195 строки
4.9 KiB
C
195 строки
4.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2012-2013 Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/sched_clock.h>
|
|
|
|
/*
|
|
* Each pit takes 0x10 Bytes register space
|
|
*/
|
|
#define PITMCR 0x00
|
|
#define PIT0_OFFSET 0x100
|
|
#define PITn_OFFSET(n) (PIT0_OFFSET + 0x10 * (n))
|
|
#define PITLDVAL 0x00
|
|
#define PITCVAL 0x04
|
|
#define PITTCTRL 0x08
|
|
#define PITTFLG 0x0c
|
|
|
|
#define PITMCR_MDIS (0x1 << 1)
|
|
|
|
#define PITTCTRL_TEN (0x1 << 0)
|
|
#define PITTCTRL_TIE (0x1 << 1)
|
|
#define PITCTRL_CHN (0x1 << 2)
|
|
|
|
#define PITTFLG_TIF 0x1
|
|
|
|
static void __iomem *clksrc_base;
|
|
static void __iomem *clkevt_base;
|
|
static unsigned long cycle_per_jiffy;
|
|
|
|
static inline void pit_timer_enable(void)
|
|
{
|
|
__raw_writel(PITTCTRL_TEN | PITTCTRL_TIE, clkevt_base + PITTCTRL);
|
|
}
|
|
|
|
static inline void pit_timer_disable(void)
|
|
{
|
|
__raw_writel(0, clkevt_base + PITTCTRL);
|
|
}
|
|
|
|
static inline void pit_irq_acknowledge(void)
|
|
{
|
|
__raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
|
|
}
|
|
|
|
static u64 notrace pit_read_sched_clock(void)
|
|
{
|
|
return ~__raw_readl(clksrc_base + PITCVAL);
|
|
}
|
|
|
|
static int __init pit_clocksource_init(unsigned long rate)
|
|
{
|
|
/* set the max load value and start the clock source counter */
|
|
__raw_writel(0, clksrc_base + PITTCTRL);
|
|
__raw_writel(~0UL, clksrc_base + PITLDVAL);
|
|
__raw_writel(PITTCTRL_TEN, clksrc_base + PITTCTRL);
|
|
|
|
sched_clock_register(pit_read_sched_clock, 32, rate);
|
|
return clocksource_mmio_init(clksrc_base + PITCVAL, "vf-pit", rate,
|
|
300, 32, clocksource_mmio_readl_down);
|
|
}
|
|
|
|
static int pit_set_next_event(unsigned long delta,
|
|
struct clock_event_device *unused)
|
|
{
|
|
/*
|
|
* set a new value to PITLDVAL register will not restart the timer,
|
|
* to abort the current cycle and start a timer period with the new
|
|
* value, the timer must be disabled and enabled again.
|
|
* and the PITLAVAL should be set to delta minus one according to pit
|
|
* hardware requirement.
|
|
*/
|
|
pit_timer_disable();
|
|
__raw_writel(delta - 1, clkevt_base + PITLDVAL);
|
|
pit_timer_enable();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pit_shutdown(struct clock_event_device *evt)
|
|
{
|
|
pit_timer_disable();
|
|
return 0;
|
|
}
|
|
|
|
static int pit_set_periodic(struct clock_event_device *evt)
|
|
{
|
|
pit_set_next_event(cycle_per_jiffy, evt);
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
pit_irq_acknowledge();
|
|
|
|
/*
|
|
* pit hardware doesn't support oneshot, it will generate an interrupt
|
|
* and reload the counter value from PITLDVAL when PITCVAL reach zero,
|
|
* and start the counter again. So software need to disable the timer
|
|
* to stop the counter loop in ONESHOT mode.
|
|
*/
|
|
if (likely(clockevent_state_oneshot(evt)))
|
|
pit_timer_disable();
|
|
|
|
evt->event_handler(evt);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct clock_event_device clockevent_pit = {
|
|
.name = "VF pit timer",
|
|
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
|
.set_state_shutdown = pit_shutdown,
|
|
.set_state_periodic = pit_set_periodic,
|
|
.set_next_event = pit_set_next_event,
|
|
.rating = 300,
|
|
};
|
|
|
|
static int __init pit_clockevent_init(unsigned long rate, int irq)
|
|
{
|
|
__raw_writel(0, clkevt_base + PITTCTRL);
|
|
__raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
|
|
|
|
BUG_ON(request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL,
|
|
"VF pit timer", &clockevent_pit));
|
|
|
|
clockevent_pit.cpumask = cpumask_of(0);
|
|
clockevent_pit.irq = irq;
|
|
/*
|
|
* The value for the LDVAL register trigger is calculated as:
|
|
* LDVAL trigger = (period / clock period) - 1
|
|
* The pit is a 32-bit down count timer, when the conter value
|
|
* reaches 0, it will generate an interrupt, thus the minimal
|
|
* LDVAL trigger value is 1. And then the min_delta is
|
|
* minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
|
|
*/
|
|
clockevents_config_and_register(&clockevent_pit, rate, 2, 0xffffffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init pit_timer_init(struct device_node *np)
|
|
{
|
|
struct clk *pit_clk;
|
|
void __iomem *timer_base;
|
|
unsigned long clk_rate;
|
|
int irq, ret;
|
|
|
|
timer_base = of_iomap(np, 0);
|
|
if (!timer_base) {
|
|
pr_err("Failed to iomap\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/*
|
|
* PIT0 and PIT1 can be chained to build a 64-bit timer,
|
|
* so choose PIT2 as clocksource, PIT3 as clockevent device,
|
|
* and leave PIT0 and PIT1 unused for anyone else who needs them.
|
|
*/
|
|
clksrc_base = timer_base + PITn_OFFSET(2);
|
|
clkevt_base = timer_base + PITn_OFFSET(3);
|
|
|
|
irq = irq_of_parse_and_map(np, 0);
|
|
if (irq <= 0)
|
|
return -EINVAL;
|
|
|
|
pit_clk = of_clk_get(np, 0);
|
|
if (IS_ERR(pit_clk))
|
|
return PTR_ERR(pit_clk);
|
|
|
|
ret = clk_prepare_enable(pit_clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
clk_rate = clk_get_rate(pit_clk);
|
|
cycle_per_jiffy = clk_rate / (HZ);
|
|
|
|
/* enable the pit module */
|
|
__raw_writel(~PITMCR_MDIS, timer_base + PITMCR);
|
|
|
|
ret = pit_clocksource_init(clk_rate);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return pit_clockevent_init(clk_rate, irq);
|
|
}
|
|
TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);
|