WSL2-Linux-Kernel/arch/tile/mm/init.c

1083 строки
31 KiB
C

/*
* Copyright (C) 1995 Linus Torvalds
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/poison.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/efi.h>
#include <linux/memory_hotplug.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/homecache.h>
#include <hv/hypervisor.h>
#include <arch/chip.h>
#include "migrate.h"
#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
#ifndef __tilegx__
unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
EXPORT_SYMBOL(VMALLOC_RESERVE);
#endif
/* Create an L2 page table */
static pte_t * __init alloc_pte(void)
{
return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
}
/*
* L2 page tables per controller. We allocate these all at once from
* the bootmem allocator and store them here. This saves on kernel L2
* page table memory, compared to allocating a full 64K page per L2
* page table, and also means that in cases where we use huge pages,
* we are guaranteed to later be able to shatter those huge pages and
* switch to using these page tables instead, without requiring
* further allocation. Each l2_ptes[] entry points to the first page
* table for the first hugepage-size piece of memory on the
* controller; other page tables are just indexed directly, i.e. the
* L2 page tables are contiguous in memory for each controller.
*/
static pte_t *l2_ptes[MAX_NUMNODES];
static int num_l2_ptes[MAX_NUMNODES];
static void init_prealloc_ptes(int node, int pages)
{
BUG_ON(pages & (HV_L2_ENTRIES-1));
if (pages) {
num_l2_ptes[node] = pages;
l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
HV_PAGE_TABLE_ALIGN, 0);
}
}
pte_t *get_prealloc_pte(unsigned long pfn)
{
int node = pfn_to_nid(pfn);
pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
BUG_ON(node >= MAX_NUMNODES);
BUG_ON(pfn >= num_l2_ptes[node]);
return &l2_ptes[node][pfn];
}
/*
* What caching do we expect pages from the heap to have when
* they are allocated during bootup? (Once we've installed the
* "real" swapper_pg_dir.)
*/
static int initial_heap_home(void)
{
#if CHIP_HAS_CBOX_HOME_MAP()
if (hash_default)
return PAGE_HOME_HASH;
#endif
return smp_processor_id();
}
/*
* Place a pointer to an L2 page table in a middle page
* directory entry.
*/
static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
{
phys_addr_t pa = __pa(page_table);
unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
pteval = pte_set_home(pteval, initial_heap_home());
*(pte_t *)pmd = pteval;
if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
BUG();
}
#ifdef __tilegx__
#if HV_L1_SIZE != HV_L2_SIZE
# error Rework assumption that L1 and L2 page tables are same size.
#endif
/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
static inline pmd_t *alloc_pmd(void)
{
return (pmd_t *)alloc_pte();
}
static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
{
assign_pte((pmd_t *)pud, (pte_t *)pmd);
}
#endif /* __tilegx__ */
/* Replace the given pmd with a full PTE table. */
void __init shatter_pmd(pmd_t *pmd)
{
pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
assign_pte(pmd, pte);
}
#ifdef CONFIG_HIGHMEM
/*
* This function initializes a certain range of kernel virtual memory
* with new bootmem page tables, everywhere page tables are missing in
* the given range.
*/
/*
* NOTE: The pagetables are allocated contiguous on the physical space
* so we can cache the place of the first one and move around without
* checking the pgd every time.
*/
static void __init page_table_range_init(unsigned long start,
unsigned long end, pgd_t *pgd_base)
{
pgd_t *pgd;
int pgd_idx;
unsigned long vaddr;
vaddr = start;
pgd_idx = pgd_index(vaddr);
pgd = pgd_base + pgd_idx;
for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
if (pmd_none(*pmd))
assign_pte(pmd, alloc_pte());
vaddr += PMD_SIZE;
}
}
#endif /* CONFIG_HIGHMEM */
#if CHIP_HAS_CBOX_HOME_MAP()
static int __initdata ktext_hash = 1; /* .text pages */
static int __initdata kdata_hash = 1; /* .data and .bss pages */
int __write_once hash_default = 1; /* kernel allocator pages */
EXPORT_SYMBOL(hash_default);
int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
#endif /* CHIP_HAS_CBOX_HOME_MAP */
/*
* CPUs to use to for striping the pages of kernel data. If hash-for-home
* is available, this is only relevant if kcache_hash sets up the
* .data and .bss to be page-homed, and we don't want the default mode
* of using the full set of kernel cpus for the striping.
