WSL2-Linux-Kernel/drivers/media/i2c/ar0521.c

1210 строки
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Sieć Badawcza Łukasiewicz
* - Przemysłowy Instytut Automatyki i Pomiarów PIAP
* Written by Krzysztof Hałasa
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
/* External clock (extclk) frequencies */
#define AR0521_EXTCLK_MIN (10 * 1000 * 1000)
#define AR0521_EXTCLK_MAX (48 * 1000 * 1000)
/* PLL and PLL2 */
#define AR0521_PLL_MIN (320 * 1000 * 1000)
#define AR0521_PLL_MAX (1280 * 1000 * 1000)
/* Effective pixel sample rate on the pixel array. */
#define AR0521_PIXEL_CLOCK_RATE (184 * 1000 * 1000)
#define AR0521_PIXEL_CLOCK_MIN (168 * 1000 * 1000)
#define AR0521_PIXEL_CLOCK_MAX (414 * 1000 * 1000)
#define AR0521_NATIVE_WIDTH 2604u
#define AR0521_NATIVE_HEIGHT 1964u
#define AR0521_MIN_X_ADDR_START 0u
#define AR0521_MIN_Y_ADDR_START 0u
#define AR0521_MAX_X_ADDR_END 2603u
#define AR0521_MAX_Y_ADDR_END 1955u
#define AR0521_WIDTH_MIN 8u
#define AR0521_WIDTH_MAX 2592u
#define AR0521_HEIGHT_MIN 8u
#define AR0521_HEIGHT_MAX 1944u
#define AR0521_WIDTH_BLANKING_MIN 572u
#define AR0521_HEIGHT_BLANKING_MIN 38u /* must be even */
#define AR0521_TOTAL_HEIGHT_MAX 65535u /* max_frame_length_lines */
#define AR0521_TOTAL_WIDTH_MAX 65532u /* max_line_length_pck */
#define AR0521_ANA_GAIN_MIN 0x00
#define AR0521_ANA_GAIN_MAX 0x3f
#define AR0521_ANA_GAIN_STEP 0x01
#define AR0521_ANA_GAIN_DEFAULT 0x00
/* AR0521 registers */
#define AR0521_REG_VT_PIX_CLK_DIV 0x0300
#define AR0521_REG_FRAME_LENGTH_LINES 0x0340
#define AR0521_REG_CHIP_ID 0x3000
#define AR0521_REG_COARSE_INTEGRATION_TIME 0x3012
#define AR0521_REG_ROW_SPEED 0x3016
#define AR0521_REG_EXTRA_DELAY 0x3018
#define AR0521_REG_RESET 0x301A
#define AR0521_REG_RESET_DEFAULTS 0x0238
#define AR0521_REG_RESET_GROUP_PARAM_HOLD 0x8000
#define AR0521_REG_RESET_STREAM BIT(2)
#define AR0521_REG_RESET_RESTART BIT(1)
#define AR0521_REG_RESET_INIT BIT(0)
#define AR0521_REG_ANA_GAIN_CODE_GLOBAL 0x3028
#define AR0521_REG_GREEN1_GAIN 0x3056
#define AR0521_REG_BLUE_GAIN 0x3058
#define AR0521_REG_RED_GAIN 0x305A
#define AR0521_REG_GREEN2_GAIN 0x305C
#define AR0521_REG_GLOBAL_GAIN 0x305E
#define AR0521_REG_HISPI_TEST_MODE 0x3066
#define AR0521_REG_HISPI_TEST_MODE_LP11 0x0004
#define AR0521_REG_TEST_PATTERN_MODE 0x3070
#define AR0521_REG_SERIAL_FORMAT 0x31AE
#define AR0521_REG_SERIAL_FORMAT_MIPI 0x0200
#define AR0521_REG_HISPI_CONTROL_STATUS 0x31C6
#define AR0521_REG_HISPI_CONTROL_STATUS_FRAMER_TEST_MODE_ENABLE 0x80
#define be cpu_to_be16
static const char * const ar0521_supply_names[] = {
"vdd_io", /* I/O (1.8V) supply */
"vdd", /* Core, PLL and MIPI (1.2V) supply */
"vaa", /* Analog (2.7V) supply */
};
static const s64 ar0521_link_frequencies[] = {
184000000,
};
struct ar0521_ctrls {
struct v4l2_ctrl_handler handler;
struct {
struct v4l2_ctrl *gain;
struct v4l2_ctrl *red_balance;
struct v4l2_ctrl *blue_balance;
};
struct {
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
};
struct v4l2_ctrl *pixrate;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *test_pattern;
};
struct ar0521_dev {
struct i2c_client *i2c_client;
struct v4l2_subdev sd;
struct media_pad pad;
struct clk *extclk;
u32 extclk_freq;
struct regulator *supplies[ARRAY_SIZE(ar0521_supply_names)];
struct gpio_desc *reset_gpio;
/* lock to protect all members below */
struct mutex lock;
struct v4l2_mbus_framefmt fmt;
struct ar0521_ctrls ctrls;
unsigned int lane_count;
struct {
u16 pre;
u16 mult;
u16 pre2;
u16 mult2;
u16 vt_pix;
} pll;
bool streaming;
};
static inline struct ar0521_dev *to_ar0521_dev(struct v4l2_subdev *sd)
{
return container_of(sd, struct ar0521_dev, sd);
}
static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct ar0521_dev,
ctrls.handler)->sd;
}
static u32 div64_round(u64 v, u32 d)
{
return div_u64(v + (d >> 1), d);
}
static u32 div64_round_up(u64 v, u32 d)
