WSL2-Linux-Kernel/drivers/thunderbolt/switch.c

2908 строки
68 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Thunderbolt driver - switch/port utility functions
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2018, Intel Corporation
*/
#include <linux/delay.h>
#include <linux/idr.h>
#include <linux/nvmem-provider.h>
#include <linux/pm_runtime.h>
#include <linux/sched/signal.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include "tb.h"
/* Switch NVM support */
#define NVM_CSS 0x10
struct nvm_auth_status {
struct list_head list;
uuid_t uuid;
u32 status;
};
enum nvm_write_ops {
WRITE_AND_AUTHENTICATE = 1,
WRITE_ONLY = 2,
};
/*
* Hold NVM authentication failure status per switch This information
* needs to stay around even when the switch gets power cycled so we
* keep it separately.
*/
static LIST_HEAD(nvm_auth_status_cache);
static DEFINE_MUTEX(nvm_auth_status_lock);
static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
{
struct nvm_auth_status *st;
list_for_each_entry(st, &nvm_auth_status_cache, list) {
if (uuid_equal(&st->uuid, sw->uuid))
return st;
}
return NULL;
}
static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
{
struct nvm_auth_status *st;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
mutex_unlock(&nvm_auth_status_lock);
*status = st ? st->status : 0;
}
static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
{
struct nvm_auth_status *st;
if (WARN_ON(!sw->uuid))
return;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
if (!st) {
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto unlock;
memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
INIT_LIST_HEAD(&st->list);
list_add_tail(&st->list, &nvm_auth_status_cache);
}
st->status = status;
unlock:
mutex_unlock(&nvm_auth_status_lock);
}
static void nvm_clear_auth_status(const struct tb_switch *sw)
{
struct nvm_auth_status *st;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
if (st) {
list_del(&st->list);
kfree(st);
}
mutex_unlock(&nvm_auth_status_lock);
}
static int nvm_validate_and_write(struct tb_switch *sw)
{
unsigned int image_size, hdr_size;
const u8 *buf = sw->nvm->buf;
u16 ds_size;
int ret;
if (!buf)
return -EINVAL;
image_size = sw->nvm->buf_data_size;
if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
return -EINVAL;
/*
* FARB pointer must point inside the image and must at least
* contain parts of the digital section we will be reading here.
*/
hdr_size = (*(u32 *)buf) & 0xffffff;
if (hdr_size + NVM_DEVID + 2 >= image_size)
return -EINVAL;
/* Digital section start should be aligned to 4k page */
if (!IS_ALIGNED(hdr_size, SZ_4K))
return -EINVAL;
/*
* Read digital section size and check that it also fits inside
* the image.
*/
ds_size = *(u16 *)(buf + hdr_size);
if (ds_size >= image_size)
return -EINVAL;
if (!sw->safe_mode) {
u16 device_id;
/*
* Make sure the device ID in the image matches the one
* we read from the switch config space.
*/
device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
if (device_id != sw->config.device_id)
return -EINVAL;
if (sw->generation < 3) {
/* Write CSS headers first */
ret = dma_port_flash_write(sw->dma_port,
DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
DMA_PORT_CSS_MAX_SIZE);
if (ret)
return ret;
}
/* Skip headers in the image */
buf += hdr_size;
image_size -= hdr_size;
}
if (tb_switch_is_usb4(sw))
ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
else
ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
if (!ret)
sw->nvm->flushed = true;
return ret;
}
static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
{
int ret = 0;
/*
* Root switch NVM upgrade requires that we disconnect the
* existing paths first (in case it is not in safe mode
* already).
*/
if (!sw->safe_mode) {
u32 status;
ret = tb_domain_disconnect_all_paths(sw->tb);
if (ret)
return ret;
/*
* The host controller goes away pretty soon after this if
* everything goes well so getting timeout is expected.
*/
ret = dma_port_flash_update_auth(sw->dma_port);
if (!ret || ret == -ETIMEDOUT)
return 0;
/*
* Any error from update auth operation requires power
* cycling of the host router.
*/
tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
nvm_set_auth_status(sw, status);
}
/*
* From safe mode we can get out by just power cycling the
* switch.
*/
dma_port_power_cycle(sw->dma_port);
return ret;
}
static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
{
int ret, retries = 10;
ret = dma_port_flash_update_auth(sw->dma_port);
switch (ret) {
case 0:
case -ETIMEDOUT:
case -EACCES:
case -EINVAL:
/* Power cycle is required */
break;
default:
return ret;
}
/*
* Poll here for the authentication status. It takes some time
* for the device to respond (we get timeout for a while). Once
* we get response the device needs to be power cycled in order
* to the new NVM to be taken into use.
*/
do {
u32 status;
ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
if (ret < 0 && ret != -ETIMEDOUT)
return ret;
if (ret > 0) {
if (status) {
tb_sw_warn(sw, "failed to authenticate NVM\n");
nvm_set_auth_status(sw, status);
}
tb_sw_info(sw, "power cycling the switch now\n");
dma_port_power_cycle(sw->dma_port);
return 0;
}
msleep(500);
} while (--retries);
return -ETIMEDOUT;
}
static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
{
struct pci_dev *root_port;
/*
* During host router NVM upgrade we should not allow root port to
* go into D3cold because some root ports cannot trigger PME
* itself. To be on the safe side keep the root port in D0 during
* the whole upgrade process.
*/
root_port = pcie_find_root_port(sw->tb->nhi->pdev);
if (root_port)
pm_runtime_get_noresume(&root_port->dev);
}
static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
{
struct pci_dev *root_port;
root_port = pcie_find_root_port(sw->tb->nhi->pdev);
if (root_port)
pm_runtime_put(&root_port->dev);
}
static inline bool nvm_readable(struct tb_switch *sw)
{
if (tb_switch_is_usb4(sw)) {
/*
* USB4 devices must support NVM operations but it is
* optional for hosts. Therefore we query the NVM sector
* size here and if it is supported assume NVM
* operations are implemented.
*/
return usb4_switch_nvm_sector_size(sw) > 0;
}
/* Thunderbolt 2 and 3 devices support NVM through DMA port */
return !!sw->dma_port;
}
static inline bool nvm_upgradeable(struct tb_switch *sw)
{
if (sw->no_nvm_upgrade)
return false;
return nvm_readable(sw);
}
static inline int nvm_read(struct tb_switch *sw, unsigned int address,
void *buf, size_t size)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_nvm_read(sw, address, buf, size);
return dma_port_flash_read(sw->dma_port, address, buf, size);
}
static int nvm_authenticate(struct tb_switch *sw)
{
int ret;
if (tb_switch_is_usb4(sw))
return usb4_switch_nvm_authenticate(sw);
if (!tb_route(sw)) {
nvm_authenticate_start_dma_port(sw);
ret = nvm_authenticate_host_dma_port(sw);
} else {
ret = nvm_authenticate_device_dma_port(sw);
}
return ret;
}
static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct tb_nvm *nvm = priv;
struct tb_switch *sw = tb_to_switch(nvm->dev);
int ret;
pm_runtime_get_sync(&sw->dev);
if (!mutex_trylock(&sw->tb->lock)) {
ret = restart_syscall();
goto out;
}
ret = nvm_read(sw, offset, val, bytes);
mutex_unlock(&sw->tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct tb_nvm *nvm = priv;
struct tb_switch *sw = tb_to_switch(nvm->dev);
int ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
/*
* Since writing the NVM image might require some special steps,
* for example when CSS headers are written, we cache the image
* locally here and handle the special cases when the user asks
* us to authenticate the image.