*/
static __initdata struct cpumask kdata_mask;
static __initdata int kdata_arg_seen;
int __write_once kdata_huge; /* if no homecaching, small pages */
/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
{
prot = pte_set_home(prot, home);
#if CHIP_HAS_CBOX_HOME_MAP()
if (home == PAGE_HOME_IMMUTABLE) {
if (ktext_hash)
prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
else
prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
}
#endif
return prot;
}
/*
* For a given kernel data VA, how should it be cached?
* We return the complete pgprot_t with caching bits set.
*/
static pgprot_t __init init_pgprot(ulong address)
{
int cpu;
unsigned long page;
enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
#if CHIP_HAS_CBOX_HOME_MAP()
/* For kdata=huge, everything is just hash-for-home. */
if (kdata_huge)
return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif
/* We map the aliased pages of permanent text inaccessible. */
if (address < (ulong) _sinittext - CODE_DELTA)
return PAGE_NONE;
/*
* We map read-only data non-coherent for performance. We could
* use neighborhood caching on TILE64, but it's not clear it's a win.
*/
if ((address >= (ulong) __start_rodata &&
address < (ulong) __end_rodata) ||
address == (ulong) empty_zero_page) {
return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
}
/* As a performance optimization, keep the boot init stack here. */
if (address >= (ulong)&init_thread_union &&
address < (ulong)&init_thread_union + THREAD_SIZE)
return construct_pgprot(PAGE_KERNEL, smp_processor_id());
#ifndef __tilegx__
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
/* Force the atomic_locks[] array page to be hash-for-home. */
if (address == (ulong) atomic_locks)
return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif
#endif
/*
* Everything else that isn't data or bss is heap, so mark it
* with the initial heap home (hash-for-home, or this cpu). This
* includes any addresses after the loaded image and any address before
* _einitdata, since we already captured the case of text before
* _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
*
* All the LOWMEM pages that we mark this way will get their
* struct page homecache properly marked later, in set_page_homes().
* The HIGHMEM pages we leave with a default zero for their
* homes, but with a zero free_time we don't have to actually
* do a flush action the first time we use them, either.
*/
if (address >= (ulong) _end || address < (ulong) _einitdata)
return construct_pgprot(PAGE_KERNEL, initial_heap_home());
#if CHIP_HAS_CBOX_HOME_MAP()
/* Use hash-for-home if requested for data/bss. */
if (kdata_hash)
return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif
/*
* Make the w1data homed like heap to start with, to avoid
* making it part of the page-striped data area when we're just
* going to convert it to read-only soon anyway.
*/
if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
return construct_pgprot(PAGE_KERNEL, initial_heap_home());
/*
* Otherwise we just hand out consecutive cpus. To avoid
* requiring this function to hold state, we just walk forward from
* _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
* the requested address, while walking cpu home around kdata_mask.
* This is typically no more than a dozen or so iterations.
*/
page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
BUG_ON(address < page || address >= (ulong)_end);
cpu = cpumask_first(&kdata_mask);
for (; page < address; page += PAGE_SIZE) {
if (page >= (ulong)&init_thread_union &&
page < (ulong)&init_thread_union + THREAD_SIZE)
continue;
if (page == (ulong)empty_zero_page)
continue;
#ifndef __tilegx__
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
if (page == (ulong)atomic_locks)
continue;
#endif
#endif
cpu = cpumask_next(cpu, &kdata_mask);
if (cpu == NR_CPUS)
cpu = cpumask_first(&kdata_mask);
}
return construct_pgprot(PAGE_KERNEL, cpu);
}
/*
* This function sets up how we cache the kernel text. If we have
* hash-for-home support, normally that is used instead (see the
* kcache_hash boot flag for more information). But if we end up
* using a page-based caching technique, this option sets up the
* details of that. In addition, the "ktext=nocache" option may
* always be used to disable local caching of text pages, if desired.
