WSL2-Linux-Kernel/drivers/mmc/core/mmc_test.c

3284 строки
73 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2007-2008 Pierre Ossman
*/
#include <linux/mmc/core.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/swap.h> /* For nr_free_buffer_pages() */
#include <linux/list.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#include <linux/module.h>
#include "core.h"
#include "card.h"
#include "host.h"
#include "bus.h"
#include "mmc_ops.h"
#define RESULT_OK 0
#define RESULT_FAIL 1
#define RESULT_UNSUP_HOST 2
#define RESULT_UNSUP_CARD 3
#define BUFFER_ORDER 2
#define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
#define TEST_ALIGN_END 8
/*
* Limit the test area size to the maximum MMC HC erase group size. Note that
* the maximum SD allocation unit size is just 4MiB.
*/
#define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
/**
* struct mmc_test_pages - pages allocated by 'alloc_pages()'.
* @page: first page in the allocation
* @order: order of the number of pages allocated
*/
struct mmc_test_pages {
struct page *page;
unsigned int order;
};
/**
* struct mmc_test_mem - allocated memory.
* @arr: array of allocations
* @cnt: number of allocations
*/
struct mmc_test_mem {
struct mmc_test_pages *arr;
unsigned int cnt;
};
/**
* struct mmc_test_area - information for performance tests.
* @max_sz: test area size (in bytes)
* @dev_addr: address on card at which to do performance tests
* @max_tfr: maximum transfer size allowed by driver (in bytes)
* @max_segs: maximum segments allowed by driver in scatterlist @sg
* @max_seg_sz: maximum segment size allowed by driver
* @blocks: number of (512 byte) blocks currently mapped by @sg
* @sg_len: length of currently mapped scatterlist @sg
* @mem: allocated memory
* @sg: scatterlist
* @sg_areq: scatterlist for non-blocking request
*/
struct mmc_test_area {
unsigned long max_sz;
unsigned int dev_addr;
unsigned int max_tfr;
unsigned int max_segs;
unsigned int max_seg_sz;
unsigned int blocks;
unsigned int sg_len;
struct mmc_test_mem *mem;
struct scatterlist *sg;
struct scatterlist *sg_areq;
};
/**
* struct mmc_test_transfer_result - transfer results for performance tests.
* @link: double-linked list
* @count: amount of group of sectors to check
* @sectors: amount of sectors to check in one group
* @ts: time values of transfer
* @rate: calculated transfer rate
* @iops: I/O operations per second (times 100)
*/
struct mmc_test_transfer_result {
struct list_head link;
unsigned int count;
unsigned int sectors;
struct timespec64 ts;
unsigned int rate;
unsigned int iops;
};
/**
* struct mmc_test_general_result - results for tests.
* @link: double-linked list
* @card: card under test
* @testcase: number of test case
* @result: result of test run
* @tr_lst: transfer measurements if any as mmc_test_transfer_result
*/
struct mmc_test_general_result {
struct list_head link;
struct mmc_card *card;
int testcase;
int result;
struct list_head tr_lst;
};
/**
* struct mmc_test_dbgfs_file - debugfs related file.
* @link: double-linked list
* @card: card under test
* @file: file created under debugfs
*/
struct mmc_test_dbgfs_file {
struct list_head link;
struct mmc_card *card;
struct dentry *file;
};
/**
* struct mmc_test_card - test information.
* @card: card under test
* @scratch: transfer buffer
* @buffer: transfer buffer
* @highmem: buffer for highmem tests
* @area: information for performance tests
* @gr: pointer to results of current testcase
*/
struct mmc_test_card {
struct mmc_card *card;
u8 scratch[BUFFER_SIZE];
u8 *buffer;
#ifdef CONFIG_HIGHMEM
struct page *highmem;
#endif
struct mmc_test_area area;
struct mmc_test_general_result *gr;
};
enum mmc_test_prep_media {
MMC_TEST_PREP_NONE = 0,
MMC_TEST_PREP_WRITE_FULL = 1 << 0,
MMC_TEST_PREP_ERASE = 1 << 1,
};
struct mmc_test_multiple_rw {
unsigned int *sg_len;
unsigned int *bs;
unsigned int len;
unsigned int size;
bool do_write;
bool do_nonblock_req;
enum mmc_test_prep_media prepare;
};
/*******************************************************************/
/* General helper functions */
/*******************************************************************/
/*
* Configure correct block size in card
*/
static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
{
return mmc_set_blocklen(test->card, size);
}
static bool mmc_test_card_cmd23(struct mmc_card *card)
{
return mmc_card_mmc(card) ||
(mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
}
static void mmc_test_prepare_sbc(struct mmc_test_card *test,
struct mmc_request *mrq, unsigned int blocks)
{
struct mmc_card *card = test->card;
if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
!mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
(card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
mrq->sbc = NULL;
return;
}
mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
mrq->sbc->arg = blocks;
mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
}
/*
* Fill in the mmc_request structure given a set of transfer parameters.
*/
static void mmc_test_prepare_mrq(struct mmc_test_card *test,
struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
{
if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
return;
if (blocks > 1) {
mrq->cmd->opcode = write ?
MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
} else {
mrq->cmd->opcode = write ?
MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
}
mrq->cmd->arg = dev_addr;
if (!mmc_card_blockaddr(test->card))
mrq->cmd->arg <<= 9;
mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
if (blocks == 1)
mrq->stop = NULL;
else {
mrq->stop->opcode = MMC_STOP_TRANSMISSION;
mrq->stop->arg = 0;
mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
}
mrq->data->blksz = blksz;
mrq->data->blocks = blocks;
mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
mrq->data->sg = sg;
mrq->data->sg_len = sg_len;
mmc_test_prepare_sbc(test, mrq, blocks);
mmc_set_data_timeout(mrq->data, test->card);
}
static int mmc_test_busy(struct mmc_command *cmd)
{
return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
}
/*
* Wait for the card to finish the busy state
*/
static int mmc_test_wait_busy(struct mmc_test_card *test)
{
int ret, busy;
struct mmc_command cmd = {};
busy = 0;
do {
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = test->card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
if (ret)
break;
if (!busy && mmc_test_busy(&cmd)) {
busy = 1;
if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
pr_info("%s: Warning: Host did not wait for busy state to end.\n",
mmc_hostname(test->card->host));
}
} while (mmc_test_busy(&cmd));
return ret;
}
/*
* Transfer a single sector of kernel addressable data
*/
static int mmc_test_buffer_transfer(struct mmc_test_card *test,
u8 *buffer, unsigned addr, unsigned blksz, int write)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_command stop = {};
struct mmc_data data = {};
struct scatterlist sg;
mrq.cmd = &cmd;
mrq.data = &data;
mrq.stop = &stop;
sg_init_one(&sg, buffer, blksz);
mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
mmc_wait_for_req(test->card->host, &mrq);
if (cmd.error)
return cmd.error;
if (data.error)
return data.error;
return mmc_test_wait_busy(test);
}
static void mmc_test_free_mem(struct mmc_test_mem *mem)
{
if (!mem)
return;
while (mem->cnt--)
__free_pages(mem->arr[mem->cnt].page,
mem->arr[mem->cnt].order);
kfree(mem->arr);
kfree(mem);
}
/*
* Allocate a lot of memory, preferably max_sz but at least min_sz. In case
* there isn't much memory do not exceed 1/16th total lowmem pages. Also do
* not exceed a maximum number of segments and try not to make segments much
* bigger than maximum segment size.