{
return div_u64(v + d - 1, d);
}
static int ar0521_code_to_bpp(struct ar0521_dev *sensor)
{
switch (sensor->fmt.code) {
case MEDIA_BUS_FMT_SGRBG8_1X8:
return 8;
}
return -EINVAL;
}
/* Data must be BE16, the first value is the register address */
static int ar0521_write_regs(struct ar0521_dev *sensor, const __be16 *data,
unsigned int count)
{
struct i2c_client *client = sensor->i2c_client;
struct i2c_msg msg;
int ret;
msg.addr = client->addr;
msg.flags = client->flags;
msg.buf = (u8 *)data;
msg.len = count * sizeof(*data);
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret < 0) {
v4l2_err(&sensor->sd, "%s: I2C write error\n", __func__);
return ret;
}
return 0;
}
static int ar0521_write_reg(struct ar0521_dev *sensor, u16 reg, u16 val)
{
__be16 buf[2] = {be(reg), be(val)};
return ar0521_write_regs(sensor, buf, 2);
}
static int ar0521_set_geometry(struct ar0521_dev *sensor)
{
/* Center the image in the visible output window. */
u16 x = clamp((AR0521_WIDTH_MAX - sensor->fmt.width) / 2,
AR0521_MIN_X_ADDR_START, AR0521_MAX_X_ADDR_END);
u16 y = clamp(((AR0521_HEIGHT_MAX - sensor->fmt.height) / 2) & ~1,
AR0521_MIN_Y_ADDR_START, AR0521_MAX_Y_ADDR_END);
/* All dimensions are unsigned 12-bit integers */
__be16 regs[] = {
be(AR0521_REG_FRAME_LENGTH_LINES),
be(sensor->fmt.height + sensor->ctrls.vblank->val),
be(sensor->fmt.width + sensor->ctrls.hblank->val),
be(x),
be(y),
be(x + sensor->fmt.width - 1),
be(y + sensor->fmt.height - 1),
be(sensor->fmt.width),
be(sensor->fmt.height)
};
return ar0521_write_regs(sensor, regs, ARRAY_SIZE(regs));
}
static int ar0521_set_gains(struct ar0521_dev *sensor)
{
int green = sensor->ctrls.gain->val;
int red = max(green + sensor->ctrls.red_balance->val, 0);
int blue = max(green + sensor->ctrls.blue_balance->val, 0);
unsigned int gain = min(red, min(green, blue));
unsigned int analog = min(gain, 64u); /* range is 0 - 127 */
__be16 regs[5];
red = min(red - analog + 64, 511u);
green = min(green - analog + 64, 511u);
blue = min(blue - analog + 64, 511u);
regs[0] = be(AR0521_REG_GREEN1_GAIN);
regs[1] = be(green << 7 | analog);
regs[2] = be(blue << 7 | analog);
regs[3] = be(red << 7 | analog);
regs[4] = be(green << 7 | analog);
return ar0521_write_regs(sensor, regs, ARRAY_SIZE(regs));
}
static u32 calc_pll(struct ar0521_dev *sensor, u32 freq, u16 *pre_ptr, u16 *mult_ptr)
{
u16 pre = 1, mult = 1, new_pre;
u32 pll = AR0521_PLL_MAX + 1;
for (new_pre = 1; new_pre < 64; new_pre++) {
u32 new_pll;
u32 new_mult = div64_round_up((u64)freq * new_pre,
sensor->extclk_freq);
if (new_mult < 32)
continue; /* Minimum value */
if (new_mult > 254)
break; /* Maximum, larger pre won't work either */
if (sensor->extclk_freq * (u64)new_mult < AR0521_PLL_MIN *
new_pre)
continue;
if (sensor->extclk_freq * (u64)new_mult > AR0521_PLL_MAX *
new_pre)
break; /* Larger pre won't work either */
new_pll = div64_round_up(sensor->extclk_freq * (u64)new_mult,
new_pre);
if (new_pll < pll) {
pll = new_pll;
pre = new_pre;
mult = new_mult;
}
}
pll = div64_round(sensor->extclk_freq * (u64)mult, pre);
*pre_ptr = pre;
*mult_ptr = mult;
return pll;
}
static void ar0521_calc_pll(struct ar0521_dev *sensor)
{
unsigned int pixel_clock;
u16 pre, mult;
u32 vco;
int bpp;
/*
* PLL1 and PLL2 are computed equally even if the application note
* suggests a slower PLL1 clock. Maintain pll1 and pll2 divider and
* multiplier separated to later specialize the calculation procedure.
*
* PLL1:
* - mclk -> / pre_div1 * pre_mul1 = VCO1 = COUNTER_CLOCK
*
* PLL2:
* - mclk -> / pre_div * pre_mul = VCO
*
* VCO -> / vt_pix = PIXEL_CLOCK
* VCO -> / vt_pix / 2 = WORD_CLOCK
* VCO -> / op_sys = SERIAL_CLOCK
*
* With:
* - vt_pix = bpp / 2
* - WORD_CLOCK = PIXEL_CLOCK / 2
* - SERIAL_CLOCK = MIPI data rate (Mbps / lane) = WORD_CLOCK * bpp
* NOTE: this implies the MIPI clock is divided internally by 2
* to account for DDR.
