WSL2-Linux-Kernel/arch/x86/kvm/svm.c

2694 строки
69 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/kvm_host.h>
#include "kvm_svm.h"
#include "irq.h"
#include "mmu.h"
#include "kvm_cache_regs.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <asm/desc.h>
#include <asm/virtext.h>
#define __ex(x) __kvm_handle_fault_on_reboot(x)
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1
#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3
#define SVM_FEATURE_NPT (1 << 0)
#define SVM_FEATURE_LBRV (1 << 1)
#define SVM_FEATURE_SVML (1 << 2)
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
/* Turn on to get debugging output*/
/* #define NESTED_DEBUG */
#ifdef NESTED_DEBUG
#define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
#else
#define nsvm_printk(fmt, args...) do {} while(0)
#endif
/* enable NPT for AMD64 and X86 with PAE */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
static bool npt_enabled = true;
#else
static bool npt_enabled = false;
#endif
static int npt = 1;
module_param(npt, int, S_IRUGO);
static int nested = 0;
module_param(nested, int, S_IRUGO);
static void kvm_reput_irq(struct vcpu_svm *svm);
static void svm_flush_tlb(struct kvm_vcpu *vcpu);
static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override);
static int nested_svm_vmexit(struct vcpu_svm *svm);
static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
void *arg2, void *opaque);
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code);
static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_svm, vcpu);
}
static inline bool is_nested(struct vcpu_svm *svm)
{
return svm->nested_vmcb;
}
static unsigned long iopm_base;
struct kvm_ldttss_desc {
u16 limit0;
u16 base0;
unsigned base1 : 8, type : 5, dpl : 2, p : 1;
unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
u32 base3;
u32 zero1;
} __attribute__((packed));
struct svm_cpu_data {
int cpu;
u64 asid_generation;
u32 max_asid;
u32 next_asid;
struct kvm_ldttss_desc *tss_desc;
struct page *save_area;
};
static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
static uint32_t svm_features;
struct svm_init_data {
int cpu;
int r;
};
static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
#define MAX_INST_SIZE 15
static inline u32 svm_has(u32 feat)
{
return svm_features & feat;
}
static inline u8 pop_irq(struct kvm_vcpu *vcpu)
{
int word_index = __ffs(vcpu->arch.irq_summary);
int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
if (!vcpu->arch.irq_pending[word_index])
clear_bit(word_index, &vcpu->arch.irq_summary);
return irq;
}
static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
{
set_bit(irq, vcpu->arch.irq_pending);
set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
}
static inline void clgi(void)
{
asm volatile (__ex(SVM_CLGI));
}
static inline void stgi(void)
{
asm volatile (__ex(SVM_STGI));
}
static inline void invlpga(unsigned long addr, u32 asid)
{
asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
}
static inline unsigned long kvm_read_cr2(void)
{
unsigned long cr2;
asm volatile ("mov %%cr2, %0" : "=r" (cr2));
return cr2;
}
static inline void kvm_write_cr2(unsigned long val)
{
asm volatile ("mov %0, %%cr2" :: "r" (val));
}
static inline void force_new_asid(struct kvm_vcpu *vcpu)
{
to_svm(vcpu)->asid_generation--;
}
static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
{
force_new_asid(vcpu);
}
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (!npt_enabled && !(efer & EFER_LMA))
efer &= ~EFER_LME;
to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
vcpu->arch.shadow_efer = efer;
}
static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code)