*/
static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
unsigned long max_sz,
unsigned int max_segs,
unsigned int max_seg_sz)
{
unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
unsigned long page_cnt = 0;
unsigned long limit = nr_free_buffer_pages() >> 4;
struct mmc_test_mem *mem;
if (max_page_cnt > limit)
max_page_cnt = limit;
if (min_page_cnt > max_page_cnt)
min_page_cnt = max_page_cnt;
if (max_seg_page_cnt > max_page_cnt)
max_seg_page_cnt = max_page_cnt;
if (max_segs > max_page_cnt)
max_segs = max_page_cnt;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return NULL;
mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
if (!mem->arr)
goto out_free;
while (max_page_cnt) {
struct page *page;
unsigned int order;
gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
__GFP_NORETRY;
order = get_order(max_seg_page_cnt << PAGE_SHIFT);
while (1) {
page = alloc_pages(flags, order);
if (page || !order)
break;
order -= 1;
}
if (!page) {
if (page_cnt < min_page_cnt)
goto out_free;
break;
}
mem->arr[mem->cnt].page = page;
mem->arr[mem->cnt].order = order;
mem->cnt += 1;
if (max_page_cnt <= (1UL << order))
break;
max_page_cnt -= 1UL << order;
page_cnt += 1UL << order;
if (mem->cnt >= max_segs) {
if (page_cnt < min_page_cnt)
goto out_free;
break;
}
}
return mem;
out_free:
mmc_test_free_mem(mem);
return NULL;
}
/*
* Map memory into a scatterlist. Optionally allow the same memory to be
* mapped more than once.
*/
static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
struct scatterlist *sglist, int repeat,
unsigned int max_segs, unsigned int max_seg_sz,
unsigned int *sg_len, int min_sg_len)
{
struct scatterlist *sg = NULL;
unsigned int i;
unsigned long sz = size;
sg_init_table(sglist, max_segs);
if (min_sg_len > max_segs)
min_sg_len = max_segs;
*sg_len = 0;
do {
for (i = 0; i < mem->cnt; i++) {
unsigned long len = PAGE_SIZE << mem->arr[i].order;
if (min_sg_len && (size / min_sg_len < len))
len = ALIGN(size / min_sg_len, 512);
if (len > sz)
len = sz;
if (len > max_seg_sz)
len = max_seg_sz;
if (sg)
sg = sg_next(sg);
else
sg = sglist;
if (!sg)
return -EINVAL;
sg_set_page(sg, mem->arr[i].page, len, 0);
sz -= len;
*sg_len += 1;
if (!sz)
break;
}
} while (sz && repeat);
if (sz)
return -EINVAL;
if (sg)
sg_mark_end(sg);
return 0;
}
/*
* Map memory into a scatterlist so that no pages are contiguous. Allow the
* same memory to be mapped more than once.
*/
static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
unsigned long sz,
struct scatterlist *sglist,
unsigned int max_segs,
unsigned int max_seg_sz,
unsigned int *sg_len)
{
struct scatterlist *sg = NULL;
unsigned int i = mem->cnt, cnt;
unsigned long len;
void *base, *addr, *last_addr = NULL;
sg_init_table(sglist, max_segs);
*sg_len = 0;
while (sz) {
base = page_address(mem->arr[--i].page);
cnt = 1 << mem->arr[i].order;
while (sz && cnt) {
addr = base + PAGE_SIZE * --cnt;
if (last_addr && last_addr + PAGE_SIZE == addr)
continue;
last_addr = addr;
len = PAGE_SIZE;
if (len > max_seg_sz)
len = max_seg_sz;
if (len > sz)
len = sz;
if (sg)
sg = sg_next(sg);
else
sg = sglist;
if (!sg)
return -EINVAL;
sg_set_page(sg, virt_to_page(addr), len, 0);
sz -= len;
*sg_len += 1;
}
if (i == 0)
i = mem->cnt;
}
if (sg)
sg_mark_end(sg);
return 0;
}
/*
* Calculate transfer rate in bytes per second.
*/
static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
{
uint64_t ns;
ns = timespec64_to_ns(ts);
bytes *= 1000000000;
while (ns > UINT_MAX) {
bytes >>= 1;
ns >>= 1;
}
if (!ns)
return 0;
do_div(bytes, (uint32_t)ns);
return bytes;
}
/*
* Save transfer results for future usage
*/
static void mmc_test_save_transfer_result(struct mmc_test_card *test,
unsigned int count, unsigned int sectors, struct timespec64 ts,
unsigned int rate, unsigned int iops)
{
struct mmc_test_transfer_result *tr;
if (!test->gr)
return;
tr = kmalloc(sizeof(*tr), GFP_KERNEL);
if (!tr)
return;
tr->count = count;
tr->sectors = sectors;
tr->ts = ts;
tr->rate = rate;
tr->iops = iops;
list_add_tail(&tr->link, &test->gr->tr_lst);
}
/*
* Print the transfer rate.
*/
static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
struct timespec64 *ts1, struct timespec64 *ts2)
{
unsigned int rate, iops, sectors = bytes >> 9;
struct timespec64 ts;
ts = timespec64_sub(*ts2, *ts1);
rate = mmc_test_rate(bytes, &ts);
iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
"seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
mmc_hostname(test->card->host), sectors, sectors >> 1,
(sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
(u32)ts.tv_nsec, rate / 1000, rate / 1024,
iops / 100, iops % 100);
mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
}
/*
* Print the average transfer rate.
*/
static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
unsigned int count, struct timespec64 *ts1,
struct timespec64 *ts2)
{
unsigned int rate, iops, sectors = bytes >> 9;
uint64_t tot = bytes * count;
struct timespec64 ts;
ts = timespec64_sub(*ts2, *ts1);
rate = mmc_test_rate(tot, &ts);
iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
"%llu.%09u seconds (%u kB/s, %u KiB/s, "
"%u.%02u IOPS, sg_len %d)\n",
mmc_hostname(test->card->host), count, sectors, count,
sectors >> 1, (sectors & 1 ? ".5" : ""),
(u64)ts.tv_sec, (u32)ts.tv_nsec,
rate / 1000, rate / 1024, iops / 100, iops % 100,
test->area.sg_len);
mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
}
/*
* Return the card size in sectors.
*/
static unsigned int mmc_test_capacity(struct mmc_card *card)
{
if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
return card->ext_csd.sectors;
else
return card->csd.capacity << (card->csd.read_blkbits - 9);
}
/*******************************************************************/
/* Test preparation and cleanup */
/*******************************************************************/
/*
* Fill the first couple of sectors of the card with known data
* so that bad reads/writes can be detected
*/
static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
{
int ret, i;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
if (write)
memset(test->buffer, val, 512);
else {
for (i = 0; i < 512; i++)
test->buffer[i] = i;
}
for (i = 0; i < BUFFER_SIZE / 512; i++) {
ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_prepare_write(struct mmc_test_card *test)
{
return __mmc_test_prepare(test, 1, 0xDF);
}
static int mmc_test_prepare_read(struct mmc_test_card *test)
{
return __mmc_test_prepare(test, 0, 0);
}
static int mmc_test_cleanup(struct mmc_test_card *test)
{
return __mmc_test_prepare(test, 1, 0);
}
/*******************************************************************/
/* Test execution helpers */
/*******************************************************************/
/*
* Modifies the mmc_request to perform the "short transfer" tests
*/
static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
struct mmc_request *mrq, int write)
{
if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
return;
if (mrq->data->blocks > 1) {
mrq->cmd->opcode = write ?
MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
mrq->stop = NULL;
} else {
mrq->cmd->opcode = MMC_SEND_STATUS;
mrq->cmd->arg = test->card->rca << 16;
}
}
/*
* Checks that a normal transfer didn't have any errors
*/
static int mmc_test_check_result(struct mmc_test_card *test,
struct mmc_request *mrq)
{
int ret;
if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
return -EINVAL;
ret = 0;
if (mrq->sbc && mrq->sbc->error)
ret = mrq->sbc->error;
if (!ret && mrq->cmd->error)
ret = mrq->cmd->error;
if (!ret && mrq->data->error)
ret = mrq->data->error;
if (!ret && mrq->stop && mrq->stop->error)
ret = mrq->stop->error;
if (!ret && mrq->data->bytes_xfered !=
mrq->data->blocks * mrq->data->blksz)
ret = RESULT_FAIL;
if (ret == -EINVAL)
ret = RESULT_UNSUP_HOST;
return ret;
}
/*
* Checks that a "short transfer" behaved as expected
*/
static int mmc_test_check_broken_result(struct mmc_test_card *test,
struct mmc_request *mrq)
{
int ret;
if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
return -EINVAL;
ret = 0;
if (!ret && mrq->cmd->error)
ret = mrq->cmd->error;
if (!ret && mrq->data->error == 0)
ret = RESULT_FAIL;
if (!ret && mrq->data->error != -ETIMEDOUT)
ret = mrq->data->error;
if (!ret && mrq->stop && mrq->stop->error)
ret = mrq->stop->error;
if (mrq->data->blocks > 1) {
if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
ret = RESULT_FAIL;
} else {
if (!ret && mrq->data->bytes_xfered > 0)
ret = RESULT_FAIL;
}
if (ret == -EINVAL)
ret = RESULT_UNSUP_HOST;
return ret;
}
struct mmc_test_req {
struct mmc_request mrq;
struct mmc_command sbc;
struct mmc_command cmd;
struct mmc_command stop;
struct mmc_command status;
struct mmc_data data;
};
/*
* Tests nonblock transfer with certain parameters
*/
static void mmc_test_req_reset(struct mmc_test_req *rq)
{
memset(rq, 0, sizeof(struct mmc_test_req));
rq->mrq.cmd = &rq->cmd;
rq->mrq.data = &rq->data;
rq->mrq.stop = &rq->stop;
}
static struct mmc_test_req *mmc_test_req_alloc(void)
{
struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
if (rq)
mmc_test_req_reset(rq);
return rq;
}
static void mmc_test_wait_done(struct mmc_request *mrq)
{
complete(&mrq->completion);
}
static int mmc_test_start_areq(struct mmc_test_card *test,
struct mmc_request *mrq,
struct mmc_request *prev_mrq)
{
struct mmc_host *host = test->card->host;
int err = 0;
if (mrq) {
init_completion(&mrq->completion);
mrq->done = mmc_test_wait_done;
mmc_pre_req(host, mrq);
}
if (prev_mrq) {
wait_for_completion(&prev_mrq->completion);
err = mmc_test_wait_busy(test);
if (!err)
err = mmc_test_check_result(test, prev_mrq);
}
if (!err && mrq) {
err = mmc_start_request(host, mrq);
if (err)
mmc_retune_release(host);
}
if (prev_mrq)
mmc_post_req(host, prev_mrq, 0);
if (err && mrq)
mmc_post_req(host, mrq, err);
return err;
}
static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
unsigned int dev_addr, int write,
int count)
{
struct mmc_test_req *rq1, *rq2;
struct mmc_request *mrq, *prev_mrq;
int i;
int ret = RESULT_OK;
struct mmc_test_area *t = &test->area;
struct scatterlist *sg = t->sg;
struct scatterlist *sg_areq = t->sg_areq;
rq1 = mmc_test_req_alloc();
rq2 = mmc_test_req_alloc();
if (!rq1 || !rq2) {
ret = RESULT_FAIL;
goto err;
}
mrq = &rq1->mrq;
prev_mrq = NULL;
for (i = 0; i < count; i++) {
mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
t->blocks, 512, write);
ret = mmc_test_start_areq(test, mrq, prev_mrq);
if (ret)
goto err;
if (!prev_mrq)
prev_mrq = &rq2->mrq;
swap(mrq, prev_mrq);
swap(sg, sg_areq);
dev_addr += t->blocks;
}
ret = mmc_test_start_areq(test, NULL, prev_mrq);
err:
kfree(rq1);
kfree(rq2);
return ret;
}
/*
* Tests a basic transfer with certain parameters
*/
static int mmc_test_simple_transfer(struct mmc_test_card *test,
struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
unsigned blocks, unsigned blksz, int write)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_command stop = {};
struct mmc_data data = {};
mrq.cmd = &cmd;
mrq.data = &data;
mrq.stop = &stop;
mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
blocks, blksz, write);
mmc_wait_for_req(test->card->host, &mrq);
mmc_test_wait_busy(test);
return mmc_test_check_result(test, &mrq);
}
/*
* Tests a transfer where the card will fail completely or partly
*/
static int mmc_test_broken_transfer(struct mmc_test_card *test,
unsigned blocks, unsigned blksz, int write)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_command stop = {};
struct mmc_data data = {};
struct scatterlist sg;
mrq.cmd = &cmd;
mrq.data = &data;
mrq.stop = &stop;
sg_init_one(&sg, test->buffer, blocks * blksz);
mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
mmc_test_prepare_broken_mrq(test, &mrq, write);
mmc_wait_for_req(test->card->host, &mrq);
mmc_test_wait_busy(test);
return mmc_test_check_broken_result(test, &mrq);
}
/*
* Does a complete transfer test where data is also validated
*
* Note: mmc_test_prepare() must have been done before this call
*/
static int mmc_test_transfer(struct mmc_test_card *test,
struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
unsigned blocks, unsigned blksz, int write)
{
int ret, i;
unsigned long flags;
if (write) {
for (i = 0; i < blocks * blksz; i++)
test->scratch[i] = i;
} else {
memset(test->scratch, 0, BUFFER_SIZE);
}
local_irq_save(flags);
sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
local_irq_restore(flags);
ret = mmc_test_set_blksize(test, blksz);
if (ret)
return ret;
ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
blocks, blksz, write);
if (ret)
return ret;
if (write) {
int sectors;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
sectors = (blocks * blksz + 511) / 512;
if ((sectors * 512) == (blocks * blksz))
sectors++;
if ((sectors * 512) > BUFFER_SIZE)
return -EINVAL;
memset(test->buffer, 0, sectors * 512);
for (i = 0; i < sectors; i++) {
ret = mmc_test_buffer_transfer(test,
test->buffer + i * 512,
dev_addr + i, 512, 0);
if (ret)
return ret;
}
for (i = 0; i < blocks * blksz; i++) {
if (test->buffer[i] != (u8)i)
return RESULT_FAIL;
}
for (; i < sectors * 512; i++) {
if (test->buffer[i] != 0xDF)
return RESULT_FAIL;
}
} else {
local_irq_save(flags);
sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
local_irq_restore(flags);
for (i = 0; i < blocks * blksz; i++) {
if (test->scratch[i] != (u8)i)
return RESULT_FAIL;
}
}
return 0;
}
/*******************************************************************/
/* Tests */
/*******************************************************************/
struct mmc_test_case {
const char *name;
int (*prepare)(struct mmc_test_card *);
int (*run)(struct mmc_test_card *);
int (*cleanup)(struct mmc_test_card *);
};
static int mmc_test_basic_write(struct mmc_test_card *test)
{
int ret;
struct scatterlist sg;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
sg_init_one(&sg, test->buffer, 512);
return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
}
static int mmc_test_basic_read(struct mmc_test_card *test)
{
int ret;
struct scatterlist sg;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
sg_init_one(&sg, test->buffer, 512);
return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
}
static int mmc_test_verify_write(struct mmc_test_card *test)
{
struct scatterlist sg;
sg_init_one(&sg, test->buffer, 512);
return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
}
static int mmc_test_verify_read(struct mmc_test_card *test)
{
struct scatterlist sg;
sg_init_one(&sg, test->buffer, 512);
return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
}
static int mmc_test_multi_write(struct mmc_test_card *test)
{
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
sg_init_one(&sg, test->buffer, size);
return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
}
static int mmc_test_multi_read(struct mmc_test_card *test)
{
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
sg_init_one(&sg, test->buffer, size);
return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
}
static int mmc_test_pow2_write(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
if (!test->card->csd.write_partial)
return RESULT_UNSUP_CARD;
for (i = 1; i < 512; i <<= 1) {
sg_init_one(&sg, test->buffer, i);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_pow2_read(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
if (!test->card->csd.read_partial)
return RESULT_UNSUP_CARD;
for (i = 1; i < 512; i <<= 1) {
sg_init_one(&sg, test->buffer, i);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_weird_write(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
if (!test->card->csd.write_partial)
return RESULT_UNSUP_CARD;
for (i = 3; i < 512; i += 7) {
sg_init_one(&sg, test->buffer, i);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_weird_read(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
if (!test->card->csd.read_partial)
return RESULT_UNSUP_CARD;
for (i = 3; i < 512; i += 7) {
sg_init_one(&sg, test->buffer, i);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_align_write(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
for (i = 1; i < TEST_ALIGN_END; i++) {
sg_init_one(&sg, test->buffer + i, 512);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_align_read(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
for (i = 1; i < TEST_ALIGN_END; i++) {
sg_init_one(&sg, test->buffer + i, 512);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_align_multi_write(struct mmc_test_card *test)
{
int ret, i;
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
for (i = 1; i < TEST_ALIGN_END; i++) {
sg_init_one(&sg, test->buffer + i, size);
ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_align_multi_read(struct mmc_test_card *test)
{
int ret, i;
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
for (i = 1; i < TEST_ALIGN_END; i++) {
sg_init_one(&sg, test->buffer + i, size);
ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_xfersize_write(struct mmc_test_card *test)
{
int ret;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
return mmc_test_broken_transfer(test, 1, 512, 1);
}
static int mmc_test_xfersize_read(struct mmc_test_card *test)
{
int ret;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
return mmc_test_broken_transfer(test, 1, 512, 0);
}
static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
{
int ret;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
return mmc_test_broken_transfer(test, 2, 512, 1);
}
static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
{
int ret;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
return mmc_test_broken_transfer(test, 2, 512, 0);
}
#ifdef CONFIG_HIGHMEM
static int mmc_test_write_high(struct mmc_test_card *test)
{
struct scatterlist sg;
sg_init_table(&sg, 1);
sg_set_page(&sg, test->highmem, 512, 0);
return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
}
static int mmc_test_read_high(struct mmc_test_card *test)
{
struct scatterlist sg;
sg_init_table(&sg, 1);
sg_set_page(&sg, test->highmem, 512, 0);
return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
}
static int mmc_test_multi_write_high(struct mmc_test_card *test)
{
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
sg_init_table(&sg, 1);
sg_set_page(&sg, test->highmem, size, 0);
return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
}
static int mmc_test_multi_read_high(struct mmc_test_card *test)
{
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
sg_init_table(&sg, 1);
sg_set_page(&sg, test->highmem, size, 0);
return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
}
#else
static int mmc_test_no_highmem(struct mmc_test_card *test)
{
pr_info("%s: Highmem not configured - test skipped\n",
mmc_hostname(test->card->host));
return 0;
}
#endif /* CONFIG_HIGHMEM */
/*
* Map sz bytes so that it can be transferred.
