl: invalid phb index\n");
return rc;
}
*capp_unit_id = get_capp_unit_id(np, *phb_index);
of_node_put(np);
if (!*capp_unit_id) {
pr_err("cxl: invalid capp unit id\n");
return -ENODEV;
}
return 0;
}
int cxl_get_xsl9_dsnctl(u64 capp_unit_id, u64 *reg)
{
u64 xsl_dsnctl;
/*
* CAPI Identifier bits [0:7]
* bit 61:60 MSI bits --> 0
* bit 59 TVT selector --> 0
*/
/*
* Tell XSL where to route data to.
* The field chipid should match the PHB CAPI_CMPM register
*/
xsl_dsnctl = ((u64)0x2 << (63-7)); /* Bit 57 */
xsl_dsnctl |= (capp_unit_id << (63-15));
/* nMMU_ID Defaults to: b000001001*/
xsl_dsnctl |= ((u64)0x09 << (63-28));
if (!(cxl_is_power9_dd1())) {
/*
* Used to identify CAPI packets which should be sorted into
* the Non-Blocking queues by the PHB. This field should match
* the PHB PBL_NBW_CMPM register
* nbwind=0x03, bits [57:58], must include capi indicator.
* Not supported on P9 DD1.
*/
xsl_dsnctl |= ((u64)0x03 << (63-47));
/*
* Upper 16b address bits of ASB_Notify messages sent to the
* system. Need to match the PHBs ASN Compare/Mask Register.
* Not supported on P9 DD1.
*/
xsl_dsnctl |= ((u64)0x04 << (63-55));
}
*reg = xsl_dsnctl;
return 0;
}
static int init_implementation_adapter_regs_psl9(struct cxl *adapter,
struct pci_dev *dev)
{
u64 xsl_dsnctl, psl_fircntl;
u64 chipid;
u32 phb_index;
u64 capp_unit_id;
int rc;
rc = cxl_calc_capp_routing(dev, &chipid, &phb_index, &capp_unit_id);
if (rc)
return rc;
rc = cxl_get_xsl9_dsnctl(capp_unit_id, &xsl_dsnctl);
if (rc)
return rc;
cxl_p1_write(adapter, CXL_XSL9_DSNCTL, xsl_dsnctl);
/* Set fir_cntl to recommended value for production env */
psl_fircntl = (0x2ULL << (63-3)); /* ce_report */
psl_fircntl |= (0x1ULL << (63-6)); /* FIR_report */
psl_fircntl |= 0x1ULL; /* ce_thresh */
cxl_p1_write(adapter, CXL_PSL9_FIR_CNTL, psl_fircntl);
/* vccredits=0x1 pcklat=0x4 */
cxl_p1_write(adapter, CXL_PSL9_DSNDCTL, 0x0000000000001810ULL);
/*
* For debugging with trace arrays.
* Configure RX trace 0 segmented mode.
* Configure CT trace 0 segmented mode.
* Configure LA0 trace 0 segmented mode.
* Configure LA1 trace 0 segmented mode.
*/
cxl_p1_write(adapter, CXL_PSL9_TRACECFG, 0x8040800080000000ULL);
cxl_p1_write(adapter, CXL_PSL9_TRACECFG, 0x8040800080000003ULL);
cxl_p1_write(adapter, CXL_PSL9_TRACECFG, 0x8040800080000005ULL);
cxl_p1_write(adapter, CXL_PSL9_TRACECFG, 0x8040800080000006ULL);
/*
* A response to an ASB_Notify request is returned by the
* system as an MMIO write to the address defined in
* the PSL_TNR_ADDR register
*/
/* PSL_TNR_ADDR */
/* NORST */
cxl_p1_write(adapter, CXL_PSL9_DEBUG, 0x8000000000000000ULL);
/* allocate the apc machines */
cxl_p1_write(adapter, CXL_PSL9_APCDEDTYPE, 0x40000003FFFF0000ULL);
/* Disable vc dd1 fix */
if (cxl_is_power9_dd1())
cxl_p1_write(adapter, CXL_PSL9_GP_CT, 0x0400000000000001ULL);
return 0;
}
static int init_implementation_adapter_regs_psl8(struct cxl *adapter, struct pci_dev *dev)
{
u64 psl_dsnctl, psl_fircntl;
u64 chipid;
u32 phb_index;
u64 capp_unit_id;
int rc;
rc = cxl_calc_capp_routing(dev, &chipid, &phb_index, &capp_unit_id);
if (rc)
return rc;
psl_dsnctl = 0x0000900000000000ULL; /* pteupd ttype, scdone */
psl_dsnctl |= (0x2ULL << (63-38)); /* MMIO hang pulse: 256 us */
/* Tell PSL where to route data to */
psl_dsnctl |= (chipid << (63-5));
psl_dsnctl |= (capp_unit_id << (63-13));
cxl_p1_write(adapter, CXL_PSL_DSNDCTL, psl_dsnctl);
cxl_p1_write(adapter, CXL_PSL_RESLCKTO, 0x20000000200ULL);
/* snoop write mask */
cxl_p1_write(adapter, CXL_PSL_SNWRALLOC, 0x00000000FFFFFFFFULL);
/* set fir_cntl to recommended value for production env */
psl_fircntl = (0x2ULL << (63-3)); /* ce_report */
psl_fircntl |= (0x1ULL << (63-6)); /* FIR_report */
psl_fircntl |= 0x1ULL; /* ce_thresh */
cxl_p1_write(adapter, CXL_PSL_FIR_CNTL, psl_fircntl);
/* for debugging with trace arrays */
cxl_p1_write(adapter, CXL_PSL_TRACE, 0x0000FF7C00000000ULL);
return 0;
}
static int init_implementation_adapter_regs_xsl(struct cxl *adapter, struct pci_dev *dev)
{
u64 xsl_dsnctl;
u64 chipid;
u32 phb_index;
u64 capp_unit_id;
int rc;
rc = cxl_calc_capp_routing(dev, &chipid, &phb_index, &capp_unit_id);
if (rc)
return rc;
/* Tell XSL where to route data to */
xsl_dsnctl = 0x0000600000000000ULL | (chipid << (63-5));
xsl_dsnctl |= (capp_unit_id << (63-13));
cxl_p1_write(adapter, CXL_XSL_DSNCTL, xsl_dsnctl);
return 0;
}
/* PSL & XSL */
#define TBSYNC_CAL(n) (((u64)n & 0x7) << (63-3))
#define TBSYNC_CNT(n) (((u64)n & 0x7) << (63-6))
/* For the PSL this is a multiple for 0 < n <= 7: */
#define PSL_2048_250MHZ_CYCLES 1
static void write_timebase_ctrl_psl9(struct cxl *adapter)
{
cxl_p1_write(adapter, CXL_PSL9_TB_CTLSTAT,
TBSYNC_CNT(2 * PSL_2048_250MHZ_CYCLES));
}
static void write_timebase_ctrl_psl8(struct cxl *adapter)
{
cxl_p1_write(adapter, CXL_PSL_TB_CTLSTAT,
TBSYNC_CNT(2 * PSL_2048_250MHZ_CYCLES));
}
/* XSL */
#define TBSYNC_ENA (1ULL << 63)
/* For the XSL this is 2**n * 2000 clocks for 0 < n <= 6: */
#define XSL_2000_CLOCKS 1
#define XSL_4000_CLOCKS 2
#define XSL_8000_CLOCKS 3
static void write_timebase_ctrl_xsl(struct cxl *adapter)
{
cxl_p1_write(adapter, CXL_XSL_TB_CTLSTAT,
TBSYNC_ENA |
TBSYNC_CAL(3) |
TBSYNC_CNT(XSL_4000_CLOCKS));
}
static u64 timebase_read_psl9(struct cxl *adapter)
{
return cxl_p1_read(adapter, CXL_PSL9_Timebase);
}
static u64 timebase_read_psl8(struct cxl *adapter)
{
return cxl_p1_read(adapter, CXL_PSL_Timebase);
}
static u64 timebase_read_xsl(struct cxl *adapter)
{
return cxl_p1_read(adapter, CXL_XSL_Timebase);
}
static void cxl_setup_psl_timebase(struct cxl *adapter, struct pci_dev *dev)
{
u64 psl_tb;
int delta;
unsigned int retry = 0;
struct device_node *np;
adapter->psl_timebase_synced = false;
if (!(np = pnv_pci_get_phb_node(dev)))
return;
/* Do not fail when CAPP timebase sync is not supported by OPAL */
of_node_get(np);
if (! of_get_property(np, "ibm,capp-timebase-sync", NULL)) {