*
* As op_sys_div is fixed to 1:
*
* SERIAL_CLOCK = VCO
* VCO = 2 * MIPI_CLK
* VCO = PIXEL_CLOCK * bpp / 2
*
* In the clock tree:
* MIPI_CLK = PIXEL_CLOCK * bpp / 2 / 2
*
* Generic pixel_rate to bus clock frequencey equation:
* MIPI_CLK = V4L2_CID_PIXEL_RATE * bpp / lanes / 2
*
* From which we derive the PIXEL_CLOCK to use in the clock tree:
* PIXEL_CLOCK = V4L2_CID_PIXEL_RATE * 2 / lanes
*
* Documented clock ranges:
* WORD_CLOCK = (35MHz - 120 MHz)
* PIXEL_CLOCK = (84MHz - 207MHz)
* VCO = (320MHz - 1280MHz)
*
* TODO: in case we have less data lanes we have to reduce the desired
* VCO not to exceed the limits specified by the datasheet and
* consequentially reduce the obtained pixel clock.
*/
pixel_clock = AR0521_PIXEL_CLOCK_RATE * 2 / sensor->lane_count;
bpp = ar0521_code_to_bpp(sensor);
sensor->pll.vt_pix = bpp / 2;
vco = pixel_clock * sensor->pll.vt_pix;
calc_pll(sensor, vco, &pre, &mult);
sensor->pll.pre = sensor->pll.pre2 = pre;
sensor->pll.mult = sensor->pll.mult2 = mult;
}
static int ar0521_pll_config(struct ar0521_dev *sensor)
{
__be16 pll_regs[] = {
be(AR0521_REG_VT_PIX_CLK_DIV),
/* 0x300 */ be(sensor->pll.vt_pix), /* vt_pix_clk_div = bpp / 2 */
/* 0x302 */ be(1), /* vt_sys_clk_div */
/* 0x304 */ be((sensor->pll.pre2 << 8) | sensor->pll.pre),
/* 0x306 */ be((sensor->pll.mult2 << 8) | sensor->pll.mult),
/* 0x308 */ be(sensor->pll.vt_pix * 2), /* op_pix_clk_div = 2 * vt_pix_clk_div */
/* 0x30A */ be(1) /* op_sys_clk_div */
};
ar0521_calc_pll(sensor);
return ar0521_write_regs(sensor, pll_regs, ARRAY_SIZE(pll_regs));
}
static int ar0521_set_stream(struct ar0521_dev *sensor, bool on)
{
int ret;
if (on) {
ret = pm_runtime_resume_and_get(&sensor->i2c_client->dev);
if (ret < 0)
return ret;
/* Stop streaming for just a moment */
ret = ar0521_write_reg(sensor, AR0521_REG_RESET,
AR0521_REG_RESET_DEFAULTS);
if (ret)
return ret;
ret = ar0521_set_geometry(sensor);
if (ret)
return ret;
ret = ar0521_pll_config(sensor);
if (ret)
goto err;
ret = __v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
if (ret)
goto err;
/* Exit LP-11 mode on clock and data lanes */
ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_CONTROL_STATUS,
0);
if (ret)
goto err;
/* Start streaming */
ret = ar0521_write_reg(sensor, AR0521_REG_RESET,
AR0521_REG_RESET_DEFAULTS |
AR0521_REG_RESET_STREAM);
if (ret)
goto err;
return 0;
err:
pm_runtime_put(&sensor->i2c_client->dev);
return ret;
} else {
/*
* Reset gain, the sensor may produce all white pixels without
* this
*/
ret = ar0521_write_reg(sensor, AR0521_REG_GLOBAL_GAIN, 0x2000);
if (ret)
return ret;
/* Stop streaming */
ret = ar0521_write_reg(sensor, AR0521_REG_RESET,
AR0521_REG_RESET_DEFAULTS);
if (ret)
return ret;
pm_runtime_put(&sensor->i2c_client->dev);
return 0;
}
}
static void ar0521_adj_fmt(struct v4l2_mbus_framefmt *fmt)
{
fmt->width = clamp(ALIGN(fmt->width, 4), AR0521_WIDTH_MIN,
AR0521_WIDTH_MAX);
fmt->height = clamp(ALIGN(fmt->height, 4), AR0521_HEIGHT_MIN,
AR0521_HEIGHT_MAX);
fmt->code = MEDIA_BUS_FMT_SGRBG8_1X8;
fmt->field = V4L2_FIELD_NONE;
fmt->colorspace = V4L2_COLORSPACE_SRGB;
fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT;
}
static int ar0521_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct ar0521_dev *sensor = to_ar0521_dev(sd);
struct v4l2_mbus_framefmt *fmt;
mutex_lock(&sensor->lock);
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
fmt = v4l2_subdev_get_try_format(&sensor->sd, sd_state, 0
/* pad */);
else
fmt = &sensor->fmt;
format->format = *fmt;
mutex_unlock(&sensor->lock);
return 0;
}
static int ar0521_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct ar0521_dev *sensor = to_ar0521_dev(sd);
int max_vblank, max_hblank, exposure_max;
int ret;
ar0521_adj_fmt(&format->format);
mutex_lock(&sensor->lock);
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_get_try_format(sd, sd_state, 0 /* pad */);
*fmt = format->format;
mutex_unlock(&sensor->lock);
return 0;
}
sensor->fmt = format->format;
ar0521_calc_pll(sensor);
/*
* Update the exposure and blankings limits. Blankings are also reset
* to the minimum.