*/
static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
int max_scatter, int min_sg_len, bool nonblock)
{
struct mmc_test_area *t = &test->area;
int err;
unsigned int sg_len = 0;
t->blocks = sz >> 9;
if (max_scatter) {
err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
t->max_segs, t->max_seg_sz,
&t->sg_len);
} else {
err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
t->max_seg_sz, &t->sg_len, min_sg_len);
}
if (err || !nonblock)
goto err;
if (max_scatter) {
err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
t->max_segs, t->max_seg_sz,
&sg_len);
} else {
err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
t->max_seg_sz, &sg_len, min_sg_len);
}
if (!err && sg_len != t->sg_len)
err = -EINVAL;
err:
if (err)
pr_info("%s: Failed to map sg list\n",
mmc_hostname(test->card->host));
return err;
}
/*
* Transfer bytes mapped by mmc_test_area_map().
*/
static int mmc_test_area_transfer(struct mmc_test_card *test,
unsigned int dev_addr, int write)
{
struct mmc_test_area *t = &test->area;
return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
t->blocks, 512, write);
}
/*
* Map and transfer bytes for multiple transfers.
*/
static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
unsigned int dev_addr, int write,
int max_scatter, int timed, int count,
bool nonblock, int min_sg_len)
{
struct timespec64 ts1, ts2;
int ret = 0;
int i;
/*
* In the case of a maximally scattered transfer, the maximum transfer
* size is further limited by using PAGE_SIZE segments.
*/
if (max_scatter) {
struct mmc_test_area *t = &test->area;
unsigned long max_tfr;
if (t->max_seg_sz >= PAGE_SIZE)
max_tfr = t->max_segs * PAGE_SIZE;
else
max_tfr = t->max_segs * t->max_seg_sz;
if (sz > max_tfr)
sz = max_tfr;
}
ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
if (ret)
return ret;
if (timed)
ktime_get_ts64(&ts1);
if (nonblock)
ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
else
for (i = 0; i < count && ret == 0; i++) {
ret = mmc_test_area_transfer(test, dev_addr, write);
dev_addr += sz >> 9;
}
if (ret)
return ret;
if (timed)
ktime_get_ts64(&ts2);
if (timed)
mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
return 0;
}
static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
unsigned int dev_addr, int write, int max_scatter,
int timed)
{
return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
timed, 1, false, 0);
}
/*
* Write the test area entirely.
*/
static int mmc_test_area_fill(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
}
/*
* Erase the test area entirely.
*/
static int mmc_test_area_erase(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
if (!mmc_can_erase(test->card))
return 0;
return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
MMC_ERASE_ARG);
}
/*
* Cleanup struct mmc_test_area.
*/
static int mmc_test_area_cleanup(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
kfree(t->sg);
kfree(t->sg_areq);
mmc_test_free_mem(t->mem);
return 0;
}
/*
* Initialize an area for testing large transfers. The test area is set to the
* middle of the card because cards may have different characteristics at the
* front (for FAT file system optimization). Optionally, the area is erased
* (if the card supports it) which may improve write performance. Optionally,
* the area is filled with data for subsequent read tests.
*/
static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
{
struct mmc_test_area *t = &test->area;
unsigned long min_sz = 64 * 1024, sz;
int ret;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
/* Make the test area size about 4MiB */
sz = (unsigned long)test->card->pref_erase << 9;
t->max_sz = sz;
while (t->max_sz < 4 * 1024 * 1024)
t->max_sz += sz;
while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
t->max_sz -= sz;
t->max_segs = test->card->host->max_segs;
t->max_seg_sz = test->card->host->max_seg_size;
t->max_seg_sz -= t->max_seg_sz % 512;
t->max_tfr = t->max_sz;
if (t->max_tfr >> 9 > test->card->host->max_blk_count)
t->max_tfr = test->card->host->max_blk_count << 9;
if (t->max_tfr > test->card->host->max_req_size)
t->max_tfr = test->card->host->max_req_size;
if (t->max_tfr / t->max_seg_sz > t->max_segs)
t->max_tfr = t->max_segs * t->max_seg_sz;
/*
* Try to allocate enough memory for a max. sized transfer. Less is OK
* because the same memory can be mapped into the scatterlist more than
* once. Also, take into account the limits imposed on scatterlist
* segments by the host driver.
*/
t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
t->max_seg_sz);
if (!t->mem)
return -ENOMEM;
t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
if (!t->sg) {
ret = -ENOMEM;
goto out_free;
}
t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
GFP_KERNEL);
if (!t->sg_areq) {
ret = -ENOMEM;
goto out_free;
}
t->dev_addr = mmc_test_capacity(test->card) / 2;
t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
if (erase) {
ret = mmc_test_area_erase(test);
if (ret)
goto out_free;
}
if (fill) {
ret = mmc_test_area_fill(test);
if (ret)
goto out_free;
}
return 0;
out_free:
mmc_test_area_cleanup(test);
return ret;
}
/*
* Prepare for large transfers. Do not erase the test area.
*/
static int mmc_test_area_prepare(struct mmc_test_card *test)
{
return mmc_test_area_init(test, 0, 0);
}
/*
* Prepare for large transfers. Do erase the test area.
*/
static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
{
return mmc_test_area_init(test, 1, 0);
}
/*
* Prepare for large transfers. Erase and fill the test area.
*/
static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
{
return mmc_test_area_init(test, 1, 1);
}
/*
* Test best-case performance. Best-case performance is expected from
* a single large transfer.
*
* An additional option (max_scatter) allows the measurement of the same
* transfer but with no contiguous pages in the scatter list. This tests
* the efficiency of DMA to handle scattered pages.
*/
static int mmc_test_best_performance(struct mmc_test_card *test, int write,
int max_scatter)
{
struct mmc_test_area *t = &test->area;
return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
max_scatter, 1);
}
/*
* Best-case read performance.
*/
static int mmc_test_best_read_performance(struct mmc_test_card *test)
{
return mmc_test_best_performance(test, 0, 0);
}
/*
* Best-case write performance.
*/
static int mmc_test_best_write_performance(struct mmc_test_card *test)
{
return mmc_test_best_performance(test, 1, 0);
}
/*
* Best-case read performance into scattered pages.
*/
static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
{
return mmc_test_best_performance(test, 0, 1);
}
/*
* Best-case write performance from scattered pages.