*/
static int __initdata ktext_arg_seen;
static int __initdata ktext_small;
static int __initdata ktext_local;
static int __initdata ktext_all;
static int __initdata ktext_nondataplane;
static int __initdata ktext_nocache;
static struct cpumask __initdata ktext_mask;
static int __init setup_ktext(char *str)
{
if (str == NULL)
return -EINVAL;
/* If you have a leading "nocache", turn off ktext caching */
if (strncmp(str, "nocache", 7) == 0) {
ktext_nocache = 1;
pr_info("ktext: disabling local caching of kernel text\n");
str += 7;
if (*str == ',')
++str;
if (*str == '\0')
return 0;
}
ktext_arg_seen = 1;
/* Default setting on Tile64: use a huge page */
if (strcmp(str, "huge") == 0)
pr_info("ktext: using one huge locally cached page\n");
/* Pay TLB cost but get no cache benefit: cache small pages locally */
else if (strcmp(str, "local") == 0) {
ktext_small = 1;
ktext_local = 1;
pr_info("ktext: using small pages with local caching\n");
}
/* Neighborhood cache ktext pages on all cpus. */
else if (strcmp(str, "all") == 0) {
ktext_small = 1;
ktext_all = 1;
pr_info("ktext: using maximal caching neighborhood\n");
}
/* Neighborhood ktext pages on specified mask */
else if (cpulist_parse(str, &ktext_mask) == 0) {
char buf[NR_CPUS * 5];
cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
if (cpumask_weight(&ktext_mask) > 1) {
ktext_small = 1;
pr_info("ktext: using caching neighborhood %s "
"with small pages\n", buf);
} else {
pr_info("ktext: caching on cpu %s with one huge page\n",
buf);
}
}
else if (*str)
return -EINVAL;
return 0;
}
early_param("ktext", setup_ktext);
static inline pgprot_t ktext_set_nocache(pgprot_t prot)
{
if (!ktext_nocache)
prot = hv_pte_set_nc(prot);
#if CHIP_HAS_NC_AND_NOALLOC_BITS()
else
prot = hv_pte_set_no_alloc_l2(prot);
#endif
return prot;
}
#ifndef __tilegx__
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
}
#else
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
if (pud_none(*pud))
assign_pmd(pud, alloc_pmd());
return pmd_offset(pud, va);
}
#endif
/* Temporary page table we use for staging. */
static pgd_t pgtables[PTRS_PER_PGD]
__attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
/*
* This maps the physical memory to kernel virtual address space, a total
* of max_low_pfn pages, by creating page tables starting from address
* PAGE_OFFSET.
*
* This routine transitions us from using a set of compiled-in large
* pages to using some more precise caching, including removing access
* to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
* marking read-only data as locally cacheable, striping the remaining
* .data and .bss across all the available tiles, and removing access
* to pages above the top of RAM (thus ensuring a page fault from a bad
* virtual address rather than a hypervisor shoot down for accessing
* memory outside the assigned limits).
*/
static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
{
unsigned long address, pfn;
pmd_t *pmd;
pte_t *pte;
int pte_ofs;
const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
struct cpumask kstripe_mask;
int rc, i;
#if CHIP_HAS_CBOX_HOME_MAP()
if (ktext_arg_seen && ktext_hash) {
pr_warning("warning: \"ktext\" boot argument ignored"
" if \"kcache_hash\" sets up text hash-for-home\n");
ktext_small = 0;
}
if (kdata_arg_seen && kdata_hash) {
pr_warning("warning: \"kdata\" boot argument ignored"
" if \"kcache_hash\" sets up data hash-for-home\n");
}
if (kdata_huge && !hash_default) {
pr_warning("warning: disabling \"kdata=huge\"; requires"
" kcache_hash=all or =allbutstack\n");
kdata_huge = 0;
}
#endif
/*
* Set up a mask for cpus to use for kernel striping.
* This is normally all cpus, but minus dataplane cpus if any.
* If the dataplane covers the whole chip, we stripe over
* the whole chip too.