of_node_put(np);
dev_info(&dev->dev, "PSL timebase inactive: OPAL support missing\n");
return;
}
of_node_put(np);
/*
* Setup PSL Timebase Control and Status register
* with the recommended Timebase Sync Count value
*/
adapter->native->sl_ops->write_timebase_ctrl(adapter);
/* Enable PSL Timebase */
cxl_p1_write(adapter, CXL_PSL_Control, 0x0000000000000000);
cxl_p1_write(adapter, CXL_PSL_Control, CXL_PSL_Control_tb);
/* Wait until CORE TB and PSL TB difference <= 16usecs */
do {
msleep(1);
if (retry++ > 5) {
dev_info(&dev->dev, "PSL timebase can't synchronize\n");
return;
}
psl_tb = adapter->native->sl_ops->timebase_read(adapter);
delta = mftb() - psl_tb;
if (delta < 0)
delta = -delta;
} while (tb_to_ns(delta) > 16000);
adapter->psl_timebase_synced = true;
return;
}
static int init_implementation_afu_regs_psl9(struct cxl_afu *afu)
{
return 0;
}
static int init_implementation_afu_regs_psl8(struct cxl_afu *afu)
{
/* read/write masks for this slice */
cxl_p1n_write(afu, CXL_PSL_APCALLOC_A, 0xFFFFFFFEFEFEFEFEULL);
/* APC read/write masks for this slice */
cxl_p1n_write(afu, CXL_PSL_COALLOC_A, 0xFF000000FEFEFEFEULL);
/* for debugging with trace arrays */
cxl_p1n_write(afu, CXL_PSL_SLICE_TRACE, 0x0000FFFF00000000ULL);
cxl_p1n_write(afu, CXL_PSL_RXCTL_A, CXL_PSL_RXCTL_AFUHP_4S);
return 0;
}
int cxl_pci_setup_irq(struct cxl *adapter, unsigned int hwirq,
unsigned int virq)
{
struct pci_dev *dev = to_pci_dev(adapter->dev.parent);
return pnv_cxl_ioda_msi_setup(dev, hwirq, virq);
}
int cxl_update_image_control(struct cxl *adapter)
{
struct pci_dev *dev = to_pci_dev(adapter->dev.parent);
int rc;
int vsec;
u8 image_state;
if (!(vsec = find_cxl_vsec(dev))) {
dev_err(&dev->dev, "ABORTING: CXL VSEC not found!\n");
return -ENODEV;
}
if ((rc = CXL_READ_VSEC_IMAGE_STATE(dev, vsec, &image_state))) {
dev_err(&dev->dev, "failed to read image state: %i\n", rc);
return rc;
}
if (adapter->perst_loads_image)
image_state |= CXL_VSEC_PERST_LOADS_IMAGE;
else
image_state &= ~CXL_VSEC_PERST_LOADS_IMAGE;
if (adapter->perst_select_user)
image_state |= CXL_VSEC_PERST_SELECT_USER;
else
image_state &= ~CXL_VSEC_PERST_SELECT_USER;
if ((rc = CXL_WRITE_VSEC_IMAGE_STATE(dev, vsec, image_state))) {
dev_err(&dev->dev, "failed to update image control: %i\n", rc);
return rc;
}
return 0;
}
int cxl_pci_alloc_one_irq(struct cxl *adapter)
{
struct pci_dev *dev = to_pci_dev(adapter->dev.parent);
return pnv_cxl_alloc_hwirqs(dev, 1);
}
void cxl_pci_release_one_irq(struct cxl *adapter, int hwirq)
{
struct pci_dev *dev = to_pci_dev(adapter->dev.parent);
return pnv_cxl_release_hwirqs(dev, hwirq, 1);
}
int cxl_pci_alloc_irq_ranges(struct cxl_irq_ranges *irqs,
struct cxl *adapter, unsigned int num)
{
struct pci_dev *dev = to_pci_dev(adapter->dev.parent);
return pnv_cxl_alloc_hwirq_ranges(irqs, dev, num);
}
void cxl_pci_release_irq_ranges(struct cxl_irq_ranges *irqs,
struct cxl *adapter)
{
struct pci_dev *dev = to_pci_dev(adapter->dev.parent);
pnv_cxl_release_hwirq_ranges(irqs, dev);
}
static int setup_cxl_bars(struct pci_dev *dev)
{
/* Safety check in case we get backported to < 3.17 without M64 */
if ((p1_base(dev) < 0x100000000ULL) ||
(p2_base(dev) < 0x100000000ULL)) {
dev_err(&dev->dev, "ABORTING: M32 BAR assignment incompatible with CXL\n");
return -ENODEV;
}
/*
* BAR 4/5 has a special meaning for CXL and must be programmed with a
* special value corresponding to the CXL protocol address range.
* For POWER 8/9 that means bits 48:49 must be set to 10
*/
pci_write_config_dword(dev, PCI_BASE_ADDRESS_4, 0x00000000);
pci_write_config_dword(dev, PCI_BASE_ADDRESS_5, 0x00020000);
return 0;
}
#ifdef CONFIG_CXL_BIMODAL
struct cxl_switch_work {
struct pci_dev *dev;
struct work_struct work;
int vsec;
int mode;
};
static void switch_card_to_cxl(struct work_struct *work)
{
struct cxl_switch_work *switch_work =
container_of(work, struct cxl_switch_work, work);
struct pci_dev *dev = switch_work->dev;
struct pci_bus *bus = dev->bus;
struct pci_controller *hose = pci_bus_to_host(bus);
struct pci_dev *bridge;
struct pnv_php_slot *php_slot;
unsigned int devfn;
u8 val;
int rc;
dev_info(&bus->dev, "cxl: Preparing for mode switch...\n");
bridge = list_first_entry_or_null(&hose->bus->devices, struct pci_dev,
bus_list);
if (!bridge) {
dev_WARN(&bus->dev, "cxl: Couldn't find root port!\n");
goto err_dev_put;
}
php_slot = pnv_php_find_slot(pci_device_to_OF_node(bridge));
if (!php_slot) {
dev_err(&bus->dev, "cxl: Failed to find slot hotplug "
"information. You may need to upgrade "
"skiboot. Aborting.\n");
goto err_dev_put;
}
rc = CXL_READ_VSEC_MODE_CONTROL(dev, switch_work->vsec, &val);
if (rc) {
dev_err(&bus->dev, "cxl: Failed to read CAPI mode control: %i\n", rc);
goto err_dev_put;
}
devfn = dev->devfn;
/* Release the reference obtained in cxl_check_and_switch_mode() */
pci_dev_put(dev);
dev_dbg(&bus->dev, "cxl: Removing PCI devices from kernel\n");
pci_lock_rescan_remove();
pci_hp_remove_devices(bridge->subordinate);
pci_unlock_rescan_remove();
/* Switch the CXL protocol on the card */
if (switch_work->mode == CXL_BIMODE_CXL) {
dev_info(&bus->dev, "cxl: Switching card to CXL mode\n");
val &= ~CXL_VSEC_PROTOCOL_MASK;
val |= CXL_VSEC_PROTOCOL_256TB | CXL_VSEC_PROTOCOL_ENABLE;
rc = pnv_cxl_enable_phb_kernel_api(hose, true);
if (rc) {
dev_err(&bus->dev, "cxl: Failed to enable kernel API"
" on real PHB, aborting\n");
goto err_free_work;
}
} else {
dev_WARN(&bus->dev, "cxl: Switching card to PCI mode not supported!\n");
goto err_free_work;
}
rc = CXL_WRITE_VSEC_MODE_CONTROL_BUS(bus, devfn, switch_work->vsec, val);
if (rc) {
dev_err(&bus->dev, "cxl: Failed to configure CXL protocol: %i\n", rc);
goto err_free_work;
}
/*
* The CAIA spec (v1.1, Section 10.6 Bi-modal Device Support) states
* we must wait 100ms after this mode switch before touching PCIe config
* space.