{
struct vcpu_svm *svm = to_svm(vcpu);
/* If we are within a nested VM we'd better #VMEXIT and let the
guest handle the exception */
if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
return;
svm->vmcb->control.event_inj = nr
| SVM_EVTINJ_VALID
| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
| SVM_EVTINJ_TYPE_EXEPT;
svm->vmcb->control.event_inj_err = error_code;
}
static bool svm_exception_injected(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
}
static int is_external_interrupt(u32 info)
{
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!svm->next_rip) {
printk(KERN_DEBUG "%s: NOP\n", __func__);
return;
}
if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
__func__, kvm_rip_read(vcpu), svm->next_rip);
kvm_rip_write(vcpu, svm->next_rip);
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
vcpu->arch.interrupt_window_open = (svm->vcpu.arch.hflags & HF_GIF_MASK);
}
static int has_svm(void)
{
const char *msg;
if (!cpu_has_svm(&msg)) {
printk(KERN_INFO "has_svm: %s\n", msg);
return 0;
}
return 1;
}
static void svm_hardware_disable(void *garbage)
{
cpu_svm_disable();
}
static void svm_hardware_enable(void *garbage)
{
struct svm_cpu_data *svm_data;
uint64_t efer;
struct desc_ptr gdt_descr;
struct desc_struct *gdt;
int me = raw_smp_processor_id();
if (!has_svm()) {
printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
return;
}
svm_data = per_cpu(svm_data, me);
if (!svm_data) {
printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
me);
return;
}
svm_data->asid_generation = 1;
svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
svm_data->next_asid = svm_data->max_asid + 1;
asm volatile ("sgdt %0" : "=m"(gdt_descr));
gdt = (struct desc_struct *)gdt_descr.address;
svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
rdmsrl(MSR_EFER, efer);
wrmsrl(MSR_EFER, efer | EFER_SVME);
wrmsrl(MSR_VM_HSAVE_PA,
page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
}
static void svm_cpu_uninit(int cpu)
{
struct svm_cpu_data *svm_data
= per_cpu(svm_data, raw_smp_processor_id());
if (!svm_data)
return;
per_cpu(svm_data, raw_smp_processor_id()) = NULL;
__free_page(svm_data->save_area);
kfree(svm_data);
}
static int svm_cpu_init(int cpu)
{
struct svm_cpu_data *svm_data;
int r;
svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
if (!svm_data)
return -ENOMEM;
svm_data->cpu = cpu;
svm_data->save_area = alloc_page(GFP_KERNEL);
r = -ENOMEM;
if (!svm_data->save_area)
goto err_1;
per_cpu(svm_data, cpu) = svm_data;
return 0;
err_1:
kfree(svm_data);
return r;
}
static void set_msr_interception(u32 *msrpm, unsigned msr,
int read, int write)
{
int i;
for (i = 0; i < NUM_MSR_MAPS; i++) {
if (msr >= msrpm_ranges[i] &&
msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
u32 msr_offset = (i * MSRS_IN_RANGE + msr -
msrpm_ranges[i]) * 2;
u32 *base = msrpm + (msr_offset / 32);
u32 msr_shift = msr_offset % 32;
u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
*base = (*base & ~(0x3 << msr_shift)) |
(mask << msr_shift);
return;
}
}
BUG();
}
static void svm_vcpu_init_msrpm(u32 *msrpm)
{
memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
#ifdef CONFIG_X86_64
set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
#endif
set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
}
static void svm_enable_lbrv(struct vcpu_svm *svm)
{
u32 *msrpm = svm->msrpm;
svm->vmcb->control.lbr_ctl = 1;
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
}
static void svm_disable_lbrv(struct vcpu_svm *svm)
{
u32 *msrpm = svm->msrpm;
svm->vmcb->control.lbr_ctl = 0;
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
}