*/
cpumask_copy(&kstripe_mask, cpu_possible_mask);
if (!kdata_arg_seen)
kdata_mask = kstripe_mask;
/* Allocate and fill in L2 page tables */
for (i = 0; i < MAX_NUMNODES; ++i) {
#ifdef CONFIG_HIGHMEM
unsigned long end_pfn = node_lowmem_end_pfn[i];
#else
unsigned long end_pfn = node_end_pfn[i];
#endif
unsigned long end_huge_pfn = 0;
/* Pre-shatter the last huge page to allow per-cpu pages. */
if (kdata_huge)
end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
pfn = node_start_pfn[i];
/* Allocate enough memory to hold L2 page tables for node. */
init_prealloc_ptes(i, end_pfn - pfn);
address = (unsigned long) pfn_to_kaddr(pfn);
while (pfn < end_pfn) {
BUG_ON(address & (HPAGE_SIZE-1));
pmd = get_pmd(pgtables, address);
pte = get_prealloc_pte(pfn);
if (pfn < end_huge_pfn) {
pgprot_t prot = init_pgprot(address);
*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
pfn++, pte_ofs++, address += PAGE_SIZE)
pte[pte_ofs] = pfn_pte(pfn, prot);
} else {
if (kdata_huge)
printk(KERN_DEBUG "pre-shattered huge"
" page at %#lx\n", address);
for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
pfn++, pte_ofs++, address += PAGE_SIZE) {
pgprot_t prot = init_pgprot(address);
pte[pte_ofs] = pfn_pte(pfn, prot);
}
assign_pte(pmd, pte);
}
}
}
/*
* Set or check ktext_map now that we have cpu_possible_mask
* and kstripe_mask to work with.
*/
if (ktext_all)
cpumask_copy(&ktext_mask, cpu_possible_mask);
else if (ktext_nondataplane)
ktext_mask = kstripe_mask;
else if (!cpumask_empty(&ktext_mask)) {
/* Sanity-check any mask that was requested */
struct cpumask bad;
cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
if (!cpumask_empty(&bad)) {
char buf[NR_CPUS * 5];
cpulist_scnprintf(buf, sizeof(buf), &bad);
pr_info("ktext: not using unavailable cpus %s\n", buf);
}
if (cpumask_empty(&ktext_mask)) {
pr_warning("ktext: no valid cpus; caching on %d.\n",
smp_processor_id());
cpumask_copy(&ktext_mask,
cpumask_of(smp_processor_id()));
}
}
address = MEM_SV_INTRPT;
pmd = get_pmd(pgtables, address);
if (ktext_small) {
/* Allocate an L2 PTE for the kernel text */
int cpu = 0;
pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
PAGE_HOME_IMMUTABLE);
if (ktext_local) {
if (ktext_nocache)
prot = hv_pte_set_mode(prot,
HV_PTE_MODE_UNCACHED);
else
prot = hv_pte_set_mode(prot,
HV_PTE_MODE_CACHE_NO_L3);
} else {
prot = hv_pte_set_mode(prot,
HV_PTE_MODE_CACHE_TILE_L3);
cpu = cpumask_first(&ktext_mask);
prot = ktext_set_nocache(prot);
}
BUG_ON(address != (unsigned long)_stext);
pfn = 0; /* code starts at PA 0 */
pte = alloc_pte();
for (pte_ofs = 0; address < (unsigned long)_einittext;
pfn++, pte_ofs++, address += PAGE_SIZE) {
if (!ktext_local) {
prot = set_remote_cache_cpu(prot, cpu);
cpu = cpumask_next(cpu, &ktext_mask);
if (cpu == NR_CPUS)
cpu = cpumask_first(&ktext_mask);
}
pte[pte_ofs] = pfn_pte(pfn, prot);
}
assign_pte(pmd, pte);
} else {
pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
pteval = pte_mkhuge(pteval);
#if CHIP_HAS_CBOX_HOME_MAP()
if (ktext_hash) {
pteval = hv_pte_set_mode(pteval,
HV_PTE_MODE_CACHE_HASH_L3);
pteval = ktext_set_nocache(pteval);
} else
#endif /* CHIP_HAS_CBOX_HOME_MAP() */
if (cpumask_weight(&ktext_mask) == 1) {
pteval = set_remote_cache_cpu(pteval,