*/
max_hblank = AR0521_TOTAL_WIDTH_MAX - sensor->fmt.width;
ret = __v4l2_ctrl_modify_range(sensor->ctrls.hblank,
sensor->ctrls.hblank->minimum,
max_hblank, sensor->ctrls.hblank->step,
sensor->ctrls.hblank->minimum);
if (ret)
goto unlock;
ret = __v4l2_ctrl_s_ctrl(sensor->ctrls.hblank,
sensor->ctrls.hblank->minimum);
if (ret)
goto unlock;
max_vblank = AR0521_TOTAL_HEIGHT_MAX - sensor->fmt.height;
ret = __v4l2_ctrl_modify_range(sensor->ctrls.vblank,
sensor->ctrls.vblank->minimum,
max_vblank, sensor->ctrls.vblank->step,
sensor->ctrls.vblank->minimum);
if (ret)
goto unlock;
ret = __v4l2_ctrl_s_ctrl(sensor->ctrls.vblank,
sensor->ctrls.vblank->minimum);
if (ret)
goto unlock;
exposure_max = sensor->fmt.height + AR0521_HEIGHT_BLANKING_MIN - 4;
ret = __v4l2_ctrl_modify_range(sensor->ctrls.exposure,
sensor->ctrls.exposure->minimum,
exposure_max,
sensor->ctrls.exposure->step,
sensor->ctrls.exposure->default_value);
unlock:
mutex_unlock(&sensor->lock);
return ret;
}
static int ar0521_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct ar0521_dev *sensor = to_ar0521_dev(sd);
int exp_max;
int ret;
/* v4l2_ctrl_lock() locks our own mutex */
switch (ctrl->id) {
case V4L2_CID_VBLANK:
exp_max = sensor->fmt.height + ctrl->val - 4;
__v4l2_ctrl_modify_range(sensor->ctrls.exposure,
sensor->ctrls.exposure->minimum,
exp_max, sensor->ctrls.exposure->step,
sensor->ctrls.exposure->default_value);
break;
}
/* access the sensor only if it's powered up */
if (!pm_runtime_get_if_in_use(&sensor->i2c_client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_HBLANK:
case V4L2_CID_VBLANK:
ret = ar0521_set_geometry(sensor);
break;
case V4L2_CID_ANALOGUE_GAIN:
ret = ar0521_write_reg(sensor, AR0521_REG_ANA_GAIN_CODE_GLOBAL,
ctrl->val);
break;
case V4L2_CID_GAIN:
case V4L2_CID_RED_BALANCE:
case V4L2_CID_BLUE_BALANCE:
ret = ar0521_set_gains(sensor);
break;
case V4L2_CID_EXPOSURE:
ret = ar0521_write_reg(sensor,
AR0521_REG_COARSE_INTEGRATION_TIME,
ctrl->val);
break;
case V4L2_CID_TEST_PATTERN:
ret = ar0521_write_reg(sensor, AR0521_REG_TEST_PATTERN_MODE,
ctrl->val);
break;
default:
dev_err(&sensor->i2c_client->dev,
"Unsupported control %x\n", ctrl->id);
ret = -EINVAL;
break;
}
pm_runtime_put(&sensor->i2c_client->dev);
return ret;
}
static const struct v4l2_ctrl_ops ar0521_ctrl_ops = {
.s_ctrl = ar0521_s_ctrl,
};
static const char * const test_pattern_menu[] = {
"Disabled",
"Solid color",
"Color bars",
"Faded color bars"
};
static int ar0521_init_controls(struct ar0521_dev *sensor)
{
const struct v4l2_ctrl_ops *ops = &ar0521_ctrl_ops;
struct ar0521_ctrls *ctrls = &sensor->ctrls;
struct v4l2_ctrl_handler *hdl = &ctrls->handler;
int max_vblank, max_hblank, exposure_max;
struct v4l2_ctrl *link_freq;
int ret;
v4l2_ctrl_handler_init(hdl, 32);
/* We can use our own mutex for the ctrl lock */
hdl->lock = &sensor->lock;
/* Analog gain */
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN,
AR0521_ANA_GAIN_MIN, AR0521_ANA_GAIN_MAX,
AR0521_ANA_GAIN_STEP, AR0521_ANA_GAIN_DEFAULT);
/* Manual gain */
ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 0, 511, 1, 0);
ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
-512, 511, 1, 0);
ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
-512, 511, 1, 0);
v4l2_ctrl_cluster(3, &ctrls->gain);
/* Initialize blanking limits using the default 2592x1944 format. */
max_hblank = AR0521_TOTAL_WIDTH_MAX - AR0521_WIDTH_MAX;
ctrls->hblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK,
AR0521_WIDTH_BLANKING_MIN,
max_hblank, 1,
AR0521_WIDTH_BLANKING_MIN);
max_vblank = AR0521_TOTAL_HEIGHT_MAX - AR0521_HEIGHT_MAX;
ctrls->vblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK,
AR0521_HEIGHT_BLANKING_MIN,
max_vblank, 2,
AR0521_HEIGHT_BLANKING_MIN);
v4l2_ctrl_cluster(2, &ctrls->hblank);
/* Read-only */
ctrls->pixrate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
AR0521_PIXEL_CLOCK_MIN,
AR0521_PIXEL_CLOCK_MAX, 1,
AR0521_PIXEL_CLOCK_RATE);
/* Manual exposure time: max exposure time = visible + blank - 4 */