*/
ret = tb_nvm_write_buf(nvm, offset, val, bytes);
mutex_unlock(&sw->tb->lock);
return ret;
}
static int tb_switch_nvm_add(struct tb_switch *sw)
{
struct tb_nvm *nvm;
u32 val;
int ret;
if (!nvm_readable(sw))
return 0;
/*
* The NVM format of non-Intel hardware is not known so
* currently restrict NVM upgrade for Intel hardware. We may
* relax this in the future when we learn other NVM formats.
*/
if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
sw->config.vendor_id != 0x8087) {
dev_info(&sw->dev,
"NVM format of vendor %#x is not known, disabling NVM upgrade\n",
sw->config.vendor_id);
return 0;
}
nvm = tb_nvm_alloc(&sw->dev);
if (IS_ERR(nvm))
return PTR_ERR(nvm);
/*
* If the switch is in safe-mode the only accessible portion of
* the NVM is the non-active one where userspace is expected to
* write new functional NVM.
*/
if (!sw->safe_mode) {
u32 nvm_size, hdr_size;
ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
if (ret)
goto err_nvm;
hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
nvm_size = (SZ_1M << (val & 7)) / 8;
nvm_size = (nvm_size - hdr_size) / 2;
ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
if (ret)
goto err_nvm;
nvm->major = val >> 16;
nvm->minor = val >> 8;
ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
if (ret)
goto err_nvm;
}
if (!sw->no_nvm_upgrade) {
ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
tb_switch_nvm_write);
if (ret)
goto err_nvm;
}
sw->nvm = nvm;
return 0;
err_nvm:
tb_nvm_free(nvm);
return ret;
}
static void tb_switch_nvm_remove(struct tb_switch *sw)
{
struct tb_nvm *nvm;
nvm = sw->nvm;
sw->nvm = NULL;
if (!nvm)
return;
/* Remove authentication status in case the switch is unplugged */
if (!nvm->authenticating)
nvm_clear_auth_status(sw);
tb_nvm_free(nvm);
}
/* port utility functions */
static const char *tb_port_type(struct tb_regs_port_header *port)
{
switch (port->type >> 16) {
case 0:
switch ((u8) port->type) {
case 0:
return "Inactive";
case 1:
return "Port";
case 2:
return "NHI";
default:
return "unknown";
}
case 0x2:
return "Ethernet";
case 0x8:
return "SATA";
case 0xe:
return "DP/HDMI";
case 0x10:
return "PCIe";
case 0x20:
return "USB";
default:
return "unknown";
}
}
static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
{
tb_dbg(tb,
" Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
port->port_number, port->vendor_id, port->device_id,
port->revision, port->thunderbolt_version, tb_port_type(port),
port->type);
tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
port->max_in_hop_id, port->max_out_hop_id);
tb_dbg(tb, " Max counters: %d\n", port->max_counters);
tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
}
/**
* tb_port_state() - get connectedness state of a port
*
* The port must have a TB_CAP_PHY (i.e. it should be a real port).
*
* Return: Returns an enum tb_port_state on success or an error code on failure.
*/
static int tb_port_state(struct tb_port *port)
{
struct tb_cap_phy phy;
int res;
if (port->cap_phy == 0) {
tb_port_WARN(port, "does not have a PHY\n");
return -EINVAL;
}
res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
if (res)
return res;
return phy.state;
}
/**
* tb_wait_for_port() - wait for a port to become ready
*
* Wait up to 1 second for a port to reach state TB_PORT_UP. If
* wait_if_unplugged is set then we also wait if the port is in state
* TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
* switch resume). Otherwise we only wait if a device is registered but the link
* has not yet been established.
*
* Return: Returns an error code on failure. Returns 0 if the port is not
* connected or failed to reach state TB_PORT_UP within one second. Returns 1
* if the port is connected and in state TB_PORT_UP.
*/
int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
{
int retries = 10;
int state;
if (!port->cap_phy) {
tb_port_WARN(port, "does not have PHY\n");
return -EINVAL;
}
if (tb_is_upstream_port(port)) {
tb_port_WARN(port, "is the upstream port\n");
return -EINVAL;
}
while (retries--) {
state = tb_port_state(port);
if (state < 0)
return state;
if (state == TB_PORT_DISABLED) {
tb_port_dbg(port, "is disabled (state: 0)\n");
return 0;
}
if (state == TB_PORT_UNPLUGGED) {
if (wait_if_unplugged) {
/* used during resume */
tb_port_dbg(port,
"is unplugged (state: 7), retrying...\n");
msleep(100);
continue;
}
tb_port_dbg(port, "is unplugged (state: 7)\n");
return 0;
}
if (state == TB_PORT_UP) {
tb_port_dbg(port, "is connected, link is up (state: 2)\n");
return 1;
}
/*
* After plug-in the state is TB_PORT_CONNECTING. Give it some
* time.
*/
tb_port_dbg(port,
"is connected, link is not up (state: %d), retrying...\n",
state);
msleep(100);
}
tb_port_warn(port,
"failed to reach state TB_PORT_UP. Ignoring port...\n");
return 0;
}
/**
* tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
*
* Change the number of NFC credits allocated to @port by @credits. To remove
* NFC credits pass a negative amount of credits.
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_port_add_nfc_credits(struct tb_port *port, int credits)
{
u32 nfc_credits;
if (credits == 0 || port->sw->is_unplugged)
return 0;
/*
* USB4 restricts programming NFC buffers to lane adapters only
* so skip other ports.
*/
if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
return 0;
nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
nfc_credits += credits;
tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
port->config.nfc_credits |= nfc_credits;
return tb_port_write(port, &port->config.nfc_credits,
TB_CFG_PORT, ADP_CS_4, 1);
}
/**
* tb_port_set_initial_credits() - Set initial port link credits allocated
* @port: Port to set the initial credits
* @credits: Number of credits to to allocate
*
* Set initial credits value to be used for ingress shared buffering.
*/
int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
if (ret)
return ret;
data &= ~ADP_CS_5_LCA_MASK;
data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
}
/**
* tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_port_clear_counter(struct tb_port *port, int counter)
{
u32 zero[3] = { 0, 0, 0 };
tb_port_dbg(port, "clearing counter %d\n", counter);
return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
}
/**
* tb_port_unlock() - Unlock downstream port
* @port: Port to unlock
*
* Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
* downstream router accessible for CM.
*/
int tb_port_unlock(struct tb_port *port)
{
if (tb_switch_is_icm(port->sw))
return 0;
if (!tb_port_is_null(port))
return -EINVAL;
if (tb_switch_is_usb4(port->sw))
return usb4_port_unlock(port);
return 0;
}
static int __tb_port_enable(struct tb_port *port, bool enable)
{
int ret;
u32 phy;
if (!tb_port_is_null(port))
return -EINVAL;
ret = tb_port_read(port, &phy, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
if (enable)
phy &= ~LANE_ADP_CS_1_LD;
else
phy |= LANE_ADP_CS_1_LD;
return tb_port_write(port, &phy, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
}
/**
* tb_port_enable() - Enable lane adapter
* @port: Port to enable (can be %NULL)
*
* This is used for lane 0 and 1 adapters to enable it.