*/
msleep(100);
/*
* Hot reset to cause the card to come back in cxl mode. A
* OPAL_RESET_PCI_LINK would be sufficient, but currently lacks support
* in skiboot, so we use a hot reset instead.
*
* We call pci_set_pcie_reset_state() on the bridge, as a CAPI card is
* guaranteed to sit directly under the root port, and setting the reset
* state on a device directly under the root port is equivalent to doing
* it on the root port iself.
*/
dev_info(&bus->dev, "cxl: Configuration write complete, resetting card\n");
pci_set_pcie_reset_state(bridge, pcie_hot_reset);
pci_set_pcie_reset_state(bridge, pcie_deassert_reset);
dev_dbg(&bus->dev, "cxl: Offlining slot\n");
rc = pnv_php_set_slot_power_state(&php_slot->slot, OPAL_PCI_SLOT_OFFLINE);
if (rc) {
dev_err(&bus->dev, "cxl: OPAL offlining call failed: %i\n", rc);
goto err_free_work;
}
dev_dbg(&bus->dev, "cxl: Onlining and probing slot\n");
rc = pnv_php_set_slot_power_state(&php_slot->slot, OPAL_PCI_SLOT_ONLINE);
if (rc) {
dev_err(&bus->dev, "cxl: OPAL onlining call failed: %i\n", rc);
goto err_free_work;
}
pci_lock_rescan_remove();
pci_hp_add_devices(bridge->subordinate);
pci_unlock_rescan_remove();
dev_info(&bus->dev, "cxl: CAPI mode switch completed\n");
kfree(switch_work);
return;
err_dev_put:
/* Release the reference obtained in cxl_check_and_switch_mode() */
pci_dev_put(dev);
err_free_work:
kfree(switch_work);
}
int cxl_check_and_switch_mode(struct pci_dev *dev, int mode, int vsec)
{
struct cxl_switch_work *work;
u8 val;
int rc;
if (!cpu_has_feature(CPU_FTR_HVMODE))
return -ENODEV;
if (!vsec) {
vsec = find_cxl_vsec(dev);
if (!vsec) {
dev_info(&dev->dev, "CXL VSEC not found\n");
return -ENODEV;
}
}
rc = CXL_READ_VSEC_MODE_CONTROL(dev, vsec, &val);
if (rc) {
dev_err(&dev->dev, "Failed to read current mode control: %i", rc);
return rc;
}
if (mode == CXL_BIMODE_PCI) {
if (!(val & CXL_VSEC_PROTOCOL_ENABLE)) {
dev_info(&dev->dev, "Card is already in PCI mode\n");
return 0;
}
/*
* TODO: Before it's safe to switch the card back to PCI mode
* we need to disable the CAPP and make sure any cachelines the
* card holds have been flushed out. Needs skiboot support.
*/
dev_WARN(&dev->dev, "CXL mode switch to PCI unsupported!\n");
return -EIO;
}
if (val & CXL_VSEC_PROTOCOL_ENABLE) {
dev_info(&dev->dev, "Card is already in CXL mode\n");
return 0;
}
dev_info(&dev->dev, "Card is in PCI mode, scheduling kernel thread "
"to switch to CXL mode\n");
work = kmalloc(sizeof(struct cxl_switch_work), GFP_KERNEL);
if (!work)
return -ENOMEM;
pci_dev_get(dev);
work->dev = dev;
work->vsec = vsec;
work->mode = mode;
INIT_WORK(&work->work, switch_card_to_cxl);
schedule_work(&work->work);
/*
* We return a failure now to abort the driver init. Once the
* link has been cycled and the card is in cxl mode we will
* come back (possibly using the generic cxl driver), but
* return success as the card should then be in cxl mode.
*
* TODO: What if the card comes back in PCI mode even after
* the switch? Don't want to spin endlessly.
*/
return -EBUSY;
}
EXPORT_SYMBOL_GPL(cxl_check_and_switch_mode);
#endif /* CONFIG_CXL_BIMODAL */
static int setup_cxl_protocol_area(struct pci_dev *dev)
{
u8 val;
int rc;
int vsec = find_cxl_vsec(dev);
if (!vsec) {
dev_info(&dev->dev, "CXL VSEC not found\n");
return -ENODEV;
}
rc = CXL_READ_VSEC_MODE_CONTROL(dev, vsec, &val);
if (rc) {
dev_err(&dev->dev, "Failed to read current mode control: %i\n", rc);
return rc;
}
if (!(val & CXL_VSEC_PROTOCOL_ENABLE)) {
dev_err(&dev->dev, "Card not in CAPI mode!\n");
return -EIO;
}
if ((val & CXL_VSEC_PROTOCOL_MASK) != CXL_VSEC_PROTOCOL_256TB) {
val &= ~CXL_VSEC_PROTOCOL_MASK;
val |= CXL_VSEC_PROTOCOL_256TB;
rc = CXL_WRITE_VSEC_MODE_CONTROL(dev, vsec, val);
if (rc) {
dev_err(&dev->dev, "Failed to set CXL protocol area: %i\n", rc);
return rc;
}
}
return 0;
}
static int pci_map_slice_regs(struct cxl_afu *afu, struct cxl *adapter, struct pci_dev *dev)
{
u64 p1n_base, p2n_base, afu_desc;
const u64 p1n_size = 0x100;
const u64 p2n_size = 0x1000;
p1n_base = p1_base(dev) + 0x10000 + (afu->slice * p1n_size);
p2n_base = p2_base(dev) + (afu->slice * p2n_size);
afu->psn_phys = p2_base(dev) + (adapter->native->ps_off + (afu->slice * adapter->ps_size));
afu_desc = p2_base(dev) + adapter->native->afu_desc_off + (afu->slice * adapter->native->afu_desc_size);
if (!(afu->native->p1n_mmio = ioremap(p1n_base, p1n_size)))
goto err;
if (!(afu->p2n_mmio = ioremap(p2n_base, p2n_size)))
goto err1;
if (afu_desc) {
if (!(afu->native->afu_desc_mmio = ioremap(afu_desc, adapter->native->afu_desc_size)))
goto err2;
}
return 0;
err2:
iounmap(afu->p2n_mmio);
err1:
iounmap(afu->native->p1n_mmio);
err:
dev_err(&afu->dev, "Error mapping AFU MMIO regions\n");
return -ENOMEM;
}
static void pci_unmap_slice_regs(struct cxl_afu *afu)
{
if (afu->p2n_mmio) {
iounmap(afu->p2n_mmio);
afu->p2n_mmio = NULL;
}
if (afu->native->p1n_mmio) {
iounmap(afu->native->p1n_mmio);
afu->native->p1n_mmio = NULL;
}
if (afu->native->afu_desc_mmio) {
iounmap(afu->native->afu_desc_mmio);
afu->native->afu_desc_mmio = NULL;
}
}
void cxl_pci_release_afu(struct device *dev)
{
struct cxl_afu *afu = to_cxl_afu(dev);
pr_devel("%s\n", __func__);
idr_destroy(&afu->contexts_idr);
cxl_release_spa(afu);
kfree(afu->native);
kfree(afu);
}
/* Expects AFU struct to have recently been zeroed out */
static int cxl_read_afu_descriptor(struct cxl_afu *afu)
{
u64 val;
val = AFUD_READ_INFO(afu);
afu->pp_irqs = AFUD_NUM_INTS_PER_PROC(val);
afu->max_procs_virtualised = AFUD_NUM_PROCS(val);
afu->crs_num = AFUD_NUM_CRS(val);
if (AFUD_AFU_DIRECTED(val))
afu->modes_supported |= CXL_MODE_DIRECTED;
if (AFUD_DEDICATED_PROCESS(val))
afu->modes_supported |= CXL_MODE_DEDICATED;
if (AFUD_TIME_SLICED(val))
afu->modes_supported |= CXL_MODE_TIME_SLICED;
val = AFUD_READ_PPPSA(afu);
afu->pp_size = AFUD_PPPSA_LEN(val) * 4096;
afu->psa = AFUD_PPPSA_PSA(val);
if ((afu->pp_psa = AFUD_PPPSA_PP(val)))
afu->native->pp_offset = AFUD_READ_PPPSA_OFF(afu);
val = AFUD_READ_CR(afu);
afu->crs_len = AFUD_CR_LEN(val) * 256;
afu->crs_offset = AFUD_READ_CR_OFF(afu);
/* eb_len is in multiple of 4K */
afu->eb_len = AFUD_EB_LEN(AFUD_READ_EB(afu)) * 4096;
afu->eb_offset = AFUD_READ_EB_OFF(afu);
/* eb_off is 4K aligned so lower 12 bits are always zero */
if (EXTRACT_PPC_BITS(afu->eb_offset, 0, 11) != 0) {
dev_warn(&afu->dev,
"Invalid AFU error buffer offset %Lx\n",
afu->eb_offset);
dev_info(&afu->dev,
"Ignoring AFU error buffer in the descriptor\n");
/* indicate that no afu buffer exists */
afu->eb_len = 0;
}
return 0;
}
static int cxl_afu_descriptor_looks_ok(struct cxl_afu *afu)
{
int i, rc;
u32 val;
if (afu->psa && afu->adapter->ps_size <
(afu->native->pp_offset + afu->pp_size*afu->max_procs_virtualised)) {
dev_err(&afu->dev, "per-process PSA can't fit inside the PSA!\n");
return -ENODEV;
}
if (afu->pp_psa && (afu->pp_size < PAGE_SIZE))
dev_warn(&afu->dev, "AFU uses pp_size(%#016llx) < PAGE_SIZE per-process PSA!\n", afu->pp_size);
for (i = 0; i < afu->crs_num; i++) {
rc = cxl_ops->afu_cr_read32(afu, i, 0, &val);
if (rc || val == 0) {
dev_err(&afu->dev, "ABORTING: AFU configuration record %i is invalid\n", i);
return -EINVAL;
}
}
if ((afu->modes_supported & ~CXL_MODE_DEDICATED) && afu->max_procs_virtualised == 0) {
/*
* We could also check this for the dedicated process model
* since the architecture indicates it should be set to 1, but
* in that case we ignore the value and I'd rather not risk
* breaking any existing dedicated process AFUs that left it as
* 0 (not that I'm aware of any). It is clearly an error for an
* AFU directed AFU to set this to 0, and would have previously
* triggered a bug resulting in the maximum not being enforced
* at all since idr_alloc treats 0 as no maximum.