exposure_max = AR0521_HEIGHT_MAX + AR0521_HEIGHT_BLANKING_MIN - 4;
ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 0,
exposure_max, 1, 0x70);
link_freq = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ,
ARRAY_SIZE(ar0521_link_frequencies) - 1,
0, ar0521_link_frequencies);
if (link_freq)
link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY;
ctrls->test_pattern = v4l2_ctrl_new_std_menu_items(hdl, ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(test_pattern_menu) - 1,
0, 0, test_pattern_menu);
if (hdl->error) {
ret = hdl->error;
goto free_ctrls;
}
sensor->sd.ctrl_handler = hdl;
return 0;
free_ctrls:
v4l2_ctrl_handler_free(hdl);
return ret;
}
#define REGS_ENTRY(a) {(a), ARRAY_SIZE(a)}
#define REGS(...) REGS_ENTRY(((const __be16[]){__VA_ARGS__}))
static const struct initial_reg {
const __be16 *data; /* data[0] is register address */
unsigned int count;
} initial_regs[] = {
REGS(be(0x0112), be(0x0808)), /* 8-bit/8-bit mode */
/* PEDESTAL+2 :+2 is a workaround for 10bit mode +0.5 rounding */
REGS(be(0x301E), be(0x00AA)),
/* corrections_recommended_bayer */
REGS(be(0x3042),
be(0x0004), /* 3042: RNC: enable b/w rnc mode */
be(0x4580)), /* 3044: RNC: enable row noise correction */
REGS(be(0x30D2),
be(0x0000), /* 30D2: CRM/CC: enable crm on Visible and CC rows */
be(0x0000), /* 30D4: CC: CC enabled with 16 samples per column */
/* 30D6: CC: bw mode enabled/12 bit data resolution/bw mode */
be(0x2FFF)),
REGS(be(0x30DA),
be(0x0FFF), /* 30DA: CC: column correction clip level 2 is 0 */
be(0x0FFF), /* 30DC: CC: column correction clip level 3 is 0 */
be(0x0000)), /* 30DE: CC: Group FPN correction */
/* RNC: rnc scaling factor = * 54 / 64 (32 / 38 * 64 = 53.9) */
REGS(be(0x30EE), be(0x1136)),
REGS(be(0x30FA), be(0xFD00)), /* GPIO0 = flash, GPIO1 = shutter */
REGS(be(0x3120), be(0x0005)), /* p1 dither enabled for 10bit mode */
REGS(be(0x3172), be(0x0206)), /* txlo clk divider options */
/* FDOC:fdoc settings with fdoc every frame turned of */
REGS(be(0x3180), be(0x9434)),
REGS(be(0x31B0),
be(0x008B), /* 31B0: frame_preamble - FIXME check WRT lanes# */
be(0x0050)), /* 31B2: line_preamble - FIXME check WRT lanes# */
/* don't use continuous clock mode while shut down */
REGS(be(0x31BC), be(0x068C)),
REGS(be(0x31E0), be(0x0781)), /* Fuse/2DDC: enable 2ddc */
/* analog_setup_recommended_10bit */
REGS(be(0x341A), be(0x4735)), /* Samp&Hold pulse in ADC */
REGS(be(0x3420), be(0x4735)), /* Samp&Hold pulse in ADC */
REGS(be(0x3426), be(0x8A1A)), /* ADC offset distribution pulse */
REGS(be(0x342A), be(0x0018)), /* pulse_config */
/* pixel_timing_recommended */
REGS(be(0x3D00),
/* 3D00 */ be(0x043E), be(0x4760), be(0xFFFF), be(0xFFFF),
/* 3D08 */ be(0x8000), be(0x0510), be(0xAF08), be(0x0252),
/* 3D10 */ be(0x486F), be(0x5D5D), be(0x8056), be(0x8313),
/* 3D18 */ be(0x0087), be(0x6A48), be(0x6982), be(0x0280),
/* 3D20 */ be(0x8359), be(0x8D02), be(0x8020), be(0x4882),
/* 3D28 */ be(0x4269), be(0x6A95), be(0x5988), be(0x5A83),
/* 3D30 */ be(0x5885), be(0x6280), be(0x6289), be(0x6097),
/* 3D38 */ be(0x5782), be(0x605C), be(0xBF18), be(0x0961),
/* 3D40 */ be(0x5080), be(0x2090), be(0x4390), be(0x4382),
/* 3D48 */ be(0x5F8A), be(0x5D5D), be(0x9C63), be(0x8063),
/* 3D50 */ be(0xA960), be(0x9757), be(0x8260), be(0x5CFF),
/* 3D58 */ be(0xBF10), be(0x1681), be(0x0802), be(0x8000),
/* 3D60 */ be(0x141C), be(0x6000), be(0x6022), be(0x4D80),
/* 3D68 */ be(0x5C97), be(0x6A69), be(0xAC6F), be(0x4645),
/* 3D70 */ be(0x4400), be(0x0513), be(0x8069), be(0x6AC6),
/* 3D78 */ be(0x5F95), be(0x5F70), be(0x8040), be(0x4A81),
/* 3D80 */ be(0x0300), be(0xE703), be(0x0088), be(0x4A83),
/* 3D88 */ be(0x40FF), be(0xFFFF), be(0xFD70), be(0x8040),
/* 3D90 */ be(0x4A85), be(0x4FA8), be(0x4F8C), be(0x0070),
/* 3D98 */ be(0xBE47), be(0x8847), be(0xBC78), be(0x6B89),
/* 3DA0 */ be(0x6A80), be(0x6986), be(0x6B8E), be(0x6B80),
/* 3DA8 */ be(0x6980), be(0x6A88), be(0x7C9F), be(0x866B),
/* 3DB0 */ be(0x8765), be(0x46FF), be(0xE365), be(0xA679),
/* 3DB8 */ be(0x4A40), be(0x4580), be(0x44BC), be(0x7000),