static __init int svm_hardware_setup(void)
{
int cpu;
struct page *iopm_pages;
void *iopm_va;
int r;
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
if (!iopm_pages)
return -ENOMEM;
iopm_va = page_address(iopm_pages);
memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
kvm_enable_efer_bits(EFER_FFXSR);
if (nested) {
printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
kvm_enable_efer_bits(EFER_SVME);
}
for_each_online_cpu(cpu) {
r = svm_cpu_init(cpu);
if (r)
goto err;
}
svm_features = cpuid_edx(SVM_CPUID_FUNC);
if (!svm_has(SVM_FEATURE_NPT))
npt_enabled = false;
if (npt_enabled && !npt) {
printk(KERN_INFO "kvm: Nested Paging disabled\n");
npt_enabled = false;
}
if (npt_enabled) {
printk(KERN_INFO "kvm: Nested Paging enabled\n");
kvm_enable_tdp();
} else
kvm_disable_tdp();
return 0;
err:
__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
iopm_base = 0;
return r;
}
static __exit void svm_hardware_unsetup(void)
{
int cpu;
for_each_online_cpu(cpu)
svm_cpu_uninit(cpu);
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
iopm_base = 0;
}
static void init_seg(struct vmcb_seg *seg)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
seg->limit = 0xffff;
seg->base = 0;
}
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | type;
seg->limit = 0xffff;
seg->base = 0;
}
static void init_vmcb(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
struct vmcb_save_area *save = &svm->vmcb->save;
control->intercept_cr_read = INTERCEPT_CR0_MASK |
INTERCEPT_CR3_MASK |
INTERCEPT_CR4_MASK;
control->intercept_cr_write = INTERCEPT_CR0_MASK |
INTERCEPT_CR3_MASK |
INTERCEPT_CR4_MASK |
INTERCEPT_CR8_MASK;
control->intercept_dr_read = INTERCEPT_DR0_MASK |
INTERCEPT_DR1_MASK |
INTERCEPT_DR2_MASK |
INTERCEPT_DR3_MASK;
control->intercept_dr_write = INTERCEPT_DR0_MASK |
INTERCEPT_DR1_MASK |
INTERCEPT_DR2_MASK |
INTERCEPT_DR3_MASK |
INTERCEPT_DR5_MASK |
INTERCEPT_DR7_MASK;
control->intercept_exceptions = (1 << PF_VECTOR) |
(1 << UD_VECTOR) |
(1 << MC_VECTOR);
control->intercept = (1ULL << INTERCEPT_INTR) |
(1ULL << INTERCEPT_NMI) |
(1ULL << INTERCEPT_SMI) |
(1ULL << INTERCEPT_CPUID) |
(1ULL << INTERCEPT_INVD) |
(1ULL << INTERCEPT_HLT) |
(1ULL << INTERCEPT_INVLPG) |
(1ULL << INTERCEPT_INVLPGA) |
(1ULL << INTERCEPT_IOIO_PROT) |
(1ULL << INTERCEPT_MSR_PROT) |
(1ULL << INTERCEPT_TASK_SWITCH) |
(1ULL << INTERCEPT_SHUTDOWN) |
(1ULL << INTERCEPT_VMRUN) |
(1ULL << INTERCEPT_VMMCALL) |
(1ULL << INTERCEPT_VMLOAD) |
(1ULL << INTERCEPT_VMSAVE) |
(1ULL << INTERCEPT_STGI) |
(1ULL << INTERCEPT_CLGI) |
(1ULL << INTERCEPT_SKINIT) |
(1ULL << INTERCEPT_WBINVD) |
(1ULL << INTERCEPT_MONITOR) |
(1ULL << INTERCEPT_MWAIT);
control->iopm_base_pa = iopm_base;
control->msrpm_base_pa = __pa(svm->msrpm);
control->tsc_offset = 0;
control->int_ctl = V_INTR_MASKING_MASK;
init_seg(&save->es);
init_seg(&save->ss);
init_seg(&save->ds);
init_seg(&save->fs);
init_seg(&save->gs);
save->cs.selector = 0xf000;
/* Executable/Readable Code Segment */
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
save->cs.limit = 0xffff;
/*
* cs.base should really be 0xffff0000, but vmx can't handle that, so
* be consistent with it.
*
* Replace when we have real mode working for vmx.
*/
save->cs.base = 0xf0000;
save->gdtr.limit = 0xffff;
save->idtr.limit = 0xffff;
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
save->efer = EFER_SVME;
save->dr6 = 0xffff0ff0;
save->dr7 = 0x400;
save->rflags = 2;
save->rip = 0x0000fff0;
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
/*
* cr0 val on cpu init should be 0x60000010, we enable cpu
* cache by default. the orderly way is to enable cache in bios.