*/
dev_err(&afu->dev, "AFU does not support any processes\n");
return -EINVAL;
}
return 0;
}
static int sanitise_afu_regs_psl9(struct cxl_afu *afu)
{
u64 reg;
/*
* Clear out any regs that contain either an IVTE or address or may be
* waiting on an acknowledgment to try to be a bit safer as we bring
* it online
*/
reg = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
if ((reg & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) {
dev_warn(&afu->dev, "WARNING: AFU was not disabled: %#016llx\n", reg);
if (cxl_ops->afu_reset(afu))
return -EIO;
if (cxl_afu_disable(afu))
return -EIO;
if (cxl_psl_purge(afu))
return -EIO;
}
cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0x0000000000000000);
cxl_p1n_write(afu, CXL_PSL_AMBAR_An, 0x0000000000000000);
reg = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
if (reg) {
dev_warn(&afu->dev, "AFU had pending DSISR: %#016llx\n", reg);
if (reg & CXL_PSL9_DSISR_An_TF)
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
else
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
}
if (afu->adapter->native->sl_ops->register_serr_irq) {
reg = cxl_p1n_read(afu, CXL_PSL_SERR_An);
if (reg) {
if (reg & ~0x000000007fffffff)
dev_warn(&afu->dev, "AFU had pending SERR: %#016llx\n", reg);
cxl_p1n_write(afu, CXL_PSL_SERR_An, reg & ~0xffff);
}
}
reg = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
if (reg) {
dev_warn(&afu->dev, "AFU had pending error status: %#016llx\n", reg);
cxl_p2n_write(afu, CXL_PSL_ErrStat_An, reg);
}
return 0;
}
static int sanitise_afu_regs_psl8(struct cxl_afu *afu)
{
u64 reg;
/*
* Clear out any regs that contain either an IVTE or address or may be
* waiting on an acknowledgement to try to be a bit safer as we bring
* it online
*/
reg = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
if ((reg & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) {
dev_warn(&afu->dev, "WARNING: AFU was not disabled: %#016llx\n", reg);
if (cxl_ops->afu_reset(afu))
return -EIO;
if (cxl_afu_disable(afu))
return -EIO;
if (cxl_psl_purge(afu))
return -EIO;
}
cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0x0000000000000000);
cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, 0x0000000000000000);
cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An, 0x0000000000000000);
cxl_p1n_write(afu, CXL_PSL_AMBAR_An, 0x0000000000000000);
cxl_p1n_write(afu, CXL_PSL_SPOffset_An, 0x0000000000000000);
cxl_p1n_write(afu, CXL_HAURP_An, 0x0000000000000000);
cxl_p2n_write(afu, CXL_CSRP_An, 0x0000000000000000);
cxl_p2n_write(afu, CXL_AURP1_An, 0x0000000000000000);
cxl_p2n_write(afu, CXL_AURP0_An, 0x0000000000000000);
cxl_p2n_write(afu, CXL_SSTP1_An, 0x0000000000000000);
cxl_p2n_write(afu, CXL_SSTP0_An, 0x0000000000000000);
reg = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
if (reg) {
dev_warn(&afu->dev, "AFU had pending DSISR: %#016llx\n", reg);
if (reg & CXL_PSL_DSISR_TRANS)
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
else
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
}
if (afu->adapter->native->sl_ops->register_serr_irq) {
reg = cxl_p1n_read(afu, CXL_PSL_SERR_An);
if (reg) {
if (reg & ~0xffff)
dev_warn(&afu->dev, "AFU had pending SERR: %#016llx\n", reg);
cxl_p1n_write(afu, CXL_PSL_SERR_An, reg & ~0xffff);
}
}
reg = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
if (reg) {
dev_warn(&afu->dev, "AFU had pending error status: %#016llx\n", reg);
cxl_p2n_write(afu, CXL_PSL_ErrStat_An, reg);
}
return 0;
}
#define ERR_BUFF_MAX_COPY_SIZE PAGE_SIZE
/*
* afu_eb_read:
* Called from sysfs and reads the afu error info buffer. The h/w only supports
* 4/8 bytes aligned access. So in case the requested offset/count arent 8 byte
* aligned the function uses a bounce buffer which can be max PAGE_SIZE.
*/
ssize_t cxl_pci_afu_read_err_buffer(struct cxl_afu *afu, char *buf,
loff_t off, size_t count)
{
loff_t aligned_start, aligned_end;
size_t aligned_length;
void *tbuf;
const void __iomem *ebuf = afu->native->afu_desc_mmio + afu->eb_offset;
if (count == 0 || off < 0 || (size_t)off >= afu->eb_len)
return 0;
/* calculate aligned read window */
count = min((size_t)(afu->eb_len - off), count);
aligned_start = round_down(off, 8);
aligned_end = round_up(off + count, 8);
aligned_length = aligned_end - aligned_start;
/* max we can copy in one read is PAGE_SIZE */
if (aligned_length > ERR_BUFF_MAX_COPY_SIZE) {
aligned_length = ERR_BUFF_MAX_COPY_SIZE;
count = ERR_BUFF_MAX_COPY_SIZE - (off & 0x7);
}
/* use bounce buffer for copy */
tbuf = (void *)__get_free_page(GFP_TEMPORARY);
if (!tbuf)
return -ENOMEM;
/* perform aligned read from the mmio region */
memcpy_fromio(tbuf, ebuf + aligned_start, aligned_length);
memcpy(buf, tbuf + (off & 0x7), count);
free_page((unsigned long)tbuf);
return count;
}
static int pci_configure_afu(struct cxl_afu *afu, struct cxl *adapter, struct pci_dev *dev)
{
int rc;
if ((rc = pci_map_slice_regs(afu, adapter, dev)))
return rc;
if (adapter->native->sl_ops->sanitise_afu_regs) {
rc = adapter->native->sl_ops->sanitise_afu_regs(afu);
if (rc)
goto err1;
}
/* We need to reset the AFU before we can read the AFU descriptor */
if ((rc = cxl_ops->afu_reset(afu)))
goto err1;
if (cxl_verbose)
dump_afu_descriptor(afu);
if ((rc = cxl_read_afu_descriptor(afu)))
goto err1;
if ((rc = cxl_afu_descriptor_looks_ok(afu)))
goto err1;
if (adapter->native->sl_ops->afu_regs_init)
if ((rc = adapter->native->sl_ops->afu_regs_init(afu)))
goto err1;
if (adapter->native->sl_ops->register_serr_irq)
if ((rc = adapter->native->sl_ops->register_serr_irq(afu)))
goto err1;
if ((rc = cxl_native_register_psl_irq(afu)))
goto err2;
atomic_set(&afu->configured_state, 0);
return 0;
err2:
if (adapter->native->sl_ops->release_serr_irq)
adapter->native->sl_ops->release_serr_irq(afu);
err1:
pci_unmap_slice_regs(afu);
return rc;
}
static void pci_deconfigure_afu(struct cxl_afu *afu)
{
/*
* It's okay to deconfigure when AFU is already locked, otherwise wait
* until there are no readers
*/
if (atomic_read(&afu->configured_state) != -1) {
while (atomic_cmpxchg(&afu->configured_state, 0, -1) != -1)
schedule();
}
cxl_native_release_psl_irq(afu);
if (afu->adapter->native->sl_ops->release_serr_irq)
afu->adapter->native->sl_ops->release_serr_irq(afu);
pci_unmap_slice_regs(afu);
}
static int pci_init_afu(struct cxl *adapter, int slice, struct pci_dev *dev)
{
struct cxl_afu *afu;
int rc = -ENOMEM;
afu = cxl_alloc_afu(adapter, slice);
if (!afu)
return -ENOMEM;
afu->native = kzalloc(sizeof(struct cxl_afu_native), GFP_KERNEL);
if (!afu->native)
goto err_free_afu;
mutex_init(&afu->native->spa_mutex);
rc = dev_set_name(&afu->dev, "afu%i.%i", adapter->adapter_num, slice);
if (rc)
goto err_free_native;
rc = pci_configure_afu(afu, adapter, dev);
if (rc)
goto err_free_native;
/* Don't care if this fails */
cxl_debugfs_afu_add(afu);
/*
* After we call this function we must not free the afu directly, even
* if it returns an error!