/* 3DC0 */ be(0x8040), be(0x0802), be(0x10EF), be(0x0104),
/* 3DC8 */ be(0x3860), be(0x5D5D), be(0x5682), be(0x1300),
/* 3DD0 */ be(0x8648), be(0x8202), be(0x8082), be(0x598A),
/* 3DD8 */ be(0x0280), be(0x2048), be(0x3060), be(0x8042),
/* 3DE0 */ be(0x9259), be(0x865A), be(0x8258), be(0x8562),
/* 3DE8 */ be(0x8062), be(0x8560), be(0x9257), be(0x8221),
/* 3DF0 */ be(0x10FF), be(0xB757), be(0x9361), be(0x1019),
/* 3DF8 */ be(0x8020), be(0x9043), be(0x8E43), be(0x845F),
/* 3E00 */ be(0x835D), be(0x805D), be(0x8163), be(0x8063),
/* 3E08 */ be(0xA060), be(0x9157), be(0x8260), be(0x5CFF),
/* 3E10 */ be(0xFFFF), be(0xFFE5), be(0x1016), be(0x2048),
/* 3E18 */ be(0x0802), be(0x1C60), be(0x0014), be(0x0060),
/* 3E20 */ be(0x2205), be(0x8120), be(0x908F), be(0x6A80),
/* 3E28 */ be(0x6982), be(0x5F9F), be(0x6F46), be(0x4544),
/* 3E30 */ be(0x0005), be(0x8013), be(0x8069), be(0x6A80),
/* 3E38 */ be(0x7000), be(0x0000), be(0x0000), be(0x0000),
/* 3E40 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E48 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E50 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E58 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E60 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E68 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E70 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E78 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E80 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E88 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E90 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3E98 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3EA0 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3EA8 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
/* 3EB0 */ be(0x0000), be(0x0000), be(0x0000)),
REGS(be(0x3EB6), be(0x004C)), /* ECL */
REGS(be(0x3EBA),
be(0xAAAD), /* 3EBA */
be(0x0086)), /* 3EBC: Bias currents for FSC/ECL */
REGS(be(0x3EC0),
be(0x1E00), /* 3EC0: SFbin/SH mode settings */
be(0x100A), /* 3EC2: CLK divider for ramp for 10 bit 400MH */
/* 3EC4: FSC clamps for HDR mode and adc comp power down co */
be(0x3300),
be(0xEA44), /* 3EC6: VLN and clk gating controls */
be(0x6F6F), /* 3EC8: Txl0 and Txlo1 settings for normal mode */
be(0x2F4A), /* 3ECA: CDAC/Txlo2/RSTGHI/RSTGLO settings */
be(0x0506), /* 3ECC: RSTDHI/RSTDLO/CDAC/TXHI settings */
/* 3ECE: Ramp buffer settings and Booster enable (bits 0-5) */
be(0x203B),
be(0x13F0), /* 3ED0: TXLO from atest/sf bin settings */
be(0xA53D), /* 3ED2: Ramp offset */
be(0x862F), /* 3ED4: TXLO open loop/row driver settings */
be(0x4081), /* 3ED6: Txlatch fr cfpn rows/vln bias */
be(0x8003), /* 3ED8: Ramp step setting for 10 bit 400 Mhz */
be(0xA580), /* 3EDA: Ramp Offset */
be(0xC000), /* 3EDC: over range for rst and under range for sig */
be(0xC103)), /* 3EDE: over range for sig and col dec clk settings */
/* corrections_recommended_bayer */
REGS(be(0x3F00),
be(0x0017), /* 3F00: BM_T0 */
be(0x02DD), /* 3F02: BM_T1 */
/* 3F04: if Ana_gain less than 2, use noise_floor0, multipl */
be(0x0020),
/* 3F06: if Ana_gain between 4 and 7, use noise_floor2 and */
be(0x0040),
/* 3F08: if Ana_gain between 4 and 7, use noise_floor2 and */
be(0x0070),
/* 3F0A: Define noise_floor0(low address) and noise_floor1 */
be(0x0101),
be(0x0302)), /* 3F0C: Define noise_floor2 and noise_floor3 */
REGS(be(0x3F10),
be(0x0505), /* 3F10: single k factor 0 */
be(0x0505), /* 3F12: single k factor 1 */
be(0x0505), /* 3F14: single k factor 2 */
be(0x01FF), /* 3F16: cross factor 0 */
be(0x01FF), /* 3F18: cross factor 1 */
be(0x01FF), /* 3F1A: cross factor 2 */
be(0x0022)), /* 3F1E */
/* GTH_THRES_RTN: 4max,4min filtered out of every 46 samples and */
REGS(be(0x3F2C), be(0x442E)),
REGS(be(0x3F3E),
be(0x0000), /* 3F3E: Switch ADC from 12 bit to 10 bit mode */
be(0x1511), /* 3F40: couple k factor 0 */
be(0x1511), /* 3F42: couple k factor 1 */
be(0x0707)), /* 3F44: couple k factor 2 */
};
static int ar0521_power_off(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ar0521_dev *sensor = to_ar0521_dev(sd);