cpumask_first(&ktext_mask));
pteval = hv_pte_set_mode(pteval,
HV_PTE_MODE_CACHE_TILE_L3);
pteval = ktext_set_nocache(pteval);
} else if (ktext_nocache)
pteval = hv_pte_set_mode(pteval,
HV_PTE_MODE_UNCACHED);
else
pteval = hv_pte_set_mode(pteval,
HV_PTE_MODE_CACHE_NO_L3);
*(pte_t *)pmd = pteval;
}
/* Set swapper_pgprot here so it is flushed to memory right away. */
swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
/*
* Since we may be changing the caching of the stack and page
* table itself, we invoke an assembly helper to do the
* following steps:
*
* - flush the cache so we start with an empty slate
* - install pgtables[] as the real page table
* - flush the TLB so the new page table takes effect
*/
rc = flush_and_install_context(__pa(pgtables),
init_pgprot((unsigned long)pgtables),
__get_cpu_var(current_asid),
cpumask_bits(my_cpu_mask));
BUG_ON(rc != 0);
/* Copy the page table back to the normal swapper_pg_dir. */
memcpy(pgd_base, pgtables, sizeof(pgtables));
__install_page_table(pgd_base, __get_cpu_var(current_asid),
swapper_pgprot);
/*
* We just read swapper_pgprot and thus brought it into the cache,
* with its new home & caching mode. When we start the other CPUs,
* they're going to reference swapper_pgprot via their initial fake
* VA-is-PA mappings, which cache everything locally. At that
* time, if it's in our cache with a conflicting home, the
* simulator's coherence checker will complain. So, flush it out
* of our cache; we're not going to ever use it again anyway.
*/
__insn_finv(&swapper_pgprot);
}
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
* On Tile, the only valid things for which we can just hand out unchecked
* PTEs are the kernel code and data. Anything else might change its
* homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
* Note that init_thread_union is released to heap soon after boot,
* so we include it in the init data.
*
* For TILE-Gx, we might want to consider allowing access to PA
* regions corresponding to PCI space, etc.
*/
int devmem_is_allowed(unsigned long pagenr)
{
return pagenr < kaddr_to_pfn(_end) &&
!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
pagenr < kaddr_to_pfn(_einitdata)) &&
!(pagenr >= kaddr_to_pfn(_sinittext) ||
pagenr <= kaddr_to_pfn(_einittext-1));
}
#ifdef CONFIG_HIGHMEM
static void __init permanent_kmaps_init(pgd_t *pgd_base)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
unsigned long vaddr;
vaddr = PKMAP_BASE;
page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
pgd = swapper_pg_dir + pgd_index(vaddr);
pud = pud_offset(pgd, vaddr);
pmd = pmd_offset(pud, vaddr);
pte = pte_offset_kernel(pmd, vaddr);
pkmap_page_table = pte;
}
#endif /* CONFIG_HIGHMEM */
static void __init init_free_pfn_range(unsigned long start, unsigned long end)
{
unsigned long pfn;
struct page *page = pfn_to_page(start);
for (pfn = start; pfn < end; ) {
/* Optimize by freeing pages in large batches */
int order = __ffs(pfn);
int count, i;
struct page *p;
if (order >= MAX_ORDER)
order = MAX_ORDER-1;
count = 1 << order;
while (pfn + count > end) {
count >>= 1;
--order;
}
for (p = page, i = 0; i < count; ++i, ++p) {
__ClearPageReserved(p);
/*
* Hacky direct set to avoid unnecessary
* lock take/release for EVERY page here.