*/
if ((rc = cxl_register_afu(afu)))
goto err_put1;
if ((rc = cxl_sysfs_afu_add(afu)))
goto err_put1;
adapter->afu[afu->slice] = afu;
if ((rc = cxl_pci_vphb_add(afu)))
dev_info(&afu->dev, "Can't register vPHB\n");
return 0;
err_put1:
pci_deconfigure_afu(afu);
cxl_debugfs_afu_remove(afu);
device_unregister(&afu->dev);
return rc;
err_free_native:
kfree(afu->native);
err_free_afu:
kfree(afu);
return rc;
}
static void cxl_pci_remove_afu(struct cxl_afu *afu)
{
pr_devel("%s\n", __func__);
if (!afu)
return;
cxl_pci_vphb_remove(afu);
cxl_sysfs_afu_remove(afu);
cxl_debugfs_afu_remove(afu);
spin_lock(&afu->adapter->afu_list_lock);
afu->adapter->afu[afu->slice] = NULL;
spin_unlock(&afu->adapter->afu_list_lock);
cxl_context_detach_all(afu);
cxl_ops->afu_deactivate_mode(afu, afu->current_mode);
pci_deconfigure_afu(afu);
device_unregister(&afu->dev);
}
int cxl_pci_reset(struct cxl *adapter)
{
struct pci_dev *dev = to_pci_dev(adapter->dev.parent);
int rc;
if (adapter->perst_same_image) {
dev_warn(&dev->dev,
"cxl: refusing to reset/reflash when perst_reloads_same_image is set.\n");
return -EINVAL;
}
dev_info(&dev->dev, "CXL reset\n");
/*
* The adapter is about to be reset, so ignore errors.
* Not supported on P9 DD1
*/
if ((cxl_is_power8()) || (!(cxl_is_power9_dd1())))
cxl_data_cache_flush(adapter);
/* pcie_warm_reset requests a fundamental pci reset which includes a
* PERST assert/deassert. PERST triggers a loading of the image
* if "user" or "factory" is selected in sysfs */
if ((rc = pci_set_pcie_reset_state(dev, pcie_warm_reset))) {
dev_err(&dev->dev, "cxl: pcie_warm_reset failed\n");
return rc;
}
return rc;
}
static int cxl_map_adapter_regs(struct cxl *adapter, struct pci_dev *dev)
{
if (pci_request_region(dev, 2, "priv 2 regs"))
goto err1;
if (pci_request_region(dev, 0, "priv 1 regs"))
goto err2;
pr_devel("cxl_map_adapter_regs: p1: %#016llx %#llx, p2: %#016llx %#llx",
p1_base(dev), p1_size(dev), p2_base(dev), p2_size(dev));
if (!(adapter->native->p1_mmio = ioremap(p1_base(dev), p1_size(dev))))
goto err3;
if (!(adapter->native->p2_mmio = ioremap(p2_base(dev), p2_size(dev))))
goto err4;
return 0;
err4:
iounmap(adapter->native->p1_mmio);
adapter->native->p1_mmio = NULL;
err3:
pci_release_region(dev, 0);
err2:
pci_release_region(dev, 2);
err1:
return -ENOMEM;
}
static void cxl_unmap_adapter_regs(struct cxl *adapter)
{
if (adapter->native->p1_mmio) {
iounmap(adapter->native->p1_mmio);
adapter->native->p1_mmio = NULL;
pci_release_region(to_pci_dev(adapter->dev.parent), 2);
}
if (adapter->native->p2_mmio) {
iounmap(adapter->native->p2_mmio);
adapter->native->p2_mmio = NULL;
pci_release_region(to_pci_dev(adapter->dev.parent), 0);
}
}
static int cxl_read_vsec(struct cxl *adapter, struct pci_dev *dev)
{
int vsec;
u32 afu_desc_off, afu_desc_size;
u32 ps_off, ps_size;
u16 vseclen;
u8 image_state;
if (!(vsec = find_cxl_vsec(dev))) {
dev_err(&dev->dev, "ABORTING: CXL VSEC not found!\n");
return -ENODEV;
}
CXL_READ_VSEC_LENGTH(dev, vsec, &vseclen);
if (vseclen < CXL_VSEC_MIN_SIZE) {
dev_err(&dev->dev, "ABORTING: CXL VSEC too short\n");
return -EINVAL;
}
CXL_READ_VSEC_STATUS(dev, vsec, &adapter->vsec_status);
CXL_READ_VSEC_PSL_REVISION(dev, vsec, &adapter->psl_rev);
CXL_READ_VSEC_CAIA_MAJOR(dev, vsec, &adapter->caia_major);
CXL_READ_VSEC_CAIA_MINOR(dev, vsec, &adapter->caia_minor);
CXL_READ_VSEC_BASE_IMAGE(dev, vsec, &adapter->base_image);
CXL_READ_VSEC_IMAGE_STATE(dev, vsec, &image_state);
adapter->user_image_loaded = !!(image_state & CXL_VSEC_USER_IMAGE_LOADED);
adapter->perst_select_user = !!(image_state & CXL_VSEC_USER_IMAGE_LOADED);
adapter->perst_loads_image = !!(image_state & CXL_VSEC_PERST_LOADS_IMAGE);
CXL_READ_VSEC_NAFUS(dev, vsec, &adapter->slices);
CXL_READ_VSEC_AFU_DESC_OFF(dev, vsec, &afu_desc_off);
CXL_READ_VSEC_AFU_DESC_SIZE(dev, vsec, &afu_desc_size);
CXL_READ_VSEC_PS_OFF(dev, vsec, &ps_off);
CXL_READ_VSEC_PS_SIZE(dev, vsec, &ps_size);
/* Convert everything to bytes, because there is NO WAY I'd look at the
* code a month later and forget what units these are in ;-) */
adapter->native->ps_off = ps_off * 64 * 1024;
adapter->ps_size = ps_size * 64 * 1024;
adapter->native->afu_desc_off = afu_desc_off * 64 * 1024;
adapter->native->afu_desc_size = afu_desc_size * 64 * 1024;
/* Total IRQs - 1 PSL ERROR - #AFU*(1 slice error + 1 DSI) */
adapter->user_irqs = pnv_cxl_get_irq_count(dev) - 1 - 2*adapter->slices;
return 0;
}
/*
* Workaround a PCIe Host Bridge defect on some cards, that can cause
* malformed Transaction Layer Packet (TLP) errors to be erroneously
* reported. Mask this error in the Uncorrectable Error Mask Register.