*/
static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
{
return mmc_test_best_performance(test, 1, 1);
}
/*
* Single read performance by transfer size.
*/
static int mmc_test_profile_read_perf(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
unsigned long sz;
unsigned int dev_addr;
int ret;
for (sz = 512; sz < t->max_tfr; sz <<= 1) {
dev_addr = t->dev_addr + (sz >> 9);
ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
if (ret)
return ret;
}
sz = t->max_tfr;
dev_addr = t->dev_addr;
return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
}
/*
* Single write performance by transfer size.
*/
static int mmc_test_profile_write_perf(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
unsigned long sz;
unsigned int dev_addr;
int ret;
ret = mmc_test_area_erase(test);
if (ret)
return ret;
for (sz = 512; sz < t->max_tfr; sz <<= 1) {
dev_addr = t->dev_addr + (sz >> 9);
ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
if (ret)
return ret;
}
ret = mmc_test_area_erase(test);
if (ret)
return ret;
sz = t->max_tfr;
dev_addr = t->dev_addr;
return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
}
/*
* Single trim performance by transfer size.
*/
static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
unsigned long sz;
unsigned int dev_addr;
struct timespec64 ts1, ts2;
int ret;
if (!mmc_can_trim(test->card))
return RESULT_UNSUP_CARD;
if (!mmc_can_erase(test->card))
return RESULT_UNSUP_HOST;
for (sz = 512; sz < t->max_sz; sz <<= 1) {
dev_addr = t->dev_addr + (sz >> 9);
ktime_get_ts64(&ts1);
ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
if (ret)
return ret;
ktime_get_ts64(&ts2);
mmc_test_print_rate(test, sz, &ts1, &ts2);
}
dev_addr = t->dev_addr;
ktime_get_ts64(&ts1);
ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
if (ret)
return ret;
ktime_get_ts64(&ts2);
mmc_test_print_rate(test, sz, &ts1, &ts2);
return 0;
}
static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
{
struct mmc_test_area *t = &test->area;
unsigned int dev_addr, i, cnt;
struct timespec64 ts1, ts2;
int ret;
cnt = t->max_sz / sz;
dev_addr = t->dev_addr;
ktime_get_ts64(&ts1);
for (i = 0; i < cnt; i++) {
ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
if (ret)
return ret;
dev_addr += (sz >> 9);
}
ktime_get_ts64(&ts2);
mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
return 0;
}
/*
* Consecutive read performance by transfer size.
*/
static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
unsigned long sz;
int ret;
for (sz = 512; sz < t->max_tfr; sz <<= 1) {
ret = mmc_test_seq_read_perf(test, sz);
if (ret)
return ret;
}
sz = t->max_tfr;
return mmc_test_seq_read_perf(test, sz);
}
static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
{
struct mmc_test_area *t = &test->area;
unsigned int dev_addr, i, cnt;
struct timespec64 ts1, ts2;
int ret;
ret = mmc_test_area_erase(test);
if (ret)
return ret;
cnt = t->max_sz / sz;
dev_addr = t->dev_addr;
ktime_get_ts64(&ts1);
for (i = 0; i < cnt; i++) {
ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
if (ret)
return ret;
dev_addr += (sz >> 9);
}
ktime_get_ts64(&ts2);
mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
return 0;
}
/*
* Consecutive write performance by transfer size.
*/
static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
unsigned long sz;
int ret;
for (sz = 512; sz < t->max_tfr; sz <<= 1) {
ret = mmc_test_seq_write_perf(test, sz);
if (ret)
return ret;
}
sz = t->max_tfr;
return mmc_test_seq_write_perf(test, sz);
}
/*
* Consecutive trim performance by transfer size.
*/
static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
{
struct mmc_test_area *t = &test->area;
unsigned long sz;
unsigned int dev_addr, i, cnt;
struct timespec64 ts1, ts2;
int ret;
if (!mmc_can_trim(test->card))
return RESULT_UNSUP_CARD;
if (!mmc_can_erase(test->card))
return RESULT_UNSUP_HOST;
for (sz = 512; sz <= t->max_sz; sz <<= 1) {
ret = mmc_test_area_erase(test);
if (ret)
return ret;
ret = mmc_test_area_fill(test);
if (ret)
return ret;
cnt = t->max_sz / sz;
dev_addr = t->dev_addr;
ktime_get_ts64(&ts1);
for (i = 0; i < cnt; i++) {
ret = mmc_erase(test->card, dev_addr, sz >> 9,
MMC_TRIM_ARG);
if (ret)
return ret;
dev_addr += (sz >> 9);
}
ktime_get_ts64(&ts2);
mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
}
return 0;
}
static unsigned int rnd_next = 1;
static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
{
uint64_t r;
rnd_next = rnd_next * 1103515245 + 12345;
r = (rnd_next >> 16) & 0x7fff;
return (r * rnd_cnt) >> 15;
}
static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
unsigned long sz)
{
unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
unsigned int ssz;
struct timespec64 ts1, ts2, ts;
int ret;
ssz = sz >> 9;
rnd_addr = mmc_test_capacity(test->card) / 4;
range1 = rnd_addr / test->card->pref_erase;
range2 = range1 / ssz;
ktime_get_ts64(&ts1);
for (cnt = 0; cnt < UINT_MAX; cnt++) {
ktime_get_ts64(&ts2);
ts = timespec64_sub(ts2, ts1);
if (ts.tv_sec >= 10)
break;
ea = mmc_test_rnd_num(range1);
if (ea == last_ea)
ea -= 1;
last_ea = ea;
dev_addr = rnd_addr + test->card->pref_erase * ea +
ssz * mmc_test_rnd_num(range2);
ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
if (ret)
return ret;
}
if (print)
mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
return 0;
}
static int mmc_test_random_perf(struct mmc_test_card *test, int write)
{
struct mmc_test_area *t = &test->area;
unsigned int next;
unsigned long sz;
int ret;
for (sz = 512; sz < t->max_tfr; sz <<= 1) {
/*
* When writing, try to get more consistent results by running
* the test twice with exactly the same I/O but outputting the
* results only for the 2nd run.
*/
if (write) {
next = rnd_next;
ret = mmc_test_rnd_perf(test, write, 0, sz);
if (ret)
return ret;
rnd_next = next;
}
ret = mmc_test_rnd_perf(test, write, 1, sz);
if (ret)
return ret;
}
sz = t->max_tfr;
if (write) {
next = rnd_next;
ret = mmc_test_rnd_perf(test, write, 0, sz);
if (ret)
return ret;
rnd_next = next;
}
return mmc_test_rnd_perf(test, write, 1, sz);
}
/*
* Random read performance by transfer size.
*/
static int mmc_test_random_read_perf(struct mmc_test_card *test)
{
return mmc_test_random_perf(test, 0);
}
/*
* Random write performance by transfer size.
*/
static int mmc_test_random_write_perf(struct mmc_test_card *test)
{
return mmc_test_random_perf(test, 1);
}
static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
unsigned int tot_sz, int max_scatter)
{
struct mmc_test_area *t = &test->area;
unsigned int dev_addr, i, cnt, sz, ssz;
struct timespec64 ts1, ts2;
int ret;
sz = t->max_tfr;
/*
* In the case of a maximally scattered transfer, the maximum transfer
* size is further limited by using PAGE_SIZE segments.
*/
if (max_scatter) {
unsigned long max_tfr;
if (t->max_seg_sz >= PAGE_SIZE)
max_tfr = t->max_segs * PAGE_SIZE;
else
max_tfr = t->max_segs * t->max_seg_sz;
if (sz > max_tfr)
sz = max_tfr;
}
ssz = sz >> 9;
dev_addr = mmc_test_capacity(test->card) / 4;
if (tot_sz > dev_addr << 9)
tot_sz = dev_addr << 9;
cnt = tot_sz / sz;
dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
ktime_get_ts64(&ts1);
for (i = 0; i < cnt; i++) {
ret = mmc_test_area_io(test, sz, dev_addr, write,
max_scatter, 0);
if (ret)
return ret;
dev_addr += ssz;
}
ktime_get_ts64(&ts2);
mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
return 0;
}
static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
{
int ret, i;
for (i = 0; i < 10; i++) {
ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
if (ret)
return ret;
}
for (i = 0; i < 5; i++) {
ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
if (ret)
return ret;
}
for (i = 0; i < 3; i++) {
ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
if (ret)
return ret;
}
return ret;
}
/*
* Large sequential read performance.