*/
int tb_port_enable(struct tb_port *port)
{
return __tb_port_enable(port, true);
}
/**
* tb_port_disable() - Disable lane adapter
* @port: Port to disable (can be %NULL)
*
* This is used for lane 0 and 1 adapters to disable it.
*/
int tb_port_disable(struct tb_port *port)
{
return __tb_port_enable(port, false);
}
/**
* tb_init_port() - initialize a port
*
* This is a helper method for tb_switch_alloc. Does not check or initialize
* any downstream switches.
*
* Return: Returns 0 on success or an error code on failure.
*/
static int tb_init_port(struct tb_port *port)
{
int res;
int cap;
res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
if (res) {
if (res == -ENODEV) {
tb_dbg(port->sw->tb, " Port %d: not implemented\n",
port->port);
port->disabled = true;
return 0;
}
return res;
}
/* Port 0 is the switch itself and has no PHY. */
if (port->config.type == TB_TYPE_PORT && port->port != 0) {
cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
if (cap > 0)
port->cap_phy = cap;
else
tb_port_WARN(port, "non switch port without a PHY\n");
cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
if (cap > 0)
port->cap_usb4 = cap;
} else if (port->port != 0) {
cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
if (cap > 0)
port->cap_adap = cap;
}
tb_dump_port(port->sw->tb, &port->config);
/* Control port does not need HopID allocation */
if (port->port) {
ida_init(&port->in_hopids);
ida_init(&port->out_hopids);
}
INIT_LIST_HEAD(&port->list);
return 0;
}
static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
int max_hopid)
{
int port_max_hopid;
struct ida *ida;
if (in) {
port_max_hopid = port->config.max_in_hop_id;
ida = &port->in_hopids;
} else {
port_max_hopid = port->config.max_out_hop_id;
ida = &port->out_hopids;
}
/*
* NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
* reserved.
*/
if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
min_hopid = TB_PATH_MIN_HOPID;
if (max_hopid < 0 || max_hopid > port_max_hopid)
max_hopid = port_max_hopid;
return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
}
/**
* tb_port_alloc_in_hopid() - Allocate input HopID from port
* @port: Port to allocate HopID for
* @min_hopid: Minimum acceptable input HopID
* @max_hopid: Maximum acceptable input HopID
*
* Return: HopID between @min_hopid and @max_hopid or negative errno in
* case of error.
*/
int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
}
/**
* tb_port_alloc_out_hopid() - Allocate output HopID from port
* @port: Port to allocate HopID for
* @min_hopid: Minimum acceptable output HopID
* @max_hopid: Maximum acceptable output HopID
*
* Return: HopID between @min_hopid and @max_hopid or negative errno in
* case of error.
*/
int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
}
/**
* tb_port_release_in_hopid() - Release allocated input HopID from port
* @port: Port whose HopID to release
* @hopid: HopID to release
*/
void tb_port_release_in_hopid(struct tb_port *port, int hopid)
{
ida_simple_remove(&port->in_hopids, hopid);
}
/**
* tb_port_release_out_hopid() - Release allocated output HopID from port
* @port: Port whose HopID to release
* @hopid: HopID to release
*/
void tb_port_release_out_hopid(struct tb_port *port, int hopid)
{
ida_simple_remove(&port->out_hopids, hopid);
}
static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
const struct tb_switch *sw)
{
u64 mask = (1ULL << parent->config.depth * 8) - 1;
return (tb_route(parent) & mask) == (tb_route(sw) & mask);
}
/**
* tb_next_port_on_path() - Return next port for given port on a path
* @start: Start port of the walk
* @end: End port of the walk
* @prev: Previous port (%NULL if this is the first)
*
* This function can be used to walk from one port to another if they
* are connected through zero or more switches. If the @prev is dual
* link port, the function follows that link and returns another end on
* that same link.
*
* If the @end port has been reached, return %NULL.
*
* Domain tb->lock must be held when this function is called.
*/
struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
struct tb_port *prev)
{
struct tb_port *next;
if (!prev)
return start;
if (prev->sw == end->sw) {
if (prev == end)
return NULL;
return end;
}
if (tb_switch_is_reachable(prev->sw, end->sw)) {
next = tb_port_at(tb_route(end->sw), prev->sw);
/* Walk down the topology if next == prev */
if (prev->remote &&
(next == prev || next->dual_link_port == prev))
next = prev->remote;
} else {
if (tb_is_upstream_port(prev)) {
next = prev->remote;
} else {
next = tb_upstream_port(prev->sw);
/*
* Keep the same link if prev and next are both
* dual link ports.
*/
if (next->dual_link_port &&
next->link_nr != prev->link_nr) {
next = next->dual_link_port;
}
}
}
return next != prev ? next : NULL;
}
/**
* tb_port_get_link_speed() - Get current link speed
* @port: Port to check (USB4 or CIO)
*
* Returns link speed in Gb/s or negative errno in case of failure.
*/
int tb_port_get_link_speed(struct tb_port *port)
{
u32 val, speed;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
}
static int tb_port_get_link_width(struct tb_port *port)
{
u32 val;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
}
static bool tb_port_is_width_supported(struct tb_port *port, int width)
{
u32 phy, widths;
int ret;
if (!port->cap_phy)
return false;
ret = tb_port_read(port, &phy, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_0, 1);
if (ret)
return false;
widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
return !!(widths & width);
}
static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
{
u32 val;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
switch (width) {
case 1:
val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
break;
case 2:
val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
break;
default:
return -EINVAL;
}
val |= LANE_ADP_CS_1_LB;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
}
static int tb_port_lane_bonding_enable(struct tb_port *port)
{
int ret;
/*
* Enable lane bonding for both links if not already enabled by
* for example the boot firmware.
*/
ret = tb_port_get_link_width(port);
if (ret == 1) {
ret = tb_port_set_link_width(port, 2);
if (ret)
return ret;
}
ret = tb_port_get_link_width(port->dual_link_port);
if (ret == 1) {
ret = tb_port_set_link_width(port->dual_link_port, 2);
if (ret) {
tb_port_set_link_width(port, 1);
return ret;
}
}
port->bonded = true;
port->dual_link_port->bonded = true;
return 0;
}
static void tb_port_lane_bonding_disable(struct tb_port *port)
{
port->dual_link_port->bonded = false;
port->bonded = false;
tb_port_set_link_width(port->dual_link_port, 1);
tb_port_set_link_width(port, 1);
}
/**
* tb_port_is_enabled() - Is the adapter port enabled
* @port: Port to check
*/
bool tb_port_is_enabled(struct tb_port *port)
{
switch (port->config.type) {
case TB_TYPE_PCIE_UP:
case TB_TYPE_PCIE_DOWN:
return tb_pci_port_is_enabled(port);
case TB_TYPE_DP_HDMI_IN:
case TB_TYPE_DP_HDMI_OUT:
return tb_dp_port_is_enabled(port);
case TB_TYPE_USB3_UP:
case TB_TYPE_USB3_DOWN:
return tb_usb3_port_is_enabled(port);
default:
return false;
}
}
/**
* tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
* @port: USB3 adapter port to check
*/
bool tb_usb3_port_is_enabled(struct tb_port *port)
{
u32 data;
if (tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_0, 1))
return false;
return !!(data & ADP_USB3_CS_0_PE);
}
/**
* tb_usb3_port_enable() - Enable USB3 adapter port
* @port: USB3 adapter port to enable
* @enable: Enable/disable the USB3 adapter
*/
int tb_usb3_port_enable(struct tb_port *port, bool enable)
{
u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
: ADP_USB3_CS_0_V;
if (!port->cap_adap)
return -ENXIO;
return tb_port_write(port, &word, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_0, 1);
}
/**
* tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
* @port: PCIe port to check
*/
bool tb_pci_port_is_enabled(struct tb_port *port)
{
u32 data;
if (tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_PCIE_CS_0, 1))
return false;
return !!(data & ADP_PCIE_CS_0_PE);
}
/**
* tb_pci_port_enable() - Enable PCIe adapter port
* @port: PCIe port to enable
* @enable: Enable/disable the PCIe adapter
*/
int tb_pci_port_enable(struct tb_port *port, bool enable)
{
u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
if (!port->cap_adap)
return -ENXIO;
return tb_port_write(port, &word, TB_CFG_PORT,
port->cap_adap + ADP_PCIE_CS_0, 1);
}
/**
* tb_dp_port_hpd_is_active() - Is HPD already active
* @port: DP out port to check
*
* Checks if the DP OUT adapter port has HDP bit already set.