*/
save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
save->cr4 = X86_CR4_PAE;
/* rdx = ?? */
if (npt_enabled) {
/* Setup VMCB for Nested Paging */
control->nested_ctl = 1;
control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
(1ULL << INTERCEPT_INVLPG));
control->intercept_exceptions &= ~(1 << PF_VECTOR);
control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
INTERCEPT_CR3_MASK);
control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
INTERCEPT_CR3_MASK);
save->g_pat = 0x0007040600070406ULL;
/* enable caching because the QEMU Bios doesn't enable it */
save->cr0 = X86_CR0_ET;
save->cr3 = 0;
save->cr4 = 0;
}
force_new_asid(&svm->vcpu);
svm->nested_vmcb = 0;
svm->vcpu.arch.hflags = HF_GIF_MASK;
}
static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
init_vmcb(svm);
if (vcpu->vcpu_id != 0) {
kvm_rip_write(vcpu, 0);
svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
}
vcpu->arch.regs_avail = ~0;
vcpu->arch.regs_dirty = ~0;
return 0;
}
static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
{
struct vcpu_svm *svm;
struct page *page;
struct page *msrpm_pages;
struct page *hsave_page;
struct page *nested_msrpm_pages;
int err;
svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!svm) {
err = -ENOMEM;
goto out;
}
err = kvm_vcpu_init(&svm->vcpu, kvm, id);
if (err)
goto free_svm;
page = alloc_page(GFP_KERNEL);
if (!page) {
err = -ENOMEM;
goto uninit;
}
err = -ENOMEM;
msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
if (!msrpm_pages)
goto uninit;
nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
if (!nested_msrpm_pages)
goto uninit;
svm->msrpm = page_address(msrpm_pages);
svm_vcpu_init_msrpm(svm->msrpm);
hsave_page = alloc_page(GFP_KERNEL);
if (!hsave_page)
goto uninit;
svm->hsave = page_address(hsave_page);
svm->nested_msrpm = page_address(nested_msrpm_pages);
svm->vmcb = page_address(page);
clear_page(svm->vmcb);
svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
svm->asid_generation = 0;
init_vmcb(svm);
fx_init(&svm->vcpu);
svm->vcpu.fpu_active = 1;
svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
if (svm->vcpu.vcpu_id == 0)
svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
return &svm->vcpu;
uninit:
kvm_vcpu_uninit(&svm->vcpu);
free_svm:
kmem_cache_free(kvm_vcpu_cache, svm);
out:
return ERR_PTR(err);
}
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
__free_page(virt_to_page(svm->hsave));
__free_pages(virt_to_page(svm->nested_msrpm), MSRPM_ALLOC_ORDER);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, svm);
}
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
int i;
if (unlikely(cpu != vcpu->cpu)) {
u64 tsc_this, delta;
/*
* Make sure that the guest sees a monotonically
* increasing TSC.
*/
rdtscll(tsc_this);
delta = vcpu->arch.host_tsc - tsc_this;
svm->vmcb->control.tsc_offset += delta;
vcpu->cpu = cpu;
kvm_migrate_timers(vcpu);
}
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
}
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
int i;
++vcpu->stat.host_state_reload;
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
rdtscll(vcpu->arch.host_tsc);
}
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
return to_svm(vcpu)->vmcb->save.rflags;
}
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
to_svm(vcpu)->vmcb->save.rflags = rflags;
}
static void svm_set_vintr(struct vcpu_svm *svm)
{
svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
}
static void svm_clear_vintr(struct vcpu_svm *svm)
{
svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
}
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
switch (seg) {
case VCPU_SREG_CS: return &save->cs;
case VCPU_SREG_DS: return &save->ds;
case VCPU_SREG_ES: return &save->es;
case VCPU_SREG_FS: return &save->fs;
case VCPU_SREG_GS: return &save->gs;
case VCPU_SREG_SS: return &save->ss;
case VCPU_SREG_TR: return &save->tr;
case VCPU_SREG_LDTR: return &save->ldtr;
}
BUG();
return NULL;
}
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
return s->base;
}
static void svm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
var->base = s->base;
var->limit = s->limit;
var->selector = s->selector;
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
switch (seg) {
case VCPU_SREG_CS:
/*
* SVM always stores 0 for the 'G' bit in the CS selector in
* the VMCB on a VMEXIT. This hurts cross-vendor migration:
* Intel's VMENTRY has a check on the 'G' bit.