*
* The upper nibble of the PSL revision is used to distinguish between
* different cards. The affected ones have it set to 0.
*/
static void cxl_fixup_malformed_tlp(struct cxl *adapter, struct pci_dev *dev)
{
int aer;
u32 data;
if (adapter->psl_rev & 0xf000)
return;
if (!(aer = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR)))
return;
pci_read_config_dword(dev, aer + PCI_ERR_UNCOR_MASK, &data);
if (data & PCI_ERR_UNC_MALF_TLP)
if (data & PCI_ERR_UNC_INTN)
return;
data |= PCI_ERR_UNC_MALF_TLP;
data |= PCI_ERR_UNC_INTN;
pci_write_config_dword(dev, aer + PCI_ERR_UNCOR_MASK, data);
}
static bool cxl_compatible_caia_version(struct cxl *adapter)
{
if (cxl_is_power8() && (adapter->caia_major == 1))
return true;
if (cxl_is_power9() && (adapter->caia_major == 2))
return true;
return false;
}
static int cxl_vsec_looks_ok(struct cxl *adapter, struct pci_dev *dev)
{
if (adapter->vsec_status & CXL_STATUS_SECOND_PORT)
return -EBUSY;
if (adapter->vsec_status & CXL_UNSUPPORTED_FEATURES) {
dev_err(&dev->dev, "ABORTING: CXL requires unsupported features\n");
return -EINVAL;
}
if (!cxl_compatible_caia_version(adapter)) {
dev_info(&dev->dev, "Ignoring card. PSL type is not supported (caia version: %d)\n",
adapter->caia_major);
return -ENODEV;
}
if (!adapter->slices) {
/* Once we support dynamic reprogramming we can use the card if
* it supports loadable AFUs */
dev_err(&dev->dev, "ABORTING: Device has no AFUs\n");
return -EINVAL;
}
if (!adapter->native->afu_desc_off || !adapter->native->afu_desc_size) {
dev_err(&dev->dev, "ABORTING: VSEC shows no AFU descriptors\n");
return -EINVAL;
}
if (adapter->ps_size > p2_size(dev) - adapter->native->ps_off) {
dev_err(&dev->dev, "ABORTING: Problem state size larger than "
"available in BAR2: 0x%llx > 0x%llx\n",
adapter->ps_size, p2_size(dev) - adapter->native->ps_off);
return -EINVAL;
}
return 0;
}
ssize_t cxl_pci_read_adapter_vpd(struct cxl *adapter, void *buf, size_t len)
{
return pci_read_vpd(to_pci_dev(adapter->dev.parent), 0, len, buf);
}
static void cxl_release_adapter(struct device *dev)
{
struct cxl *adapter = to_cxl_adapter(dev);
pr_devel("cxl_release_adapter\n");
cxl_remove_adapter_nr(adapter);
kfree(adapter->native);
kfree(adapter);
}
#define CXL_PSL_ErrIVTE_tberror (0x1ull << (63-31))
static int sanitise_adapter_regs(struct cxl *adapter)
{
int rc = 0;
/* Clear PSL tberror bit by writing 1 to it */
cxl_p1_write(adapter, CXL_PSL_ErrIVTE, CXL_PSL_ErrIVTE_tberror);
if (adapter->native->sl_ops->invalidate_all) {
/* do not invalidate ERAT entries when not reloading on PERST */
if (cxl_is_power9() && (adapter->perst_loads_image))
return 0;
rc = adapter->native->sl_ops->invalidate_all(adapter);
}
return rc;
}
/* This should contain *only* operations that can safely be done in
* both creation and recovery.
*/
static int cxl_configure_adapter(struct cxl *adapter, struct pci_dev *dev)
{
int rc;
adapter->dev.parent = &dev->dev;
adapter->dev.release = cxl_release_adapter;
pci_set_drvdata(dev, adapter);
rc = pci_enable_device(dev);
if (rc) {
dev_err(&dev->dev, "pci_enable_device failed: %i\n", rc);
return rc;
}
if ((rc = cxl_read_vsec(adapter, dev)))
return rc;
if ((rc = cxl_vsec_looks_ok(adapter, dev)))
return rc;
cxl_fixup_malformed_tlp(adapter, dev);
if ((rc = setup_cxl_bars(dev)))
return rc;
if ((rc = setup_cxl_protocol_area(dev)))
return rc;
if ((rc = cxl_update_image_control(adapter)))
return rc;
if ((rc = cxl_map_adapter_regs(adapter, dev)))
return rc;
if ((rc = sanitise_adapter_regs(adapter)))
goto err;
if ((rc = adapter->native->sl_ops->adapter_regs_init(adapter, dev)))
goto err;
/* Required for devices using CAPP DMA mode, harmless for others */
pci_set_master(dev);
if ((rc = pnv_phb_to_cxl_mode(dev, adapter->native->sl_ops->capi_mode)))
goto err;
/* If recovery happened, the last step is to turn on snooping.
* In the non-recovery case this has no effect */
if ((rc = pnv_phb_to_cxl_mode(dev, OPAL_PHB_CAPI_MODE_SNOOP_ON)))
goto err;
/* Ignore error, adapter init is not dependant on timebase sync */
cxl_setup_psl_timebase(adapter, dev);
if ((rc = cxl_native_register_psl_err_irq(adapter)))
goto err;
return 0;
err:
cxl_unmap_adapter_regs(adapter);
return rc;
}
static void cxl_deconfigure_adapter(struct cxl *adapter)
{
struct pci_dev *pdev = to_pci_dev(adapter->dev.parent);
cxl_native_release_psl_err_irq(adapter);
cxl_unmap_adapter_regs(adapter);
pci_disable_device(pdev);
}
static const struct cxl_service_layer_ops psl9_ops = {
.adapter_regs_init = init_implementation_adapter_regs_psl9,
.invalidate_all = cxl_invalidate_all_psl9,
.afu_regs_init = init_implementation_afu_regs_psl9,
.sanitise_afu_regs = sanitise_afu_regs_psl9,
.register_serr_irq = cxl_native_register_serr_irq,
.release_serr_irq = cxl_native_release_serr_irq,
.handle_interrupt = cxl_irq_psl9,
.fail_irq = cxl_fail_irq_psl,
.activate_dedicated_process = cxl_activate_dedicated_process_psl9,
.attach_afu_directed = cxl_attach_afu_directed_psl9,
.attach_dedicated_process = cxl_attach_dedicated_process_psl9,
.update_dedicated_ivtes = cxl_update_dedicated_ivtes_psl9,
.debugfs_add_adapter_regs = cxl_debugfs_add_adapter_regs_psl9,
.debugfs_add_afu_regs = cxl_debugfs_add_afu_regs_psl9,
.psl_irq_dump_registers = cxl_native_irq_dump_regs_psl9,
.debugfs_stop_trace = cxl_stop_trace_psl9,
.write_timebase_ctrl = write_timebase_ctrl_psl9,
.timebase_read = timebase_read_psl9,
.capi_mode = OPAL_PHB_CAPI_MODE_CAPI,
.needs_reset_before_disable = true,
};
static const struct cxl_service_layer_ops psl8_ops = {
.adapter_regs_init = init_implementation_adapter_regs_psl8,
.invalidate_all = cxl_invalidate_all_psl8,
.afu_regs_init = init_implementation_afu_regs_psl8,
.sanitise_afu_regs = sanitise_afu_regs_psl8,
.register_serr_irq = cxl_native_register_serr_irq,
.release_serr_irq = cxl_native_release_serr_irq,
.handle_interrupt = cxl_irq_psl8,
.fail_irq = cxl_fail_irq_psl,
.activate_dedicated_process = cxl_activate_dedicated_process_psl8,
.attach_afu_directed = cxl_attach_afu_directed_psl8,
.attach_dedicated_process = cxl_attach_dedicated_process_psl8,
.update_dedicated_ivtes = cxl_update_dedicated_ivtes_psl8,
.debugfs_add_adapter_regs = cxl_debugfs_add_adapter_regs_psl8,
.debugfs_add_afu_regs = cxl_debugfs_add_afu_regs_psl8,
.psl_irq_dump_registers = cxl_native_irq_dump_regs_psl8,
.err_irq_dump_registers = cxl_native_err_irq_dump_regs,
.debugfs_stop_trace = cxl_stop_trace_psl8,
.write_timebase_ctrl = write_timebase_ctrl_psl8,
.timebase_read = timebase_read_psl8,
.capi_mode = OPAL_PHB_CAPI_MODE_CAPI,
.needs_reset_before_disable = true,
};
static const struct cxl_service_layer_ops xsl_ops = {
.adapter_regs_init = init_implementation_adapter_regs_xsl,
.invalidate_all = cxl_invalidate_all_psl8,
.sanitise_afu_regs = sanitise_afu_regs_psl8,
.handle_interrupt = cxl_irq_psl8,