int i;
clk_disable_unprepare(sensor->extclk);
if (sensor->reset_gpio)
gpiod_set_value(sensor->reset_gpio, 1); /* assert RESET signal */
for (i = ARRAY_SIZE(ar0521_supply_names) - 1; i >= 0; i--) {
if (sensor->supplies[i])
regulator_disable(sensor->supplies[i]);
}
return 0;
}
static int ar0521_power_on(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ar0521_dev *sensor = to_ar0521_dev(sd);
unsigned int cnt;
int ret;
for (cnt = 0; cnt < ARRAY_SIZE(ar0521_supply_names); cnt++)
if (sensor->supplies[cnt]) {
ret = regulator_enable(sensor->supplies[cnt]);
if (ret < 0)
goto off;
usleep_range(1000, 1500); /* min 1 ms */
}
ret = clk_prepare_enable(sensor->extclk);
if (ret < 0) {
v4l2_err(&sensor->sd, "error enabling sensor clock\n");
goto off;
}
usleep_range(1000, 1500); /* min 1 ms */
if (sensor->reset_gpio)
/* deassert RESET signal */
gpiod_set_value(sensor->reset_gpio, 0);
usleep_range(4500, 5000); /* min 45000 clocks */
for (cnt = 0; cnt < ARRAY_SIZE(initial_regs); cnt++) {
ret = ar0521_write_regs(sensor, initial_regs[cnt].data,
initial_regs[cnt].count);
if (ret)
goto off;
}
ret = ar0521_write_reg(sensor, AR0521_REG_SERIAL_FORMAT,
AR0521_REG_SERIAL_FORMAT_MIPI |
sensor->lane_count);
if (ret)
goto off;
/* set MIPI test mode - disabled for now */
ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_TEST_MODE,
((0x40 << sensor->lane_count) - 0x40) |
AR0521_REG_HISPI_TEST_MODE_LP11);
if (ret)
goto off;
ret = ar0521_write_reg(sensor, AR0521_REG_ROW_SPEED, 0x110 |
4 / sensor->lane_count);
if (ret)
goto off;
return 0;
off:
ar0521_power_off(dev);
return ret;
}
static int ar0521_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
struct ar0521_dev *sensor = to_ar0521_dev(sd);
if (code->index)
return -EINVAL;
code->code = sensor->fmt.code;
return 0;
}
static int ar0521_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index)
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_SGRBG8_1X8)
return -EINVAL;
fse->min_width = AR0521_WIDTH_MIN;
fse->max_width = AR0521_WIDTH_MAX;
fse->min_height = AR0521_HEIGHT_MIN;
fse->max_height = AR0521_HEIGHT_MAX;
return 0;
}
static int ar0521_pre_streamon(struct v4l2_subdev *sd, u32 flags)
{
struct ar0521_dev *sensor = to_ar0521_dev(sd);
int ret;
if (!(flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP))
return -EACCES;
ret = pm_runtime_resume_and_get(&sensor->i2c_client->dev);
if (ret < 0)
return ret;
/* Set LP-11 on clock and data lanes */
ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_CONTROL_STATUS,
AR0521_REG_HISPI_CONTROL_STATUS_FRAMER_TEST_MODE_ENABLE);
if (ret)
goto err;
/* Start streaming LP-11 */
ret = ar0521_write_reg(sensor, AR0521_REG_RESET,
AR0521_REG_RESET_DEFAULTS |
AR0521_REG_RESET_STREAM);
if (ret)
goto err;
return 0;
err:
pm_runtime_put(&sensor->i2c_client->dev);
return ret;
}
static int ar0521_post_streamoff(struct v4l2_subdev *sd)
{
struct ar0521_dev *sensor = to_ar0521_dev(sd);
pm_runtime_put(&sensor->i2c_client->dev);
return 0;
}
static int ar0521_s_stream(struct v4l2_subdev *sd, int enable)
{
struct ar0521_dev *sensor = to_ar0521_dev(sd);
int ret;
mutex_lock(&sensor->lock);
ret = ar0521_set_stream(sensor, enable);
if (!ret)
sensor->streaming = enable;
mutex_unlock(&sensor->lock);
return ret;
}
static const struct v4l2_subdev_core_ops ar0521_core_ops = {
.log_status = v4l2_ctrl_subdev_log_status,
};
static const struct v4l2_subdev_video_ops ar0521_video_ops = {
.s_stream = ar0521_s_stream,
.pre_streamon = ar0521_pre_streamon,
.post_streamoff = ar0521_post_streamoff,
};
static const struct v4l2_subdev_pad_ops ar0521_pad_ops = {
.enum_mbus_code = ar0521_enum_mbus_code,
.enum_frame_size = ar0521_enum_frame_size,
.get_fmt = ar0521_get_fmt,
.set_fmt = ar0521_set_fmt,
};
static const struct v4l2_subdev_ops ar0521_subdev_ops = {
.core = &ar0521_core_ops,
.video = &ar0521_video_ops,
.pad = &ar0521_pad_ops,
};
static int __maybe_unused ar0521_suspend(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ar0521_dev *sensor = to_ar0521_dev(sd);