*/
static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
{
return mmc_test_large_seq_perf(test, 0);
}
/*
* Large sequential write performance.
*/
static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
{
return mmc_test_large_seq_perf(test, 1);
}
static int mmc_test_rw_multiple(struct mmc_test_card *test,
struct mmc_test_multiple_rw *tdata,
unsigned int reqsize, unsigned int size,
int min_sg_len)
{
unsigned int dev_addr;
struct mmc_test_area *t = &test->area;
int ret = 0;
/* Set up test area */
if (size > mmc_test_capacity(test->card) / 2 * 512)
size = mmc_test_capacity(test->card) / 2 * 512;
if (reqsize > t->max_tfr)
reqsize = t->max_tfr;
dev_addr = mmc_test_capacity(test->card) / 4;
if ((dev_addr & 0xffff0000))
dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
else
dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
if (!dev_addr)
goto err;
if (reqsize > size)
return 0;
/* prepare test area */
if (mmc_can_erase(test->card) &&
tdata->prepare & MMC_TEST_PREP_ERASE) {
ret = mmc_erase(test->card, dev_addr,
size / 512, test->card->erase_arg);
if (ret)
ret = mmc_erase(test->card, dev_addr,
size / 512, MMC_ERASE_ARG);
if (ret)
goto err;
}
/* Run test */
ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
tdata->do_write, 0, 1, size / reqsize,
tdata->do_nonblock_req, min_sg_len);
if (ret)
goto err;
return ret;
err:
pr_info("[%s] error\n", __func__);
return ret;
}
static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
struct mmc_test_multiple_rw *rw)
{
int ret = 0;
int i;
void *pre_req = test->card->host->ops->pre_req;
void *post_req = test->card->host->ops->post_req;
if (rw->do_nonblock_req &&
((!pre_req && post_req) || (pre_req && !post_req))) {
pr_info("error: only one of pre/post is defined\n");
return -EINVAL;
}
for (i = 0 ; i < rw->len && ret == 0; i++) {
ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
if (ret)
break;
}
return ret;
}
static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
struct mmc_test_multiple_rw *rw)
{
int ret = 0;
int i;
for (i = 0 ; i < rw->len && ret == 0; i++) {
ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
rw->sg_len[i]);
if (ret)
break;
}
return ret;
}
/*
* Multiple blocking write 4k to 4 MB chunks
*/
static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
{
unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
struct mmc_test_multiple_rw test_data = {
.bs = bs,
.size = TEST_AREA_MAX_SIZE,
.len = ARRAY_SIZE(bs),
.do_write = true,
.do_nonblock_req = false,
.prepare = MMC_TEST_PREP_ERASE,
};
return mmc_test_rw_multiple_size(test, &test_data);
};
/*
* Multiple non-blocking write 4k to 4 MB chunks
*/
static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
{
unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
struct mmc_test_multiple_rw test_data = {
.bs = bs,
.size = TEST_AREA_MAX_SIZE,
.len = ARRAY_SIZE(bs),
.do_write = true,
.do_nonblock_req = true,
.prepare = MMC_TEST_PREP_ERASE,
};
return mmc_test_rw_multiple_size(test, &test_data);
}
/*
* Multiple blocking read 4k to 4 MB chunks
*/
static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
{
unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
struct mmc_test_multiple_rw test_data = {
.bs = bs,
.size = TEST_AREA_MAX_SIZE,
.len = ARRAY_SIZE(bs),
.do_write = false,
.do_nonblock_req = false,
.prepare = MMC_TEST_PREP_NONE,
};
return mmc_test_rw_multiple_size(test, &test_data);
}
/*
* Multiple non-blocking read 4k to 4 MB chunks
*/
static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
{
unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
struct mmc_test_multiple_rw test_data = {
.bs = bs,
.size = TEST_AREA_MAX_SIZE,
.len = ARRAY_SIZE(bs),
.do_write = false,
.do_nonblock_req = true,
.prepare = MMC_TEST_PREP_NONE,
};
return mmc_test_rw_multiple_size(test, &test_data);
}
/*
* Multiple blocking write 1 to 512 sg elements
*/
static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
{
unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
1 << 7, 1 << 8, 1 << 9};
struct mmc_test_multiple_rw test_data = {
.sg_len = sg_len,
.size = TEST_AREA_MAX_SIZE,
.len = ARRAY_SIZE(sg_len),
.do_write = true,
.do_nonblock_req = false,
.prepare = MMC_TEST_PREP_ERASE,
};
return mmc_test_rw_multiple_sg_len(test, &test_data);
};
/*
* Multiple non-blocking write 1 to 512 sg elements
*/
static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
{
unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
1 << 7, 1 << 8, 1 << 9};
struct mmc_test_multiple_rw test_data = {
.sg_len = sg_len,
.size = TEST_AREA_MAX_SIZE,
.len = ARRAY_SIZE(sg_len),
.do_write = true,
.do_nonblock_req = true,
.prepare = MMC_TEST_PREP_ERASE,
};
return mmc_test_rw_multiple_sg_len(test, &test_data);
}
/*
* Multiple blocking read 1 to 512 sg elements
*/
static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
{
unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
1 << 7, 1 << 8, 1 << 9};
struct mmc_test_multiple_rw test_data = {
.sg_len = sg_len,
.size = TEST_AREA_MAX_SIZE,
.len = ARRAY_SIZE(sg_len),
.do_write = false,
.do_nonblock_req = false,
.prepare = MMC_TEST_PREP_NONE,
};
return mmc_test_rw_multiple_sg_len(test, &test_data);
}
/*
* Multiple non-blocking read 1 to 512 sg elements
*/
static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
{
unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
1 << 7, 1 << 8, 1 << 9};
struct mmc_test_multiple_rw test_data = {
.sg_len = sg_len,
.size = TEST_AREA_MAX_SIZE,
.len = ARRAY_SIZE(sg_len),
.do_write = false,
.do_nonblock_req = true,
.prepare = MMC_TEST_PREP_NONE,
};
return mmc_test_rw_multiple_sg_len(test, &test_data);
}
/*
* eMMC hardware reset.
*/
static int mmc_test_reset(struct mmc_test_card *test)
{
struct mmc_card *card = test->card;
struct mmc_host *host = card->host;
int err;
err = mmc_hw_reset(host);
if (!err) {
/*
* Reset will re-enable the card's command queue, but tests
* expect it to be disabled.
*/
if (card->ext_csd.cmdq_en)
mmc_cmdq_disable(card);
return RESULT_OK;
} else if (err == -EOPNOTSUPP) {
return RESULT_UNSUP_HOST;
}
return RESULT_FAIL;
}
static int mmc_test_send_status(struct mmc_test_card *test,
struct mmc_command *cmd)
{
memset(cmd, 0, sizeof(*cmd));
cmd->opcode = MMC_SEND_STATUS;
if (!mmc_host_is_spi(test->card->host))
cmd->arg = test->card->rca << 16;
cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(test->card->host, cmd, 0);
}
static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
unsigned int dev_addr, int use_sbc,
int repeat_cmd, int write, int use_areq)
{
struct mmc_test_req *rq = mmc_test_req_alloc();
struct mmc_host *host = test->card->host;
struct mmc_test_area *t = &test->area;
struct mmc_request *mrq;
unsigned long timeout;
bool expired = false;
int ret = 0, cmd_ret;
u32 status = 0;
int count = 0;
if (!rq)
return -ENOMEM;
mrq = &rq->mrq;
if (use_sbc)
mrq->sbc = &rq->sbc;
mrq->cap_cmd_during_tfr = true;
mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
512, write);
if (use_sbc && t->blocks > 1 && !mrq->sbc) {
ret = mmc_host_cmd23(host) ?