.fail_irq = cxl_fail_irq_psl,
.activate_dedicated_process = cxl_activate_dedicated_process_psl8,
.attach_afu_directed = cxl_attach_afu_directed_psl8,
.attach_dedicated_process = cxl_attach_dedicated_process_psl8,
.update_dedicated_ivtes = cxl_update_dedicated_ivtes_psl8,
.debugfs_add_adapter_regs = cxl_debugfs_add_adapter_regs_xsl,
.write_timebase_ctrl = write_timebase_ctrl_xsl,
.timebase_read = timebase_read_xsl,
.capi_mode = OPAL_PHB_CAPI_MODE_DMA,
};
static void set_sl_ops(struct cxl *adapter, struct pci_dev *dev)
{
if (dev->vendor == PCI_VENDOR_ID_MELLANOX && dev->device == 0x1013) {
/* Mellanox CX-4 */
dev_info(&dev->dev, "Device uses an XSL\n");
adapter->native->sl_ops = &xsl_ops;
adapter->min_pe = 1; /* Workaround for CX-4 hardware bug */
} else {
if (cxl_is_power8()) {
dev_info(&dev->dev, "Device uses a PSL8\n");
adapter->native->sl_ops = &psl8_ops;
} else {
dev_info(&dev->dev, "Device uses a PSL9\n");
adapter->native->sl_ops = &psl9_ops;
}
}
}
static struct cxl *cxl_pci_init_adapter(struct pci_dev *dev)
{
struct cxl *adapter;
int rc;
adapter = cxl_alloc_adapter();
if (!adapter)
return ERR_PTR(-ENOMEM);
adapter->native = kzalloc(sizeof(struct cxl_native), GFP_KERNEL);
if (!adapter->native) {
rc = -ENOMEM;
goto err_release;
}
set_sl_ops(adapter, dev);
/* Set defaults for parameters which need to persist over
* configure/reconfigure
*/
adapter->perst_loads_image = true;
adapter->perst_same_image = false;
rc = cxl_configure_adapter(adapter, dev);
if (rc) {
pci_disable_device(dev);
goto err_release;
}
/* Don't care if this one fails: */
cxl_debugfs_adapter_add(adapter);
/*
* After we call this function we must not free the adapter directly,
* even if it returns an error!
*/
if ((rc = cxl_register_adapter(adapter)))
goto err_put1;
if ((rc = cxl_sysfs_adapter_add(adapter)))
goto err_put1;
/* Release the context lock as adapter is configured */
cxl_adapter_context_unlock(adapter);
return adapter;
err_put1:
/* This should mirror cxl_remove_adapter, except without the
* sysfs parts
*/
cxl_debugfs_adapter_remove(adapter);
cxl_deconfigure_adapter(adapter);
device_unregister(&adapter->dev);
return ERR_PTR(rc);
err_release:
cxl_release_adapter(&adapter->dev);
return ERR_PTR(rc);
}
static void cxl_pci_remove_adapter(struct cxl *adapter)
{
pr_devel("cxl_remove_adapter\n");
cxl_sysfs_adapter_remove(adapter);
cxl_debugfs_adapter_remove(adapter);
/*
* Flush adapter datacache as its about to be removed.
* Not supported on P9 DD1.
*/
if ((cxl_is_power8()) || (!(cxl_is_power9_dd1())))
cxl_data_cache_flush(adapter);
cxl_deconfigure_adapter(adapter);
device_unregister(&adapter->dev);
}
#define CXL_MAX_PCIEX_PARENT 2
int cxl_slot_is_switched(struct pci_dev *dev)
{
struct device_node *np;
int depth = 0;
const __be32 *prop;
if (!(np = pci_device_to_OF_node(dev))) {
pr_err("cxl: np = NULL\n");
return -ENODEV;
}
of_node_get(np);
while (np) {
np = of_get_next_parent(np);
prop = of_get_property(np, "device_type", NULL);
if (!prop || strcmp((char *)prop, "pciex"))
break;
depth++;
}
of_node_put(np);
return (depth > CXL_MAX_PCIEX_PARENT);
}
bool cxl_slot_is_supported(struct pci_dev *dev, int flags)
{
if (!cpu_has_feature(CPU_FTR_HVMODE))
return false;
if ((flags & CXL_SLOT_FLAG_DMA) && (!pvr_version_is(PVR_POWER8NVL))) {
/*
* CAPP DMA mode is technically supported on regular P8, but
* will EEH if the card attempts to access memory < 4GB, which
* we cannot realistically avoid. We might be able to work
* around the issue, but until then return unsupported:
*/
return false;
}
if (cxl_slot_is_switched(dev))
return false;
/*
* XXX: This gets a little tricky on regular P8 (not POWER8NVL) since
* the CAPP can be connected to PHB 0, 1 or 2 on a first come first
* served basis, which is racy to check from here. If we need to
* support this in future we might need to consider having this
* function effectively reserve it ahead of time.
*
* Currently, the only user of this API is the Mellanox CX4, which is
* only supported on P8NVL due to the above mentioned limitation of
* CAPP DMA mode and therefore does not need to worry about this. If the
* issue with CAPP DMA mode is later worked around on P8 we might need
* to revisit this.
*/
return true;
}
EXPORT_SYMBOL_GPL(cxl_slot_is_supported);
static int cxl_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
struct cxl *adapter;
int slice;
int rc;
if (cxl_pci_is_vphb_device(dev)) {
dev_dbg(&dev->dev, "cxl_init_adapter: Ignoring cxl vphb device\n");
return -ENODEV;
}
if (cxl_slot_is_switched(dev)) {
dev_info(&dev->dev, "Ignoring card on incompatible PCI slot\n");
return -ENODEV;
}
if (cxl_is_power9() && !radix_enabled()) {
dev_info(&dev->dev, "Only Radix mode supported\n");
return -ENODEV;
}
if (cxl_verbose)
dump_cxl_config_space(dev);
adapter = cxl_pci_init_adapter(dev);
if (IS_ERR(adapter)) {
dev_err(&dev->dev, "cxl_init_adapter failed: %li\n", PTR_ERR(adapter));
return PTR_ERR(adapter);
}
for (slice = 0; slice < adapter->slices; slice++) {
if ((rc = pci_init_afu(adapter, slice, dev))) {
dev_err(&dev->dev, "AFU %i failed to initialise: %i\n", slice, rc);
continue;
}
rc = cxl_afu_select_best_mode(adapter->afu[slice]);
if (rc)
dev_err(&dev->dev, "AFU %i failed to start: %i\n", slice, rc);
}
if (pnv_pci_on_cxl_phb(dev) && adapter->slices >= 1)
pnv_cxl_phb_set_peer_afu(dev, adapter->afu[0]);
return 0;
}
static void cxl_remove(struct pci_dev *dev)
{
struct cxl *adapter = pci_get_drvdata(dev);
struct cxl_afu *afu;
int i;
/*
* Lock to prevent someone grabbing a ref through the adapter list as
* we are removing it
*/
for (i = 0; i < adapter->slices; i++) {
afu = adapter->afu[i];
cxl_pci_remove_afu(afu);
}
cxl_pci_remove_adapter(adapter);
}
static pci_ers_result_t cxl_vphb_error_detected(struct cxl_afu *afu,
pci_channel_state_t state)
{
struct pci_dev *afu_dev;
pci_ers_result_t result = PCI_ERS_RESULT_NEED_RESET;
pci_ers_result_t afu_result = PCI_ERS_RESULT_NEED_RESET;
/* There should only be one entry, but go through the list
* anyway
*/
list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) {
if (!afu_dev->driver)
continue;
afu_dev->error_state = state;
if (afu_dev->driver->err_handler)
afu_result = afu_dev->driver->err_handler->error_detected(afu_dev,
state);
/* Disconnect trumps all, NONE trumps NEED_RESET */
if (afu_result == PCI_ERS_RESULT_DISCONNECT)
result = PCI_ERS_RESULT_DISCONNECT;
else if ((afu_result == PCI_ERS_RESULT_NONE) &&
(result == PCI_ERS_RESULT_NEED_RESET))
result = PCI_ERS_RESULT_NONE;
}
return result;
}
static pci_ers_result_t cxl_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct cxl *adapter = pci_get_drvdata(pdev);
struct cxl_afu *afu;
pci_ers_result_t result = PCI_ERS_RESULT_NEED_RESET, afu_result;
int i;
/* At this point, we could still have an interrupt pending.
