166 строки
5.6 KiB
C
166 строки
5.6 KiB
C
#ifndef _SPARC64_TSB_H
|
|
#define _SPARC64_TSB_H
|
|
|
|
/* The sparc64 TSB is similar to the powerpc hashtables. It's a
|
|
* power-of-2 sized table of TAG/PTE pairs. The cpu precomputes
|
|
* pointers into this table for 8K and 64K page sizes, and also a
|
|
* comparison TAG based upon the virtual address and context which
|
|
* faults.
|
|
*
|
|
* TLB miss trap handler software does the actual lookup via something
|
|
* of the form:
|
|
*
|
|
* ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
|
|
* ldxa [%g0] ASI_{D,I}MMU, %g6
|
|
* ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
|
|
* cmp %g4, %g6
|
|
* bne,pn %xcc, tsb_miss_{d,i}tlb
|
|
* mov FAULT_CODE_{D,I}TLB, %g3
|
|
* stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN
|
|
* retry
|
|
*
|
|
|
|
* Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
|
|
* PTE. The TAG is of the same layout as the TLB TAG TARGET mmu
|
|
* register which is:
|
|
*
|
|
* -------------------------------------------------
|
|
* | - | CONTEXT | - | VADDR bits 63:22 |
|
|
* -------------------------------------------------
|
|
* 63 61 60 48 47 42 41 0
|
|
*
|
|
* Like the powerpc hashtables we need to use locking in order to
|
|
* synchronize while we update the entries. PTE updates need locking
|
|
* as well.
|
|
*
|
|
* We need to carefully choose a lock bits for the TSB entry. We
|
|
* choose to use bit 47 in the tag. Also, since we never map anything
|
|
* at page zero in context zero, we use zero as an invalid tag entry.
|
|
* When the lock bit is set, this forces a tag comparison failure.
|
|
*
|
|
* Currently, we allocate an 8K TSB per-process and we use it for both
|
|
* I-TLB and D-TLB misses. Perhaps at some point we'll add code that
|
|
* monitors the number of active pages in the process as we get
|
|
* major/minor faults, and grow the TSB in response. The only trick
|
|
* in implementing that is synchronizing the freeing of the old TSB
|
|
* wrt. parallel TSB updates occuring on other processors. On
|
|
* possible solution is to use RCU for the freeing of the TSB.
|
|
*/
|
|
|
|
#define TSB_TAG_LOCK (1 << (47 - 32))
|
|
|
|
#define TSB_MEMBAR membar #StoreStore
|
|
|
|
#define TSB_LOCK_TAG(TSB, REG1, REG2) \
|
|
99: lduwa [TSB] ASI_N, REG1; \
|
|
sethi %hi(TSB_TAG_LOCK), REG2;\
|
|
andcc REG1, REG2, %g0; \
|
|
bne,pn %icc, 99b; \
|
|
nop; \
|
|
casa [TSB] ASI_N, REG1, REG2;\
|
|
cmp REG1, REG2; \
|
|
bne,pn %icc, 99b; \
|
|
nop; \
|
|
TSB_MEMBAR
|
|
|
|
#define TSB_WRITE(TSB, TTE, TAG) \
|
|
stx TTE, [TSB + 0x08]; \
|
|
TSB_MEMBAR; \
|
|
stx TAG, [TSB + 0x00];
|
|
|
|
/* Do a kernel page table walk. Leaves physical PTE pointer in
|
|
* REG1. Jumps to FAIL_LABEL on early page table walk termination.
|
|
* VADDR will not be clobbered, but REG2 will.
|
|
*/
|
|
#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \
|
|
sethi %hi(swapper_pg_dir), REG1; \
|
|
or REG1, %lo(swapper_pg_dir), REG1; \
|
|
sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
andn REG2, 0x3, REG2; \
|
|
lduw [REG1 + REG2], REG1; \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
sllx REG1, 11, REG1; \
|
|
andn REG2, 0x3, REG2; \
|
|
lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
sllx VADDR, 64 - PMD_SHIFT, REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
sllx REG1, 11, REG1; \
|
|
andn REG2, 0x7, REG2; \
|
|
add REG1, REG2, REG1;
|
|
|
|
/* Do a user page table walk in MMU globals. Leaves physical PTE
|
|
* pointer in REG1. Jumps to FAIL_LABEL on early page table walk
|
|
* termination. Physical base of page tables is in PHYS_PGD which
|
|
* will not be modified.
|
|
*
|
|
* VADDR will not be clobbered, but REG1 and REG2 will.
|
|
*/
|
|
#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \
|
|
sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
andn REG2, 0x3, REG2; \
|
|
lduwa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
sllx REG1, 11, REG1; \
|
|
andn REG2, 0x3, REG2; \
|
|
lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
|
brz,pn REG1, FAIL_LABEL; \
|
|
sllx VADDR, 64 - PMD_SHIFT, REG2; \
|
|
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
|
sllx REG1, 11, REG1; \
|
|
andn REG2, 0x7, REG2; \
|
|
add REG1, REG2, REG1;
|
|
|
|
/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
|
|
* If no entry is found, FAIL_LABEL will be branched to. On success
|
|
* the resulting PTE value will be left in REG1. VADDR is preserved
|
|
* by this routine.
|
|
*/
|
|
#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
|
|
sethi %hi(prom_trans), REG1; \
|
|
or REG1, %lo(prom_trans), REG1; \
|
|
97: ldx [REG1 + 0x00], REG2; \
|
|
brz,pn REG2, FAIL_LABEL; \
|
|
nop; \
|
|
ldx [REG1 + 0x08], REG3; \
|
|
add REG2, REG3, REG3; \
|
|
cmp REG2, VADDR; \
|
|
bgu,pt %xcc, 98f; \
|
|
cmp VADDR, REG3; \
|
|
bgeu,pt %xcc, 98f; \
|
|
ldx [REG1 + 0x10], REG3; \
|
|
sub VADDR, REG2, REG2; \
|
|
ba,pt %xcc, 99f; \
|
|
add REG3, REG2, REG1; \
|
|
98: ba,pt %xcc, 97b; \
|
|
add REG1, (3 * 8), REG1; \
|
|
99:
|
|
|
|
/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
|
|
* on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries
|
|
* and the found TTE will be left in REG1. REG3 and REG4 must
|
|
* be an even/odd pair of registers.
|
|
*
|
|
* VADDR and TAG will be preserved and not clobbered by this macro.
|
|
*/
|
|
/* XXX non-8K base page size support... */
|
|
#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
|
|
sethi %hi(swapper_tsb), REG1; \
|
|
or REG1, %lo(swapper_tsb), REG1; \
|
|
srlx VADDR, 13, REG2; \
|
|
and REG2, (512 - 1), REG2; \
|
|
sllx REG2, 4, REG2; \
|
|
add REG1, REG2, REG2; \
|
|
ldda [REG2] ASI_NUCLEUS_QUAD_LDD, REG3; \
|
|
cmp REG3, TAG; \
|
|
be,a,pt %xcc, OK_LABEL; \
|
|
mov REG4, REG1;
|
|
|
|
#endif /* !(_SPARC64_TSB_H) */
|