*/
int tb_dp_port_hpd_is_active(struct tb_port *port)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
return !!(data & ADP_DP_CS_2_HDP);
}
/**
* tb_dp_port_hpd_clear() - Clear HPD from DP IN port
* @port: Port to clear HPD
*
* If the DP IN port has HDP set, this function can be used to clear it.
*/
int tb_dp_port_hpd_clear(struct tb_port *port)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_3, 1);
if (ret)
return ret;
data |= ADP_DP_CS_3_HDPC;
return tb_port_write(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_3, 1);
}
/**
* tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
* @port: DP IN/OUT port to set hops
* @video: Video Hop ID
* @aux_tx: AUX TX Hop ID
* @aux_rx: AUX RX Hop ID
*
* Programs specified Hop IDs for DP IN/OUT port.
*/
int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
unsigned int aux_tx, unsigned int aux_rx)
{
u32 data[2];
int ret;
ret = tb_port_read(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
if (ret)
return ret;
data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
ADP_DP_CS_0_VIDEO_HOPID_MASK;
data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
ADP_DP_CS_1_AUX_RX_HOPID_MASK;
return tb_port_write(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
}
/**
* tb_dp_port_is_enabled() - Is DP adapter port enabled
* @port: DP adapter port to check
*/
bool tb_dp_port_is_enabled(struct tb_port *port)
{
u32 data[2];
if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
ARRAY_SIZE(data)))
return false;
return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
}
/**
* tb_dp_port_enable() - Enables/disables DP paths of a port
* @port: DP IN/OUT port
* @enable: Enable/disable DP path
*
* Once Hop IDs are programmed DP paths can be enabled or disabled by
* calling this function.
*/
int tb_dp_port_enable(struct tb_port *port, bool enable)
{
u32 data[2];
int ret;
ret = tb_port_read(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
if (ret)
return ret;
if (enable)
data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
else
data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
return tb_port_write(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
}
/* switch utility functions */
static const char *tb_switch_generation_name(const struct tb_switch *sw)
{
switch (sw->generation) {
case 1:
return "Thunderbolt 1";
case 2:
return "Thunderbolt 2";
case 3:
return "Thunderbolt 3";
case 4:
return "USB4";
default:
return "Unknown";
}
}
static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
{
const struct tb_regs_switch_header *regs = &sw->config;
tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
regs->revision, regs->thunderbolt_version);
tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
tb_dbg(tb, " Config:\n");
tb_dbg(tb,
" Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
regs->upstream_port_number, regs->depth,
(((u64) regs->route_hi) << 32) | regs->route_lo,
regs->enabled, regs->plug_events_delay);
tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
regs->__unknown1, regs->__unknown4);
}
/**
* reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
* @sw: Switch to reset
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_switch_reset(struct tb_switch *sw)
{
struct tb_cfg_result res;
if (sw->generation > 1)
return 0;
tb_sw_dbg(sw, "resetting switch\n");
res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
TB_CFG_SWITCH, 2, 2);
if (res.err)
return res.err;
res = tb_cfg_reset(sw->tb->ctl, tb_route(sw), TB_CFG_DEFAULT_TIMEOUT);
if (res.err > 0)
return -EIO;
return res.err;
}
/**
* tb_plug_events_active() - enable/disable plug events on a switch
*
* Also configures a sane plug_events_delay of 255ms.
*
* Return: Returns 0 on success or an error code on failure.
*/
static int tb_plug_events_active(struct tb_switch *sw, bool active)
{
u32 data;
int res;
if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
return 0;
sw->config.plug_events_delay = 0xff;
res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
if (res)
return res;
res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
if (res)
return res;
if (active) {
data = data & 0xFFFFFF83;
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
break;
default:
data |= 4;
}
} else {
data = data | 0x7c;
}
return tb_sw_write(sw, &data, TB_CFG_SWITCH,
sw->cap_plug_events + 1, 1);
}
static ssize_t authorized_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->authorized);
}
static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
{
int ret = -EINVAL;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->authorized)
goto unlock;
switch (val) {
/* Approve switch */
case 1:
if (sw->key)
ret = tb_domain_approve_switch_key(sw->tb, sw);
else
ret = tb_domain_approve_switch(sw->tb, sw);
break;
/* Challenge switch */
case 2:
if (sw->key)
ret = tb_domain_challenge_switch_key(sw->tb, sw);
break;
default:
break;
}
if (!ret) {
sw->authorized = val;
/* Notify status change to the userspace */
kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
}
unlock:
mutex_unlock(&sw->tb->lock);
return ret;
}
static ssize_t authorized_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
unsigned int val;
ssize_t ret;
ret = kstrtouint(buf, 0, &val);
if (ret)
return ret;
if (val > 2)
return -EINVAL;
pm_runtime_get_sync(&sw->dev);
ret = tb_switch_set_authorized(sw, val);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret ? ret : count;
}
static DEVICE_ATTR_RW(authorized);
static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->boot);
}
static DEVICE_ATTR_RO(boot);
static ssize_t device_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%#x\n", sw->device);
}
static DEVICE_ATTR_RO(device);
static ssize_t
device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
}
static DEVICE_ATTR_RO(device_name);
static ssize_t
generation_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->generation);
}
static DEVICE_ATTR_RO(generation);
static ssize_t key_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
ssize_t ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->key)
ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
else
ret = sprintf(buf, "\n");
mutex_unlock(&sw->tb->lock);
return ret;
}
static ssize_t key_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
u8 key[TB_SWITCH_KEY_SIZE];
ssize_t ret = count;
bool clear = false;
if (!strcmp(buf, "\n"))
clear = true;
else if (hex2bin(key, buf, sizeof(key)))
return -EINVAL;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->authorized) {
ret = -EBUSY;
} else {
kfree(sw->key);
if (clear) {
sw->key = NULL;
} else {
sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
if (!sw->key)
ret = -ENOMEM;
}
}
mutex_unlock(&sw->tb->lock);
return ret;
}
static DEVICE_ATTR(key, 0600, key_show, key_store);
static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
}
/*
* Currently all lanes must run at the same speed but we expose here
* both directions to allow possible asymmetric links in the future.
*/
static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->link_width);
}
/*
* Currently link has same amount of lanes both directions (1 or 2) but
* expose them separately to allow possible asymmetric links in the future.