* Let's try to get them out of the way before they do
* anything we don't like.
*/
schedule();
/* If we're permanently dead, give up. */
if (state == pci_channel_io_perm_failure) {
for (i = 0; i < adapter->slices; i++) {
afu = adapter->afu[i];
/*
* Tell the AFU drivers; but we don't care what they
* say, we're going away.
*/
if (afu->phb != NULL)
cxl_vphb_error_detected(afu, state);
}
return PCI_ERS_RESULT_DISCONNECT;
}
/* Are we reflashing?
*
* If we reflash, we could come back as something entirely
* different, including a non-CAPI card. As such, by default
* we don't participate in the process. We'll be unbound and
* the slot re-probed. (TODO: check EEH doesn't blindly rebind
* us!)
*
* However, this isn't the entire story: for reliablity
* reasons, we usually want to reflash the FPGA on PERST in
* order to get back to a more reliable known-good state.
*
* This causes us a bit of a problem: if we reflash we can't
* trust that we'll come back the same - we could have a new
* image and been PERSTed in order to load that
* image. However, most of the time we actually *will* come
* back the same - for example a regular EEH event.
*
* Therefore, we allow the user to assert that the image is
* indeed the same and that we should continue on into EEH
* anyway.
*/
if (adapter->perst_loads_image && !adapter->perst_same_image) {
/* TODO take the PHB out of CXL mode */
dev_info(&pdev->dev, "reflashing, so opting out of EEH!\n");
return PCI_ERS_RESULT_NONE;
}
/*
* At this point, we want to try to recover. We'll always
* need a complete slot reset: we don't trust any other reset.
*
* Now, we go through each AFU:
* - We send the driver, if bound, an error_detected callback.
* We expect it to clean up, but it can also tell us to give
* up and permanently detach the card. To simplify things, if
* any bound AFU driver doesn't support EEH, we give up on EEH.
*
* - We detach all contexts associated with the AFU. This
* does not free them, but puts them into a CLOSED state
* which causes any the associated files to return useful
* errors to userland. It also unmaps, but does not free,
* any IRQs.
*
* - We clean up our side: releasing and unmapping resources we hold
* so we can wire them up again when the hardware comes back up.
*
* Driver authors should note:
*
* - Any contexts you create in your kernel driver (except
* those associated with anonymous file descriptors) are
* your responsibility to free and recreate. Likewise with
* any attached resources.
*
* - We will take responsibility for re-initialising the
* device context (the one set up for you in
* cxl_pci_enable_device_hook and accessed through
* cxl_get_context). If you've attached IRQs or other
* resources to it, they remains yours to free.
*
* You can call the same functions to release resources as you
* normally would: we make sure that these functions continue
* to work when the hardware is down.
*
* Two examples:
*
* 1) If you normally free all your resources at the end of
* each request, or if you use anonymous FDs, your
* error_detected callback can simply set a flag to tell
* your driver not to start any new calls. You can then
* clear the flag in the resume callback.
*
* 2) If you normally allocate your resources on startup:
* * Set a flag in error_detected as above.
* * Let CXL detach your contexts.
* * In slot_reset, free the old resources and allocate new ones.
* * In resume, clear the flag to allow things to start.
*/
for (i = 0; i < adapter->slices; i++) {
afu = adapter->afu[i];
afu_result = cxl_vphb_error_detected(afu, state);
cxl_context_detach_all(afu);
cxl_ops->afu_deactivate_mode(afu, afu->current_mode);
pci_deconfigure_afu(afu);
/* Disconnect trumps all, NONE trumps NEED_RESET */
if (afu_result == PCI_ERS_RESULT_DISCONNECT)
result = PCI_ERS_RESULT_DISCONNECT;
else if ((afu_result == PCI_ERS_RESULT_NONE) &&
(result == PCI_ERS_RESULT_NEED_RESET))
result = PCI_ERS_RESULT_NONE;
}
/* should take the context lock here */
if (cxl_adapter_context_lock(adapter) != 0)
dev_warn(&adapter->dev,
"Couldn't take context lock with %d active-contexts\n",
atomic_read(&adapter->contexts_num));
cxl_deconfigure_adapter(adapter);
return result;
}
static pci_ers_result_t cxl_pci_slot_reset(struct pci_dev *pdev)
{
struct cxl *adapter = pci_get_drvdata(pdev);
struct cxl_afu *afu;
struct cxl_context *ctx;
struct pci_dev *afu_dev;
pci_ers_result_t afu_result = PCI_ERS_RESULT_RECOVERED;
pci_ers_result_t result = PCI_ERS_RESULT_RECOVERED;
int i;
if (cxl_configure_adapter(adapter, pdev))
goto err;
/*
* Unlock context activation for the adapter. Ideally this should be
* done in cxl_pci_resume but cxlflash module tries to activate the
* master context as part of slot_reset callback.
*/
cxl_adapter_context_unlock(adapter);
for (i = 0; i < adapter->slices; i++) {
afu = adapter->afu[i];
if (pci_configure_afu(afu, adapter, pdev))
goto err;
if (cxl_afu_select_best_mode(afu))
goto err;
list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) {
/* Reset the device context.
* TODO: make this less disruptive
*/
ctx = cxl_get_context(afu_dev);
if (ctx && cxl_release_context(ctx))
goto err;
ctx = cxl_dev_context_init(afu_dev);
if (IS_ERR(ctx))
goto err;
afu_dev->dev.archdata.cxl_ctx = ctx;
if (cxl_ops->afu_check_and_enable(afu))
goto err;
afu_dev->error_state = pci_channel_io_normal;
/* If there's a driver attached, allow it to
* chime in on recovery. Drivers should check
* if everything has come back OK, but
* shouldn't start new work until we call
* their resume function.
*/
if (!afu_dev->driver)
continue;
if (afu_dev->driver->err_handler &&
afu_dev->driver->err_handler->slot_reset)
afu_result = afu_dev->driver->err_handler->slot_reset(afu_dev);
if (afu_result == PCI_ERS_RESULT_DISCONNECT)
result = PCI_ERS_RESULT_DISCONNECT;
}
}
return result;
err:
/* All the bits that happen in both error_detected and cxl_remove
* should be idempotent, so we don't need to worry about leaving a mix
* of unconfigured and reconfigured resources.
*/
dev_err(&pdev->dev, "EEH recovery failed. Asking to be disconnected.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
static void cxl_pci_resume(struct pci_dev *pdev)
{
struct cxl *adapter = pci_get_drvdata(pdev);
struct cxl_afu *afu;
struct pci_dev *afu_dev;
int i;
/* Everything is back now. Drivers should restart work now.
* This is not the place to be checking if everything came back up
* properly, because there's no return value: do that in slot_reset.
*/
for (i = 0; i < adapter->slices; i++) {
afu = adapter->afu[i];
list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) {
if (afu_dev->driver && afu_dev->driver->err_handler &&
afu_dev->driver->err_handler->resume)
afu_dev->driver->err_handler->resume(afu_dev);
}
}
}
static const struct pci_error_handlers cxl_err_handler = {
.error_detected = cxl_pci_error_detected,
.slot_reset = cxl_pci_slot_reset,
.resume = cxl_pci_resume,
};
struct pci_driver cxl_pci_driver = {
.name = "cxl-pci",
.id_table = cxl_pci_tbl,
.probe = cxl_probe,
.remove = cxl_remove,
.shutdown = cxl_remove,
.err_handler = &cxl_err_handler,
};