RESULT_UNSUP_CARD :
RESULT_UNSUP_HOST;
goto out_free;
}
/* Start ongoing data request */
if (use_areq) {
ret = mmc_test_start_areq(test, mrq, NULL);
if (ret)
goto out_free;
} else {
mmc_wait_for_req(host, mrq);
}
timeout = jiffies + msecs_to_jiffies(3000);
do {
count += 1;
/* Send status command while data transfer in progress */
cmd_ret = mmc_test_send_status(test, &rq->status);
if (cmd_ret)
break;
status = rq->status.resp[0];
if (status & R1_ERROR) {
cmd_ret = -EIO;
break;
}
if (mmc_is_req_done(host, mrq))
break;
expired = time_after(jiffies, timeout);
if (expired) {
pr_info("%s: timeout waiting for Tran state status %#x\n",
mmc_hostname(host), status);
cmd_ret = -ETIMEDOUT;
break;
}
} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
/* Wait for data request to complete */
if (use_areq) {
ret = mmc_test_start_areq(test, NULL, mrq);
} else {
mmc_wait_for_req_done(test->card->host, mrq);
}
/*
* For cap_cmd_during_tfr request, upper layer must send stop if
* required.
*/
if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
if (ret)
mmc_wait_for_cmd(host, mrq->data->stop, 0);
else
ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
}
if (ret)
goto out_free;
if (cmd_ret) {
pr_info("%s: Send Status failed: status %#x, error %d\n",
mmc_hostname(test->card->host), status, cmd_ret);
}
ret = mmc_test_check_result(test, mrq);
if (ret)
goto out_free;
ret = mmc_test_wait_busy(test);
if (ret)
goto out_free;
if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
pr_info("%s: %d commands completed during transfer of %u blocks\n",
mmc_hostname(test->card->host), count, t->blocks);
if (cmd_ret)
ret = cmd_ret;
out_free:
kfree(rq);
return ret;
}
static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
unsigned long sz, int use_sbc, int write,
int use_areq)
{
struct mmc_test_area *t = &test->area;
int ret;
if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
return RESULT_UNSUP_HOST;
ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
if (ret)
return ret;
ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
use_areq);
if (ret)
return ret;
return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
use_areq);
}
static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
int write, int use_areq)
{
struct mmc_test_area *t = &test->area;
unsigned long sz;
int ret;
for (sz = 512; sz <= t->max_tfr; sz += 512) {
ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
use_areq);
if (ret)
return ret;
}
return 0;
}
/*
* Commands during read - no Set Block Count (CMD23).
*/
static int mmc_test_cmds_during_read(struct mmc_test_card *test)
{
return mmc_test_cmds_during_tfr(test, 0, 0, 0);
}
/*
* Commands during write - no Set Block Count (CMD23).
*/
static int mmc_test_cmds_during_write(struct mmc_test_card *test)
{
return mmc_test_cmds_during_tfr(test, 0, 1, 0);
}
/*
* Commands during read - use Set Block Count (CMD23).
*/
static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
{
return mmc_test_cmds_during_tfr(test, 1, 0, 0);
}
/*
* Commands during write - use Set Block Count (CMD23).
*/
static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
{
return mmc_test_cmds_during_tfr(test, 1, 1, 0);
}
/*
* Commands during non-blocking read - use Set Block Count (CMD23).
*/
static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
{
return mmc_test_cmds_during_tfr(test, 1, 0, 1);
}
/*
* Commands during non-blocking write - use Set Block Count (CMD23).
*/
static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
{
return mmc_test_cmds_during_tfr(test, 1, 1, 1);
}
static const struct mmc_test_case mmc_test_cases[] = {
{
.name = "Basic write (no data verification)",
.run = mmc_test_basic_write,
},
{
.name = "Basic read (no data verification)",
.run = mmc_test_basic_read,
},
{
.name = "Basic write (with data verification)",
.prepare = mmc_test_prepare_write,
.run = mmc_test_verify_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Basic read (with data verification)",
.prepare = mmc_test_prepare_read,
.run = mmc_test_verify_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Multi-block write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_multi_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Multi-block read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_multi_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Power of two block writes",
.prepare = mmc_test_prepare_write,
.run = mmc_test_pow2_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Power of two block reads",
.prepare = mmc_test_prepare_read,
.run = mmc_test_pow2_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Weird sized block writes",
.prepare = mmc_test_prepare_write,
.run = mmc_test_weird_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Weird sized block reads",
.prepare = mmc_test_prepare_read,
.run = mmc_test_weird_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Badly aligned write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_align_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Badly aligned read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_align_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Badly aligned multi-block write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_align_multi_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Badly aligned multi-block read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_align_multi_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Proper xfer_size at write (start failure)",
.run = mmc_test_xfersize_write,
},
{
.name = "Proper xfer_size at read (start failure)",
.run = mmc_test_xfersize_read,
},
{
.name = "Proper xfer_size at write (midway failure)",
.run = mmc_test_multi_xfersize_write,
},
{
.name = "Proper xfer_size at read (midway failure)",
.run = mmc_test_multi_xfersize_read,
},
#ifdef CONFIG_HIGHMEM
{
.name = "Highmem write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_write_high,
.cleanup = mmc_test_cleanup,
},
{
.name = "Highmem read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_read_high,
.cleanup = mmc_test_cleanup,
},
{
.name = "Multi-block highmem write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_multi_write_high,
.cleanup = mmc_test_cleanup,
},
{
.name = "Multi-block highmem read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_multi_read_high,
.cleanup = mmc_test_cleanup,
},
#else
{
.name = "Highmem write",
.run = mmc_test_no_highmem,
},
{
.name = "Highmem read",
.run = mmc_test_no_highmem,
},
{
.name = "Multi-block highmem write",
.run = mmc_test_no_highmem,
},
{
.name = "Multi-block highmem read",
.run = mmc_test_no_highmem,
},
#endif /* CONFIG_HIGHMEM */
{
.name = "Best-case read performance",
.prepare = mmc_test_area_prepare_fill,
.run = mmc_test_best_read_performance,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Best-case write performance",
.prepare = mmc_test_area_prepare_erase,
.run = mmc_test_best_write_performance,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Best-case read performance into scattered pages",
.prepare = mmc_test_area_prepare_fill,
.run = mmc_test_best_read_perf_max_scatter,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Best-case write performance from scattered pages",
.prepare = mmc_test_area_prepare_erase,
.run = mmc_test_best_write_perf_max_scatter,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Single read performance by transfer size",
.prepare = mmc_test_area_prepare_fill,
.run = mmc_test_profile_read_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Single write performance by transfer size",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_write_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Single trim performance by transfer size",
.prepare = mmc_test_area_prepare_fill,
.run = mmc_test_profile_trim_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Consecutive read performance by transfer size",
.prepare = mmc_test_area_prepare_fill,
.run = mmc_test_profile_seq_read_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Consecutive write performance by transfer size",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_seq_write_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Consecutive trim performance by transfer size",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_seq_trim_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Random read performance by transfer size",
.prepare = mmc_test_area_prepare,
.run = mmc_test_random_read_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Random write performance by transfer size",
.prepare = mmc_test_area_prepare,
.run = mmc_test_random_write_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Large sequential read into scattered pages",
.prepare = mmc_test_area_prepare,
.run = mmc_test_large_seq_read_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Large sequential write from scattered pages",
.prepare = mmc_test_area_prepare,
.run = mmc_test_large_seq_write_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Write performance with blocking req 4k to 4MB",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_mult_write_blocking_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Write performance with non-blocking req 4k to 4MB",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_mult_write_nonblock_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Read performance with blocking req 4k to 4MB",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_mult_read_blocking_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Read performance with non-blocking req 4k to 4MB",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_mult_read_nonblock_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Write performance blocking req 1 to 512 sg elems",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_sglen_wr_blocking_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Write performance non-blocking req 1 to 512 sg elems",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_sglen_wr_nonblock_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Read performance blocking req 1 to 512 sg elems",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_sglen_r_blocking_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Read performance non-blocking req 1 to 512 sg elems",
.prepare = mmc_test_area_prepare,
.run = mmc_test_profile_sglen_r_nonblock_perf,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Reset test",
.run = mmc_test_reset,
},
{
.name = "Commands during read - no Set Block Count (CMD23)",
.prepare = mmc_test_area_prepare,
.run = mmc_test_cmds_during_read,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Commands during write - no Set Block Count (CMD23)",
.prepare = mmc_test_area_prepare,
.run = mmc_test_cmds_during_write,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Commands during read - use Set Block Count (CMD23)",
.prepare = mmc_test_area_prepare,
.run = mmc_test_cmds_during_read_cmd23,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Commands during write - use Set Block Count (CMD23)",
.prepare = mmc_test_area_prepare,
.run = mmc_test_cmds_during_write_cmd23,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
.prepare = mmc_test_area_prepare,
.run = mmc_test_cmds_during_read_cmd23_nonblock,
.cleanup = mmc_test_area_cleanup,
},
{
.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
.prepare = mmc_test_area_prepare,
.run = mmc_test_cmds_during_write_cmd23_nonblock,
.cleanup = mmc_test_area_cleanup,
},
};
static DEFINE_MUTEX(mmc_test_lock);
static LIST_HEAD(mmc_test_result);
static void mmc_test_run(struct mmc_test_card *test, int testcase)
{
int i, ret;
pr_info("%s: Starting tests of card %s...\n",
mmc_hostname(test->card->host), mmc_card_id(test->card));
mmc_claim_host(test->card->host);
for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
struct mmc_test_general_result *gr;
if (testcase && ((i + 1) != testcase))
continue;
pr_info("%s: Test case %d. %s...\n",
mmc_hostname(test->card->host), i + 1,
mmc_test_cases[i].name);
if (mmc_test_cases[i].prepare) {
ret = mmc_test_cases[i].prepare(test);
if (ret) {
pr_info("%s: Result: Prepare stage failed! (%d)\n",
mmc_hostname(test->card->host),
ret);
continue;
}
}
gr = kzalloc(sizeof(*gr), GFP_KERNEL);
if (gr) {
INIT_LIST_HEAD(&gr->tr_lst);
/* Assign data what we know already */
gr->card = test->card;
gr->testcase = i;
/* Append container to global one */
list_add_tail(&gr->link, &mmc_test_result);
/*
* Save the pointer to created container in our private
* structure.