*/
static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
static ssize_t nvm_authenticate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
u32 status;
nvm_get_auth_status(sw, &status);
return sprintf(buf, "%#x\n", status);
}
static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
bool disconnect)
{
struct tb_switch *sw = tb_to_switch(dev);
int val;
int ret;
pm_runtime_get_sync(&sw->dev);
if (!mutex_trylock(&sw->tb->lock)) {
ret = restart_syscall();
goto exit_rpm;
}
/* If NVMem devices are not yet added */
if (!sw->nvm) {
ret = -EAGAIN;
goto exit_unlock;
}
ret = kstrtoint(buf, 10, &val);
if (ret)
goto exit_unlock;
/* Always clear the authentication status */
nvm_clear_auth_status(sw);
if (val > 0) {
if (!sw->nvm->flushed) {
if (!sw->nvm->buf) {
ret = -EINVAL;
goto exit_unlock;
}
ret = nvm_validate_and_write(sw);
if (ret || val == WRITE_ONLY)
goto exit_unlock;
}
if (val == WRITE_AND_AUTHENTICATE) {
if (disconnect) {
ret = tb_lc_force_power(sw);
} else {
sw->nvm->authenticating = true;
ret = nvm_authenticate(sw);
}
}
}
exit_unlock:
mutex_unlock(&sw->tb->lock);
exit_rpm:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
static ssize_t nvm_authenticate_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int ret = nvm_authenticate_sysfs(dev, buf, false);
if (ret)
return ret;
return count;
}
static DEVICE_ATTR_RW(nvm_authenticate);
static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return nvm_authenticate_show(dev, attr, buf);
}
static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int ret;
ret = nvm_authenticate_sysfs(dev, buf, true);
return ret ? ret : count;
}
static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
static ssize_t nvm_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
int ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->safe_mode)
ret = -ENODATA;
else if (!sw->nvm)
ret = -EAGAIN;
else
ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
mutex_unlock(&sw->tb->lock);
return ret;
}
static DEVICE_ATTR_RO(nvm_version);
static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%#x\n", sw->vendor);
}
static DEVICE_ATTR_RO(vendor);
static ssize_t
vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
}
static DEVICE_ATTR_RO(vendor_name);
static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%pUb\n", sw->uuid);
}
static DEVICE_ATTR_RO(unique_id);
static struct attribute *switch_attrs[] = {
&dev_attr_authorized.attr,
&dev_attr_boot.attr,
&dev_attr_device.attr,
&dev_attr_device_name.attr,
&dev_attr_generation.attr,
&dev_attr_key.attr,
&dev_attr_nvm_authenticate.attr,
&dev_attr_nvm_authenticate_on_disconnect.attr,
&dev_attr_nvm_version.attr,
&dev_attr_rx_speed.attr,
&dev_attr_rx_lanes.attr,
&dev_attr_tx_speed.attr,
&dev_attr_tx_lanes.attr,
&dev_attr_vendor.attr,
&dev_attr_vendor_name.attr,
&dev_attr_unique_id.attr,
NULL,
};
static umode_t switch_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct tb_switch *sw = tb_to_switch(dev);
if (attr == &dev_attr_device.attr) {
if (!sw->device)
return 0;
} else if (attr == &dev_attr_device_name.attr) {
if (!sw->device_name)
return 0;
} else if (attr == &dev_attr_vendor.attr) {
if (!sw->vendor)
return 0;
} else if (attr == &dev_attr_vendor_name.attr) {
if (!sw->vendor_name)
return 0;
} else if (attr == &dev_attr_key.attr) {
if (tb_route(sw) &&
sw->tb->security_level == TB_SECURITY_SECURE &&
sw->security_level == TB_SECURITY_SECURE)
return attr->mode;
return 0;
} else if (attr == &dev_attr_rx_speed.attr ||
attr == &dev_attr_rx_lanes.attr ||
attr == &dev_attr_tx_speed.attr ||
attr == &dev_attr_tx_lanes.attr) {
if (tb_route(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_authenticate.attr) {
if (nvm_upgradeable(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_version.attr) {
if (nvm_readable(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_boot.attr) {
if (tb_route(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
return attr->mode;
return 0;
}
return sw->safe_mode ? 0 : attr->mode;
}
static struct attribute_group switch_group = {
.is_visible = switch_attr_is_visible,
.attrs = switch_attrs,
};
static const struct attribute_group *switch_groups[] = {
&switch_group,
NULL,
};
static void tb_switch_release(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
struct tb_port *port;
dma_port_free(sw->dma_port);
tb_switch_for_each_port(sw, port) {
if (!port->disabled) {
ida_destroy(&port->in_hopids);
ida_destroy(&port->out_hopids);
}
}
kfree(sw->uuid);
kfree(sw->device_name);
kfree(sw->vendor_name);
kfree(sw->ports);
kfree(sw->drom);
kfree(sw->key);
kfree(sw);
}
/*
* Currently only need to provide the callbacks. Everything else is handled
* in the connection manager.
*/
static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
if (cm_ops->runtime_suspend_switch)
return cm_ops->runtime_suspend_switch(sw);
return 0;
}
static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
if (cm_ops->runtime_resume_switch)
return cm_ops->runtime_resume_switch(sw);
return 0;
}
static const struct dev_pm_ops tb_switch_pm_ops = {
SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
NULL)
};
struct device_type tb_switch_type = {
.name = "thunderbolt_device",
.release = tb_switch_release,
.pm = &tb_switch_pm_ops,
};
static int tb_switch_get_generation(struct tb_switch *sw)
{
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
return 1;
case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
return 2;
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
case PCI_DEVICE_ID_INTEL_ICL_NHI0:
case PCI_DEVICE_ID_INTEL_ICL_NHI1:
return 3;
default:
if (tb_switch_is_usb4(sw))
return 4;
/*
* For unknown switches assume generation to be 1 to be
* on the safe side.
*/
tb_sw_warn(sw, "unsupported switch device id %#x\n",
sw->config.device_id);
return 1;
}
}
static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
{
int max_depth;
if (tb_switch_is_usb4(sw) ||
(sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
max_depth = USB4_SWITCH_MAX_DEPTH;
else
max_depth = TB_SWITCH_MAX_DEPTH;
return depth > max_depth;
}
/**
* tb_switch_alloc() - allocate a switch
* @tb: Pointer to the owning domain
* @parent: Parent device for this switch
* @route: Route string for this switch
*
* Allocates and initializes a switch. Will not upload configuration to
* the switch. For that you need to call tb_switch_configure()
* separately. The returned switch should be released by calling
* tb_switch_put().
*
* Return: Pointer to the allocated switch or ERR_PTR() in case of
* failure.