*/
var->g = s->limit > 0xfffff;
break;
case VCPU_SREG_TR:
/*
* Work around a bug where the busy flag in the tr selector
* isn't exposed
*/
var->type |= 0x2;
break;
case VCPU_SREG_DS:
case VCPU_SREG_ES:
case VCPU_SREG_FS:
case VCPU_SREG_GS:
/*
* The accessed bit must always be set in the segment
* descriptor cache, although it can be cleared in the
* descriptor, the cached bit always remains at 1. Since
* Intel has a check on this, set it here to support
* cross-vendor migration.
*/
if (!var->unusable)
var->type |= 0x1;
break;
}
var->unusable = !var->present;
}
static int svm_get_cpl(struct kvm_vcpu *vcpu)
{
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
return save->cpl;
}
static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
dt->limit = svm->vmcb->save.idtr.limit;
dt->base = svm->vmcb->save.idtr.base;
}
static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.idtr.limit = dt->limit;
svm->vmcb->save.idtr.base = dt->base ;
}
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
dt->limit = svm->vmcb->save.gdtr.limit;
dt->base = svm->vmcb->save.gdtr.base;
}
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.gdtr.limit = dt->limit;
svm->vmcb->save.gdtr.base = dt->base ;
}
static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
}
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_svm *svm = to_svm(vcpu);
#ifdef CONFIG_X86_64
if (vcpu->arch.shadow_efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
vcpu->arch.shadow_efer |= EFER_LMA;
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
}
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
vcpu->arch.shadow_efer &= ~EFER_LMA;
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
}
}
#endif
if (npt_enabled)
goto set;
if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
vcpu->fpu_active = 1;
}
vcpu->arch.cr0 = cr0;
cr0 |= X86_CR0_PG | X86_CR0_WP;
if (!vcpu->fpu_active) {
svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
cr0 |= X86_CR0_TS;
}
set:
/*
* re-enable caching here because the QEMU bios
* does not do it - this results in some delay at
* reboot
*/
cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
svm->vmcb->save.cr0 = cr0;
}
static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
force_new_asid(vcpu);
vcpu->arch.cr4 = cr4;
if (!npt_enabled)
cr4 |= X86_CR4_PAE;
cr4 |= host_cr4_mce;
to_svm(vcpu)->vmcb->save.cr4 = cr4;
}
static void svm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_seg *s = svm_seg(vcpu, seg);
s->base = var->base;
s->limit = var->limit;
s->selector = var->selector;
if (var->unusable)
s->attrib = 0;
else {
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
}
if (seg == VCPU_SREG_CS)
svm->vmcb->save.cpl
= (svm->vmcb->save.cs.attrib
>> SVM_SELECTOR_DPL_SHIFT) & 3;
}
static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
{
int old_debug = vcpu->guest_debug;
struct vcpu_svm *svm = to_svm(vcpu);
vcpu->guest_debug = dbg->control;
svm->vmcb->control.intercept_exceptions &=
~((1 << DB_VECTOR) | (1 << BP_VECTOR));
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
if (vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
svm->vmcb->control.intercept_exceptions |=
1 << DB_VECTOR;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
svm->vmcb->control.intercept_exceptions |=
1 << BP_VECTOR;
} else
vcpu->guest_debug = 0;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
else
svm->vmcb->save.dr7 = vcpu->arch.dr7;
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
return 0;
}
static int svm_get_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 exit_int_info = svm->vmcb->control.exit_int_info;
if (is_external_interrupt(exit_int_info))
return exit_int_info & SVM_EVTINJ_VEC_MASK;
return -1;
}
static void load_host_msrs(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
#endif
}
static void save_host_msrs(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
#endif
}
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
{
if (svm_data->next_asid > svm_data->max_asid) {
++svm_data->asid_generation;
svm_data->next_asid = 1;
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
}
svm->vcpu.cpu = svm_data->cpu;
svm->asid_generation = svm_data->asid_generation;
svm->vmcb->control.asid = svm_data->next_asid++;
}
static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long val;
switch (dr) {
case 0 ... 3:
val = vcpu->arch.db[dr];
break;
case 6:
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
val = vcpu->arch.dr6;
else
val = svm->vmcb->save.dr6;
break;
case 7:
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
val = vcpu->arch.dr7;
else
val = svm->vmcb->save.dr7;
break;
default:
val = 0;
}
KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
return val;