*/
p->_count.counter = 0;
p->_mapcount.counter = -1;
}
init_page_count(page);
__free_pages(page, order);
totalram_pages += count;
page += count;
pfn += count;
}
}
static void __init set_non_bootmem_pages_init(void)
{
struct zone *z;
for_each_zone(z) {
unsigned long start, end;
int nid = z->zone_pgdat->node_id;
int idx = zone_idx(z);
start = z->zone_start_pfn;
if (start == 0)
continue; /* bootmem */
end = start + z->spanned_pages;
if (idx == ZONE_NORMAL) {
BUG_ON(start != node_start_pfn[nid]);
start = node_free_pfn[nid];
}
#ifdef CONFIG_HIGHMEM
if (idx == ZONE_HIGHMEM)
totalhigh_pages += z->spanned_pages;
#endif
if (kdata_huge) {
unsigned long percpu_pfn = node_percpu_pfn[nid];
if (start < percpu_pfn && end > percpu_pfn)
end = percpu_pfn;
}
#ifdef CONFIG_PCI
if (start <= pci_reserve_start_pfn &&
end > pci_reserve_start_pfn) {
if (end > pci_reserve_end_pfn)
init_free_pfn_range(pci_reserve_end_pfn, end);
end = pci_reserve_start_pfn;
}
#endif
init_free_pfn_range(start, end);
}
}
/*
* paging_init() sets up the page tables - note that all of lowmem is
* already mapped by head.S.
*/
void __init paging_init(void)
{
#ifdef CONFIG_HIGHMEM
unsigned long vaddr, end;
#endif
#ifdef __tilegx__
pud_t *pud;
#endif
pgd_t *pgd_base = swapper_pg_dir;
kernel_physical_mapping_init(pgd_base);
#ifdef CONFIG_HIGHMEM
/*
* Fixed mappings, only the page table structure has to be
* created - mappings will be set by set_fixmap():
*/
vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
page_table_range_init(vaddr, end, pgd_base);
permanent_kmaps_init(pgd_base);
#endif
#ifdef __tilegx__
/*
* Since GX allocates just one pmd_t array worth of vmalloc space,
* we go ahead and allocate it statically here, then share it
* globally. As a result we don't have to worry about any task
* changing init_mm once we get up and running, and there's no
* need for e.g. vmalloc_sync_all().
*/
BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
assign_pmd(pud, alloc_pmd());
#endif
}
/*
* Walk the kernel page tables and derive the page_home() from
* the PTEs, so that set_pte() can properly validate the caching
* of all PTEs it sees.
*/
void __init set_page_homes(void)
{
}
static void __init set_max_mapnr_init(void)
{
#ifdef CONFIG_FLATMEM
max_mapnr = max_low_pfn;
#endif
}
void __init mem_init(void)
{
int codesize, datasize, initsize;
int i;
#ifndef __tilegx__
void *last;
#endif
#ifdef CONFIG_FLATMEM
BUG_ON(!mem_map);
#endif
#ifdef CONFIG_HIGHMEM
/* check that fixmap and pkmap do not overlap */
if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
pr_err("fixmap and kmap areas overlap"
" - this will crash\n");
pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
FIXADDR_START);
BUG();
}
#endif
set_max_mapnr_init();
/* this will put all bootmem onto the freelists */
totalram_pages += free_all_bootmem();
/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
set_non_bootmem_pages_init();
codesize = (unsigned long)&_etext - (unsigned long)&_text;
datasize = (unsigned long)&_end - (unsigned long)&_sdata;
initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
datasize >> 10,
initsize >> 10,
(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
);
/*
* In debug mode, dump some interesting memory mappings.
*/
#ifdef CONFIG_HIGHMEM
printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
#endif
#ifdef CONFIG_HUGEVMAP
printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
#endif
printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
_VMALLOC_START, _VMALLOC_END - 1);
#ifdef __tilegx__
for (i = MAX_NUMNODES-1; i >= 0; --i) {
struct pglist_data *node = &node_data[i];
if (node->node_present_pages) {
unsigned long start = (unsigned long)
pfn_to_kaddr(node->node_start_pfn);
unsigned long end = start +
(node->node_present_pages << PAGE_SHIFT);
printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
i, start, end - 1);
}
}
#else
last = high_memory;
for (i = MAX_NUMNODES-1; i >= 0; --i) {
if ((unsigned long)vbase_map[i] != -1UL) {
printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
i, (unsigned long) (vbase_map[i]),
(unsigned long) (last-1));
last = vbase_map[i];
}
}
#endif
#ifndef __tilegx__
/*
* Convert from using one lock for all atomic operations to
* one per cpu.
*/
__init_atomic_per_cpu();
#endif
}
/*
* this is for the non-NUMA, single node SMP system case.