*/
struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
u64 route)
{
struct tb_switch *sw;
int upstream_port;
int i, ret, depth;
/* Unlock the downstream port so we can access the switch below */
if (route) {
struct tb_switch *parent_sw = tb_to_switch(parent);
struct tb_port *down;
down = tb_port_at(route, parent_sw);
tb_port_unlock(down);
}
depth = tb_route_length(route);
upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
if (upstream_port < 0)
return ERR_PTR(upstream_port);
sw = kzalloc(sizeof(*sw), GFP_KERNEL);
if (!sw)
return ERR_PTR(-ENOMEM);
sw->tb = tb;
ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
if (ret)
goto err_free_sw_ports;
sw->generation = tb_switch_get_generation(sw);
tb_dbg(tb, "current switch config:\n");
tb_dump_switch(tb, sw);
/* configure switch */
sw->config.upstream_port_number = upstream_port;
sw->config.depth = depth;
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->config.enabled = 0;
/* Make sure we do not exceed maximum topology limit */
if (tb_switch_exceeds_max_depth(sw, depth)) {
ret = -EADDRNOTAVAIL;
goto err_free_sw_ports;
}
/* initialize ports */
sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
GFP_KERNEL);
if (!sw->ports) {
ret = -ENOMEM;
goto err_free_sw_ports;
}
for (i = 0; i <= sw->config.max_port_number; i++) {
/* minimum setup for tb_find_cap and tb_drom_read to work */
sw->ports[i].sw = sw;
sw->ports[i].port = i;
}
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
if (ret > 0)
sw->cap_plug_events = ret;
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
if (ret > 0)
sw->cap_lc = ret;
/* Root switch is always authorized */
if (!route)
sw->authorized = true;
device_initialize(&sw->dev);
sw->dev.parent = parent;
sw->dev.bus = &tb_bus_type;
sw->dev.type = &tb_switch_type;
sw->dev.groups = switch_groups;
dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
return sw;
err_free_sw_ports:
kfree(sw->ports);
kfree(sw);
return ERR_PTR(ret);
}
/**
* tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
* @tb: Pointer to the owning domain
* @parent: Parent device for this switch
* @route: Route string for this switch
*
* This creates a switch in safe mode. This means the switch pretty much
* lacks all capabilities except DMA configuration port before it is
* flashed with a valid NVM firmware.
*
* The returned switch must be released by calling tb_switch_put().
*
* Return: Pointer to the allocated switch or ERR_PTR() in case of failure
*/
struct tb_switch *
tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
{
struct tb_switch *sw;
sw = kzalloc(sizeof(*sw), GFP_KERNEL);
if (!sw)
return ERR_PTR(-ENOMEM);
sw->tb = tb;
sw->config.depth = tb_route_length(route);
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->safe_mode = true;
device_initialize(&sw->dev);
sw->dev.parent = parent;
sw->dev.bus = &tb_bus_type;
sw->dev.type = &tb_switch_type;
sw->dev.groups = switch_groups;
dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
return sw;
}
/**
* tb_switch_configure() - Uploads configuration to the switch
* @sw: Switch to configure
*
* Call this function before the switch is added to the system. It will
* upload configuration to the switch and makes it available for the
* connection manager to use. Can be called to the switch again after
* resume from low power states to re-initialize it.
*
* Return: %0 in case of success and negative errno in case of failure
*/
int tb_switch_configure(struct tb_switch *sw)
{
struct tb *tb = sw->tb;
u64 route;
int ret;
route = tb_route(sw);
tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
sw->config.enabled ? "restoring" : "initializing", route,
tb_route_length(route), sw->config.upstream_port_number);
sw->config.enabled = 1;
if (tb_switch_is_usb4(sw)) {
/*
* For USB4 devices, we need to program the CM version
* accordingly so that it knows to expose all the
* additional capabilities.
*/
sw->config.cmuv = USB4_VERSION_1_0;
/* Enumerate the switch */
ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
ROUTER_CS_1, 4);
if (ret)
return ret;
ret = usb4_switch_setup(sw);
} else {
if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
tb_sw_warn(sw, "unknown switch vendor id %#x\n",
sw->config.vendor_id);
if (!sw->cap_plug_events) {
tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
return -ENODEV;
}
/* Enumerate the switch */
ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
ROUTER_CS_1, 3);
}
if (ret)
return ret;
return tb_plug_events_active(sw, true);
}
static int tb_switch_set_uuid(struct tb_switch *sw)
{
bool uid = false;
u32 uuid[4];
int ret;
if (sw->uuid)
return 0;
if (tb_switch_is_usb4(sw)) {
ret = usb4_switch_read_uid(sw, &sw->uid);
if (ret)
return ret;
uid = true;
} else {
/*
* The newer controllers include fused UUID as part of
* link controller specific registers
*/
ret = tb_lc_read_uuid(sw, uuid);
if (ret) {
if (ret != -EINVAL)
return ret;
uid = true;
}
}
if (uid) {
/*
* ICM generates UUID based on UID and fills the upper
* two words with ones. This is not strictly following
* UUID format but we want to be compatible with it so
* we do the same here.
*/
uuid[0] = sw->uid & 0xffffffff;
uuid[1] = (sw->uid >> 32) & 0xffffffff;
uuid[2] = 0xffffffff;
uuid[3] = 0xffffffff;
}
sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
if (!sw->uuid)
return -ENOMEM;
return 0;
}
static int tb_switch_add_dma_port(struct tb_switch *sw)
{
u32 status;
int ret;
switch (sw->generation) {
case 2:
/* Only root switch can be upgraded */
if (tb_route(sw))
return 0;
fallthrough;
case 3:
ret = tb_switch_set_uuid(sw);
if (ret)
return ret;
break;
default:
/*
* DMA port is the only thing available when the switch
* is in safe mode.
*/
if (!sw->safe_mode)
return 0;
break;
}
/* Root switch DMA port requires running firmware */
if (!tb_route(sw) && !tb_switch_is_icm(sw))
return 0;
sw->dma_port = dma_port_alloc(sw);
if (!sw->dma_port)
return 0;
if (sw->no_nvm_upgrade)
return 0;
/*
* If there is status already set then authentication failed
* when the dma_port_flash_update_auth() returned. Power cycling
* is not needed (it was done already) so only thing we do here
* is to unblock runtime PM of the root port.
*/
nvm_get_auth_status(sw, &status);
if (status) {
if (!tb_route(sw))
nvm_authenticate_complete_dma_port(sw);
return 0;
}
/*
* Check status of the previous flash authentication. If there
* is one we need to power cycle the switch in any case to make
* it functional again.
*/
ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
if (ret <= 0)
return ret;
/* Now we can allow root port to suspend again */
if (!tb_route(sw))
nvm_authenticate_complete_dma_port(sw);
if (status) {
tb_sw_info(sw, "switch flash authentication failed\n");
nvm_set_auth_status(sw, status);
}
tb_sw_info(sw, "power cycling the switch now\n");
dma_port_power_cycle(sw->dma_port);
/*
* We return error here which causes the switch adding failure.
* It should appear back after power cycle is complete.
*/
return -ESHUTDOWN;
}
static void tb_switch_default_link_ports(struct tb_switch *sw)
{
int i;
for (i = 1; i <= sw->config.max_port_number; i += 2) {
struct tb_port *port = &sw->ports[i];
struct tb_port *subordinate;
if (!tb_port_is_null(port))
continue;
/* Check for the subordinate port */
if (i == sw->config.max_port_number ||
!tb_port_is_null(&sw->ports[i + 1]))
continue;
/* Link them if not already done so (by DROM) */
subordinate = &sw->ports[i + 1];
if (!port->dual_link_port && !subordinate->dual_link_port) {
port->link_nr = 0;
port->dual_link_port = subordinate;
subordinate->link_nr = 1;
subordinate->dual_link_port = port;
tb_sw_dbg(sw, "linked ports %d <-> %d\n",
port->port, subordinate->port);
}
}
}
static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
{
const struct tb_port *up = tb_upstream_port(sw);
if (!up->dual_link_port || !up->dual_link_port->remote)
return false;
if (tb_switch_is_usb4(sw))
return usb4_switch_lane_bonding_possible(sw);
return tb_lc_lane_bonding_possible(sw);
}
static int tb_switch_update_link_attributes(struct tb_switch *sw)
{
struct tb_port *up;
bool change = false;
int ret;
if (!tb_route(sw) || tb_switch_is_icm(sw))
return 0;
up = tb_upstream_port(sw);
ret = tb_port_get_link_speed(up);
if (ret < 0)
return ret;
if (sw->link_speed != ret)
change = true;
sw->link_speed = ret;
ret = tb_port_get_link_width(up);
if (ret < 0)
return ret;
if (sw->link_width != ret)
change = true;
sw->link_width = ret;
/* Notify userspace that there is possible link attribute change */
if (device_is_registered(&sw->dev) && change)
kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
return 0;
}
/**
* tb_switch_lane_bonding_enable() - Enable lane bonding
* @sw: Switch to enable lane bonding
*
* Connection manager can call this function to enable lane bonding of a
* switch. If conditions are correct and both switches support the feature,
* lanes are bonded. It is safe to call this to any switch.