if (sensor->streaming)
ar0521_set_stream(sensor, 0);
return 0;
}
static int __maybe_unused ar0521_resume(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ar0521_dev *sensor = to_ar0521_dev(sd);
if (sensor->streaming)
return ar0521_set_stream(sensor, 1);
return 0;
}
static int ar0521_probe(struct i2c_client *client)
{
struct v4l2_fwnode_endpoint ep = {
.bus_type = V4L2_MBUS_CSI2_DPHY
};
struct device *dev = &client->dev;
struct fwnode_handle *endpoint;
struct ar0521_dev *sensor;
unsigned int cnt;
int ret;
sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
sensor->i2c_client = client;
sensor->fmt.width = AR0521_WIDTH_MAX;
sensor->fmt.height = AR0521_HEIGHT_MAX;
endpoint = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!endpoint) {
dev_err(dev, "endpoint node not found\n");
return -EINVAL;
}
ret = v4l2_fwnode_endpoint_parse(endpoint, &ep);
fwnode_handle_put(endpoint);
if (ret) {
dev_err(dev, "could not parse endpoint\n");
return ret;
}
if (ep.bus_type != V4L2_MBUS_CSI2_DPHY) {
dev_err(dev, "invalid bus type, must be MIPI CSI2\n");
return -EINVAL;
}
sensor->lane_count = ep.bus.mipi_csi2.num_data_lanes;
switch (sensor->lane_count) {
case 1:
case 2:
case 4:
break;
default:
dev_err(dev, "invalid number of MIPI data lanes\n");
return -EINVAL;
}
/* Get master clock (extclk) */
sensor->extclk = devm_clk_get(dev, "extclk");
if (IS_ERR(sensor->extclk)) {
dev_err(dev, "failed to get extclk\n");
return PTR_ERR(sensor->extclk);
}
sensor->extclk_freq = clk_get_rate(sensor->extclk);
if (sensor->extclk_freq < AR0521_EXTCLK_MIN ||
sensor->extclk_freq > AR0521_EXTCLK_MAX) {
dev_err(dev, "extclk frequency out of range: %u Hz\n",
sensor->extclk_freq);
return -EINVAL;
}
/* Request optional reset pin (usually active low) and assert it */
sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
v4l2_i2c_subdev_init(&sensor->sd, client, &ar0521_subdev_ops);
sensor->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
if (ret)
return ret;
for (cnt = 0; cnt < ARRAY_SIZE(ar0521_supply_names); cnt++) {
struct regulator *supply = devm_regulator_get(dev,
ar0521_supply_names[cnt]);
if (IS_ERR(supply)) {
dev_info(dev, "no %s regulator found: %li\n",
ar0521_supply_names[cnt], PTR_ERR(supply));
return PTR_ERR(supply);
}
sensor->supplies[cnt] = supply;
}
mutex_init(&sensor->lock);
ret = ar0521_init_controls(sensor);
if (ret)
goto entity_cleanup;
ar0521_adj_fmt(&sensor->fmt);
ret = v4l2_async_register_subdev(&sensor->sd);
if (ret)
goto free_ctrls;
/* Turn on the device and enable runtime PM */
ret = ar0521_power_on(&client->dev);
if (ret)
goto disable;
pm_runtime_set_active(&client->dev);
pm_runtime_enable(&client->dev);
pm_runtime_idle(&client->dev);
return 0;
disable:
v4l2_async_unregister_subdev(&sensor->sd);
media_entity_cleanup(&sensor->sd.entity);
free_ctrls:
v4l2_ctrl_handler_free(&sensor->ctrls.handler);
entity_cleanup:
media_entity_cleanup(&sensor->sd.entity);
mutex_destroy(&sensor->lock);
return ret;
}
static void ar0521_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ar0521_dev *sensor = to_ar0521_dev(sd);
v4l2_async_unregister_subdev(&sensor->sd);
media_entity_cleanup(&sensor->sd.entity);
v4l2_ctrl_handler_free(&sensor->ctrls.handler);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
ar0521_power_off(&client->dev);
pm_runtime_set_suspended(&client->dev);
mutex_destroy(&sensor->lock);
}
static const struct dev_pm_ops ar0521_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(ar0521_suspend, ar0521_resume)
SET_RUNTIME_PM_OPS(ar0521_power_off, ar0521_power_on, NULL)
};
static const struct of_device_id ar0521_dt_ids[] = {
{.compatible = "onnn,ar0521"},
{}
};
MODULE_DEVICE_TABLE(of, ar0521_dt_ids);
static struct i2c_driver ar0521_i2c_driver = {
.driver = {
.name = "ar0521",
.pm = &ar0521_pm_ops,
.of_match_table = ar0521_dt_ids,
},
.probe_new = ar0521_probe,
.remove = ar0521_remove,
};
module_i2c_driver(ar0521_i2c_driver);
MODULE_DESCRIPTION("AR0521 MIPI Camera subdev driver");
MODULE_AUTHOR("Krzysztof Hałasa <khalasa@piap.pl>");
MODULE_LICENSE("GPL");