* Specifically, in the case of x86, we will always add
* memory to the highmem for now.
*/
#ifndef CONFIG_NEED_MULTIPLE_NODES
int arch_add_memory(u64 start, u64 size)
{
struct pglist_data *pgdata = &contig_page_data;
struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
return __add_pages(zone, start_pfn, nr_pages);
}
int remove_memory(u64 start, u64 size)
{
return -EINVAL;
}
#endif
struct kmem_cache *pgd_cache;
void __init pgtable_cache_init(void)
{
pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
if (!pgd_cache)
panic("pgtable_cache_init(): Cannot create pgd cache");
}
#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
/*
* The __w1data area holds data that is only written during initialization,
* and is read-only and thus freely cacheable thereafter. Fix the page
* table entries that cover that region accordingly.
*/
static void mark_w1data_ro(void)
{
/* Loop over page table entries */
unsigned long addr = (unsigned long)__w1data_begin;
BUG_ON((addr & (PAGE_SIZE-1)) != 0);
for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
unsigned long pfn = kaddr_to_pfn((void *)addr);
pte_t *ptep = virt_to_pte(NULL, addr);
BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
}
}
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
static long __write_once initfree;
#else
static long __write_once initfree = 1;
#endif
/* Select whether to free (1) or mark unusable (0) the __init pages. */
static int __init set_initfree(char *str)
{
long val;
if (strict_strtol(str, 0, &val) == 0) {
initfree = val;
pr_info("initfree: %s free init pages\n",
initfree ? "will" : "won't");
}
return 1;
}
__setup("initfree=", set_initfree);
static void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr = (unsigned long) begin;
if (kdata_huge && !initfree) {
pr_warning("Warning: ignoring initfree=0:"
" incompatible with kdata=huge\n");
initfree = 1;
}
end = (end + PAGE_SIZE - 1) & PAGE_MASK;
local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
for (addr = begin; addr < end; addr += PAGE_SIZE) {
/*
* Note we just reset the home here directly in the
* page table. We know this is safe because our caller
* just flushed the caches on all the other cpus,
* and they won't be touching any of these pages.
*/
int pfn = kaddr_to_pfn((void *)addr);
struct page *page = pfn_to_page(pfn);
pte_t *ptep = virt_to_pte(NULL, addr);
if (!initfree) {
/*
* If debugging page accesses then do not free
* this memory but mark them not present - any
* buggy init-section access will create a
* kernel page fault:
*/
pte_clear(&init_mm, addr, ptep);
continue;
}
__ClearPageReserved(page);
init_page_count(page);
if (pte_huge(*ptep))
BUG_ON(!kdata_huge);
else
set_pte_at(&init_mm, addr, ptep,
pfn_pte(pfn, PAGE_KERNEL));
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
}
void free_initmem(void)
{
const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
/*
* Evict the dirty initdata on the boot cpu, evict the w1data
* wherever it's homed, and evict all the init code everywhere.
* We are guaranteed that no one will touch the init pages any
* more, and although other cpus may be touching the w1data,
* we only actually change the caching on tile64, which won't
* be keeping local copies in the other tiles' caches anyway.
*/
homecache_evict(&cpu_cacheable_map);
/* Free the data pages that we won't use again after init. */
free_init_pages("unused kernel data",
(unsigned long)_sinitdata,
(unsigned long)_einitdata);
/*
* Free the pages mapped from 0xc0000000 that correspond to code
* pages from MEM_SV_INTRPT that we won't use again after init.
*/
free_init_pages("unused kernel text",
(unsigned long)_sinittext - text_delta,
(unsigned long)_einittext - text_delta);
#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
/*
* Upgrade the .w1data section to globally cached.
* We don't do this on tilepro, since the cache architecture
* pretty much makes it irrelevant, and in any case we end
* up having racing issues with other tiles that may touch
* the data after we flush the cache but before we update
* the PTEs and flush the TLBs, causing sharer shootdowns
* later. Even though this is to clean data, it seems like
* an unnecessary complication.
*/
mark_w1data_ro();
#endif
/* Do a global TLB flush so everyone sees the changes. */
flush_tlb_all();
}