*/
int tb_switch_lane_bonding_enable(struct tb_switch *sw)
{
struct tb_switch *parent = tb_to_switch(sw->dev.parent);
struct tb_port *up, *down;
u64 route = tb_route(sw);
int ret;
if (!route)
return 0;
if (!tb_switch_lane_bonding_possible(sw))
return 0;
up = tb_upstream_port(sw);
down = tb_port_at(route, parent);
if (!tb_port_is_width_supported(up, 2) ||
!tb_port_is_width_supported(down, 2))
return 0;
ret = tb_port_lane_bonding_enable(up);
if (ret) {
tb_port_warn(up, "failed to enable lane bonding\n");
return ret;
}
ret = tb_port_lane_bonding_enable(down);
if (ret) {
tb_port_warn(down, "failed to enable lane bonding\n");
tb_port_lane_bonding_disable(up);
return ret;
}
tb_switch_update_link_attributes(sw);
tb_sw_dbg(sw, "lane bonding enabled\n");
return ret;
}
/**
* tb_switch_lane_bonding_disable() - Disable lane bonding
* @sw: Switch whose lane bonding to disable
*
* Disables lane bonding between @sw and parent. This can be called even
* if lanes were not bonded originally.
*/
void tb_switch_lane_bonding_disable(struct tb_switch *sw)
{
struct tb_switch *parent = tb_to_switch(sw->dev.parent);
struct tb_port *up, *down;
if (!tb_route(sw))
return;
up = tb_upstream_port(sw);
if (!up->bonded)
return;
down = tb_port_at(tb_route(sw), parent);
tb_port_lane_bonding_disable(up);
tb_port_lane_bonding_disable(down);
tb_switch_update_link_attributes(sw);
tb_sw_dbg(sw, "lane bonding disabled\n");
}
/**
* tb_switch_configure_link() - Set link configured
* @sw: Switch whose link is configured
*
* Sets the link upstream from @sw configured (from both ends) so that
* it will not be disconnected when the domain exits sleep. Can be
* called for any switch.
*
* It is recommended that this is called after lane bonding is enabled.
*
* Returns %0 on success and negative errno in case of error.
*/
int tb_switch_configure_link(struct tb_switch *sw)
{
struct tb_port *up, *down;
int ret;
if (!tb_route(sw) || tb_switch_is_icm(sw))
return 0;
up = tb_upstream_port(sw);
if (tb_switch_is_usb4(up->sw))
ret = usb4_port_configure(up);
else
ret = tb_lc_configure_port(up);
if (ret)
return ret;
down = up->remote;
if (tb_switch_is_usb4(down->sw))
return usb4_port_configure(down);
return tb_lc_configure_port(down);
}
/**
* tb_switch_unconfigure_link() - Unconfigure link
* @sw: Switch whose link is unconfigured
*
* Sets the link unconfigured so the @sw will be disconnected if the
* domain exists sleep.
*/
void tb_switch_unconfigure_link(struct tb_switch *sw)
{
struct tb_port *up, *down;
if (sw->is_unplugged)
return;
if (!tb_route(sw) || tb_switch_is_icm(sw))
return;
up = tb_upstream_port(sw);
if (tb_switch_is_usb4(up->sw))
usb4_port_unconfigure(up);
else
tb_lc_unconfigure_port(up);
down = up->remote;
if (tb_switch_is_usb4(down->sw))
usb4_port_unconfigure(down);
else
tb_lc_unconfigure_port(down);
}
/**
* tb_switch_add() - Add a switch to the domain
* @sw: Switch to add
*
* This is the last step in adding switch to the domain. It will read
* identification information from DROM and initializes ports so that
* they can be used to connect other switches. The switch will be
* exposed to the userspace when this function successfully returns. To
* remove and release the switch, call tb_switch_remove().
*
* Return: %0 in case of success and negative errno in case of failure
*/
int tb_switch_add(struct tb_switch *sw)
{
int i, ret;
/*
* Initialize DMA control port now before we read DROM. Recent
* host controllers have more complete DROM on NVM that includes
* vendor and model identification strings which we then expose
* to the userspace. NVM can be accessed through DMA
* configuration based mailbox.
*/
ret = tb_switch_add_dma_port(sw);
if (ret) {
dev_err(&sw->dev, "failed to add DMA port\n");
return ret;
}
if (!sw->safe_mode) {
/* read drom */
ret = tb_drom_read(sw);
if (ret) {
dev_err(&sw->dev, "reading DROM failed\n");
return ret;
}
tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
ret = tb_switch_set_uuid(sw);
if (ret) {
dev_err(&sw->dev, "failed to set UUID\n");
return ret;
}
for (i = 0; i <= sw->config.max_port_number; i++) {
if (sw->ports[i].disabled) {
tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
continue;
}
ret = tb_init_port(&sw->ports[i]);
if (ret) {
dev_err(&sw->dev, "failed to initialize port %d\n", i);
return ret;
}
}
tb_switch_default_link_ports(sw);
ret = tb_switch_update_link_attributes(sw);
if (ret)
return ret;
ret = tb_switch_tmu_init(sw);
if (ret)
return ret;
}
ret = device_add(&sw->dev);
if (ret) {
dev_err(&sw->dev, "failed to add device: %d\n", ret);
return ret;
}
if (tb_route(sw)) {
dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
sw->vendor, sw->device);
if (sw->vendor_name && sw->device_name)
dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
sw->device_name);
}
ret = tb_switch_nvm_add(sw);
if (ret) {
dev_err(&sw->dev, "failed to add NVM devices\n");
device_del(&sw->dev);
return ret;
}
/*
* Thunderbolt routers do not generate wakeups themselves but
* they forward wakeups from tunneled protocols, so enable it
* here.
*/
device_init_wakeup(&sw->dev, true);
pm_runtime_set_active(&sw->dev);
if (sw->rpm) {
pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&sw->dev);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_enable(&sw->dev);
pm_request_autosuspend(&sw->dev);
}
tb_switch_debugfs_init(sw);
return 0;
}
/**
* tb_switch_remove() - Remove and release a switch
* @sw: Switch to remove
*
* This will remove the switch from the domain and release it after last
* reference count drops to zero. If there are switches connected below
* this switch, they will be removed as well.