*/
test->gr = gr;
}
ret = mmc_test_cases[i].run(test);
switch (ret) {
case RESULT_OK:
pr_info("%s: Result: OK\n",
mmc_hostname(test->card->host));
break;
case RESULT_FAIL:
pr_info("%s: Result: FAILED\n",
mmc_hostname(test->card->host));
break;
case RESULT_UNSUP_HOST:
pr_info("%s: Result: UNSUPPORTED (by host)\n",
mmc_hostname(test->card->host));
break;
case RESULT_UNSUP_CARD:
pr_info("%s: Result: UNSUPPORTED (by card)\n",
mmc_hostname(test->card->host));
break;
default:
pr_info("%s: Result: ERROR (%d)\n",
mmc_hostname(test->card->host), ret);
}
/* Save the result */
if (gr)
gr->result = ret;
if (mmc_test_cases[i].cleanup) {
ret = mmc_test_cases[i].cleanup(test);
if (ret) {
pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
mmc_hostname(test->card->host),
ret);
}
}
}
mmc_release_host(test->card->host);
pr_info("%s: Tests completed.\n",
mmc_hostname(test->card->host));
}
static void mmc_test_free_result(struct mmc_card *card)
{
struct mmc_test_general_result *gr, *grs;
mutex_lock(&mmc_test_lock);
list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
struct mmc_test_transfer_result *tr, *trs;
if (card && gr->card != card)
continue;
list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
list_del(&tr->link);
kfree(tr);
}
list_del(&gr->link);
kfree(gr);
}
mutex_unlock(&mmc_test_lock);
}
static LIST_HEAD(mmc_test_file_test);
static int mtf_test_show(struct seq_file *sf, void *data)
{
struct mmc_card *card = (struct mmc_card *)sf->private;
struct mmc_test_general_result *gr;
mutex_lock(&mmc_test_lock);
list_for_each_entry(gr, &mmc_test_result, link) {
struct mmc_test_transfer_result *tr;
if (gr->card != card)
continue;
seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
list_for_each_entry(tr, &gr->tr_lst, link) {
seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
tr->count, tr->sectors,
(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
tr->rate, tr->iops / 100, tr->iops % 100);
}
}
mutex_unlock(&mmc_test_lock);
return 0;
}
static int mtf_test_open(struct inode *inode, struct file *file)
{
return single_open(file, mtf_test_show, inode->i_private);
}
static ssize_t mtf_test_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct seq_file *sf = (struct seq_file *)file->private_data;
struct mmc_card *card = (struct mmc_card *)sf->private;
struct mmc_test_card *test;
long testcase;
int ret;
ret = kstrtol_from_user(buf, count, 10, &testcase);
if (ret)
return ret;
test = kzalloc(sizeof(*test), GFP_KERNEL);
if (!test)
return -ENOMEM;
/*
* Remove all test cases associated with given card. Thus we have only
* actual data of the last run.
*/
mmc_test_free_result(card);
test->card = card;
test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
#ifdef CONFIG_HIGHMEM
test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
#endif
#ifdef CONFIG_HIGHMEM
if (test->buffer && test->highmem) {
#else
if (test->buffer) {
#endif
mutex_lock(&mmc_test_lock);
mmc_test_run(test, testcase);
mutex_unlock(&mmc_test_lock);
}
#ifdef CONFIG_HIGHMEM
__free_pages(test->highmem, BUFFER_ORDER);
#endif
kfree(test->buffer);
kfree(test);
return count;
}
static const struct file_operations mmc_test_fops_test = {
.open = mtf_test_open,
.read = seq_read,
.write = mtf_test_write,
.llseek = seq_lseek,
.release = single_release,
};
static int mtf_testlist_show(struct seq_file *sf, void *data)
{
int i;
mutex_lock(&mmc_test_lock);
seq_puts(sf, "0:\tRun all tests\n");
for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
mutex_unlock(&mmc_test_lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
static void mmc_test_free_dbgfs_file(struct mmc_card *card)
{
struct mmc_test_dbgfs_file *df, *dfs;
mutex_lock(&mmc_test_lock);
list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
if (card && df->card != card)
continue;
debugfs_remove(df->file);
list_del(&df->link);
kfree(df);
}
mutex_unlock(&mmc_test_lock);
}
static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
const char *name, umode_t mode, const struct file_operations *fops)
{
struct dentry *file = NULL;
struct mmc_test_dbgfs_file *df;
if (card->debugfs_root)
debugfs_create_file(name, mode, card->debugfs_root, card, fops);
df = kmalloc(sizeof(*df), GFP_KERNEL);
if (!df) {
debugfs_remove(file);
return -ENOMEM;
}
df->card = card;
df->file = file;
list_add(&df->link, &mmc_test_file_test);
return 0;
}
static int mmc_test_register_dbgfs_file(struct mmc_card *card)
{
int ret;
mutex_lock(&mmc_test_lock);
ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
&mmc_test_fops_test);
if (ret)
goto err;
ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
&mtf_testlist_fops);
if (ret)
goto err;
err:
mutex_unlock(&mmc_test_lock);
return ret;
}
static int mmc_test_probe(struct mmc_card *card)
{
int ret;
if (!mmc_card_mmc(card) && !mmc_card_sd(card))
return -ENODEV;
ret = mmc_test_register_dbgfs_file(card);
if (ret)
return ret;
if (card->ext_csd.cmdq_en) {
mmc_claim_host(card->host);
ret = mmc_cmdq_disable(card);
mmc_release_host(card->host);
if (ret)
return ret;
}
dev_info(&card->dev, "Card claimed for testing.\n");
return 0;
}
static void mmc_test_remove(struct mmc_card *card)
{
if (card->reenable_cmdq) {
mmc_claim_host(card->host);
mmc_cmdq_enable(card);
mmc_release_host(card->host);
}
mmc_test_free_result(card);
mmc_test_free_dbgfs_file(card);
}
static struct mmc_driver mmc_driver = {
.drv = {
.name = "mmc_test",
},
.probe = mmc_test_probe,
.remove = mmc_test_remove,
};
static int __init mmc_test_init(void)
{
return mmc_register_driver(&mmc_driver);
}
static void __exit mmc_test_exit(void)
{
/* Clear stalled data if card is still plugged */
mmc_test_free_result(NULL);
mmc_test_free_dbgfs_file(NULL);
mmc_unregister_driver(&mmc_driver);
}
module_init(mmc_test_init);
module_exit(mmc_test_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
MODULE_AUTHOR("Pierre Ossman");