*/
void tb_switch_remove(struct tb_switch *sw)
{
struct tb_port *port;
tb_switch_debugfs_remove(sw);
if (sw->rpm) {
pm_runtime_get_sync(&sw->dev);
pm_runtime_disable(&sw->dev);
}
/* port 0 is the switch itself and never has a remote */
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port)) {
tb_switch_remove(port->remote->sw);
port->remote = NULL;
} else if (port->xdomain) {
tb_xdomain_remove(port->xdomain);
port->xdomain = NULL;
}
/* Remove any downstream retimers */
tb_retimer_remove_all(port);
}
if (!sw->is_unplugged)
tb_plug_events_active(sw, false);
tb_switch_nvm_remove(sw);
if (tb_route(sw))
dev_info(&sw->dev, "device disconnected\n");
device_unregister(&sw->dev);
}
/**
* tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
*/
void tb_sw_set_unplugged(struct tb_switch *sw)
{
struct tb_port *port;
if (sw == sw->tb->root_switch) {
tb_sw_WARN(sw, "cannot unplug root switch\n");
return;
}
if (sw->is_unplugged) {
tb_sw_WARN(sw, "is_unplugged already set\n");
return;
}
sw->is_unplugged = true;
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port))
tb_sw_set_unplugged(port->remote->sw);
else if (port->xdomain)
port->xdomain->is_unplugged = true;
}
}
static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
{
if (flags)
tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
else
tb_sw_dbg(sw, "disabling wakeup\n");
if (tb_switch_is_usb4(sw))
return usb4_switch_set_wake(sw, flags);
return tb_lc_set_wake(sw, flags);
}
int tb_switch_resume(struct tb_switch *sw)
{
struct tb_port *port;
int err;
tb_sw_dbg(sw, "resuming switch\n");
/*
* Check for UID of the connected switches except for root
* switch which we assume cannot be removed.
*/
if (tb_route(sw)) {
u64 uid;
/*
* Check first that we can still read the switch config
* space. It may be that there is now another domain
* connected.
*/
err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
if (err < 0) {
tb_sw_info(sw, "switch not present anymore\n");
return err;
}
if (tb_switch_is_usb4(sw))
err = usb4_switch_read_uid(sw, &uid);
else
err = tb_drom_read_uid_only(sw, &uid);
if (err) {
tb_sw_warn(sw, "uid read failed\n");
return err;
}
if (sw->uid != uid) {
tb_sw_info(sw,
"changed while suspended (uid %#llx -> %#llx)\n",
sw->uid, uid);
return -ENODEV;
}
}
err = tb_switch_configure(sw);
if (err)
return err;
/* Disable wakes */
tb_switch_set_wake(sw, 0);
err = tb_switch_tmu_init(sw);
if (err)
return err;
/* check for surviving downstream switches */
tb_switch_for_each_port(sw, port) {
if (!tb_port_has_remote(port) && !port->xdomain)
continue;
if (tb_wait_for_port(port, true) <= 0) {
tb_port_warn(port,
"lost during suspend, disconnecting\n");
if (tb_port_has_remote(port))
tb_sw_set_unplugged(port->remote->sw);
else if (port->xdomain)
port->xdomain->is_unplugged = true;
} else if (tb_port_has_remote(port) || port->xdomain) {
/*
* Always unlock the port so the downstream
* switch/domain is accessible.
*/
if (tb_port_unlock(port))
tb_port_warn(port, "failed to unlock port\n");
if (port->remote && tb_switch_resume(port->remote->sw)) {
tb_port_warn(port,
"lost during suspend, disconnecting\n");
tb_sw_set_unplugged(port->remote->sw);
}
}
}
return 0;
}
/**
* tb_switch_suspend() - Put a switch to sleep
* @sw: Switch to suspend
* @runtime: Is this runtime suspend or system sleep
*
* Suspends router and all its children. Enables wakes according to
* value of @runtime and then sets sleep bit for the router. If @sw is
* host router the domain is ready to go to sleep once this function
* returns.
*/
void tb_switch_suspend(struct tb_switch *sw, bool runtime)
{
unsigned int flags = 0;
struct tb_port *port;
int err;
tb_sw_dbg(sw, "suspending switch\n");
err = tb_plug_events_active(sw, false);
if (err)
return;
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port))
tb_switch_suspend(port->remote->sw, runtime);
}
if (runtime) {
/* Trigger wake when something is plugged in/out */
flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
} else if (device_may_wakeup(&sw->dev)) {
flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
}
tb_switch_set_wake(sw, flags);
if (tb_switch_is_usb4(sw))
usb4_switch_set_sleep(sw);
else
tb_lc_set_sleep(sw);
}
/**
* tb_switch_query_dp_resource() - Query availability of DP resource
* @sw: Switch whose DP resource is queried
* @in: DP IN port
*
* Queries availability of DP resource for DP tunneling using switch
* specific means. Returns %true if resource is available.
*/
bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_query_dp_resource(sw, in);
return tb_lc_dp_sink_query(sw, in);
}
/**
* tb_switch_alloc_dp_resource() - Allocate available DP resource
* @sw: Switch whose DP resource is allocated
* @in: DP IN port
*
* Allocates DP resource for DP tunneling. The resource must be
* available for this to succeed (see tb_switch_query_dp_resource()).
* Returns %0 in success and negative errno otherwise.
*/
int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_alloc_dp_resource(sw, in);
return tb_lc_dp_sink_alloc(sw, in);
}
/**
* tb_switch_dealloc_dp_resource() - De-allocate DP resource
* @sw: Switch whose DP resource is de-allocated
* @in: DP IN port
*
* De-allocates DP resource that was previously allocated for DP
* tunneling.
*/
void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
int ret;
if (tb_switch_is_usb4(sw))
ret = usb4_switch_dealloc_dp_resource(sw, in);
else
ret = tb_lc_dp_sink_dealloc(sw, in);
if (ret)
tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
in->port);
}
struct tb_sw_lookup {
struct tb *tb;
u8 link;
u8 depth;
const uuid_t *uuid;
u64 route;
};
static int tb_switch_match(struct device *dev, const void *data)
{
struct tb_switch *sw = tb_to_switch(dev);
const struct tb_sw_lookup *lookup = data;
if (!sw)
return 0;
if (sw->tb != lookup->tb)
return 0;
if (lookup->uuid)
return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
if (lookup->route) {
return sw->config.route_lo == lower_32_bits(lookup->route) &&
sw->config.route_hi == upper_32_bits(lookup->route);
}
/* Root switch is matched only by depth */
if (!lookup->depth)
return !sw->depth;
return sw->link == lookup->link && sw->depth == lookup->depth;
}
/**
* tb_switch_find_by_link_depth() - Find switch by link and depth
* @tb: Domain the switch belongs
* @link: Link number the switch is connected
* @depth: Depth of the switch in link
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
{
struct tb_sw_lookup lookup;
struct device *dev;
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.link = link;
lookup.depth = depth;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_by_uuid() - Find switch by UUID
* @tb: Domain the switch belongs
* @uuid: UUID to look for
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
{
struct tb_sw_lookup lookup;
struct device *dev;
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.uuid = uuid;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_by_route() - Find switch by route string
* @tb: Domain the switch belongs
* @route: Route string to look for
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
{
struct tb_sw_lookup lookup;
struct device *dev;
if (!route)
return tb_switch_get(tb->root_switch);
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.route = route;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_port() - return the first port of @type on @sw or NULL
* @sw: Switch to find the port from
* @type: Port type to look for
*/
struct tb_port *tb_switch_find_port(struct tb_switch *sw,
enum tb_port_type type)
{
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
if (port->config.type == type)
return port;
}
return NULL;
}