}
static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
int *exception)
{
struct vcpu_svm *svm = to_svm(vcpu);
KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)value, handler);
*exception = 0;
switch (dr) {
case 0 ... 3:
vcpu->arch.db[dr] = value;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
vcpu->arch.eff_db[dr] = value;
return;
case 4 ... 5:
if (vcpu->arch.cr4 & X86_CR4_DE)
*exception = UD_VECTOR;
return;
case 6:
if (value & 0xffffffff00000000ULL) {
*exception = GP_VECTOR;
return;
}
vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
return;
case 7:
if (value & 0xffffffff00000000ULL) {
*exception = GP_VECTOR;
return;
}
vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
svm->vmcb->save.dr7 = vcpu->arch.dr7;
vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
}
return;
default:
/* FIXME: Possible case? */
printk(KERN_DEBUG "%s: unexpected dr %u\n",
__func__, dr);
*exception = UD_VECTOR;
return;
}
}
static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
u32 exit_int_info = svm->vmcb->control.exit_int_info;
struct kvm *kvm = svm->vcpu.kvm;
u64 fault_address;
u32 error_code;
bool event_injection = false;
if (!irqchip_in_kernel(kvm) &&
is_external_interrupt(exit_int_info)) {
event_injection = true;
push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
}
fault_address = svm->vmcb->control.exit_info_2;
error_code = svm->vmcb->control.exit_info_1;
if (!npt_enabled)
KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
(u32)fault_address, (u32)(fault_address >> 32),
handler);
else
KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
(u32)fault_address, (u32)(fault_address >> 32),
handler);
/*
* FIXME: Tis shouldn't be necessary here, but there is a flush
* missing in the MMU code. Until we find this bug, flush the
* complete TLB here on an NPF
*/
if (npt_enabled)
svm_flush_tlb(&svm->vcpu);
if (!npt_enabled && event_injection)
kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
}
static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (!(svm->vcpu.guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
kvm_queue_exception(&svm->vcpu, DB_VECTOR);
return 1;
}
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = DB_VECTOR;
return 0;
}
static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = BP_VECTOR;
return 0;
}
static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
int er;
er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
if (er != EMULATE_DONE)
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
svm->vmcb->save.cr0 &= ~X86_CR0_TS;
svm->vcpu.fpu_active = 1;
return 1;
}
static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
/*
* On an #MC intercept the MCE handler is not called automatically in
* the host. So do it by hand here.
*/
asm volatile (
"int $0x12\n");
/* not sure if we ever come back to this point */
return 1;
}
static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
/*
* VMCB is undefined after a SHUTDOWN intercept
* so reinitialize it.
*/
clear_page(svm->vmcb);
init_vmcb(svm);
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
int size, in, string;
unsigned port;
++svm->vcpu.stat.io_exits;
svm->next_rip = svm->vmcb->control.exit_info_2;
string = (io_info & SVM_IOIO_STR_MASK) != 0;
if (string) {
if (emulate_instruction(&svm->vcpu,
kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
return 0;
return 1;
}
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
port = io_info >> 16;
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
skip_emulated_instruction(&svm->vcpu);
return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
}
static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
KVMTRACE_0D(NMI, &svm->vcpu, handler);
return 1;
}
static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
++svm->vcpu.stat.irq_exits;
KVMTRACE_0D(INTR, &svm->vcpu, handler);
return 1;
}
static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
return 1;
}
static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
skip_emulated_instruction(&svm->vcpu);
return kvm_emulate_halt(&svm->vcpu);
}
static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
kvm_emulate_hypercall(&svm->vcpu);
return 1;
}
static int nested_svm_check_permissions(struct vcpu_svm *svm)
{
if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
|| !is_paging(&svm->vcpu)) {
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
if (svm->vmcb->save.cpl) {
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
return 0;
}
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code)
{
if (is_nested(svm)) {
svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = error_code;
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
if (nested_svm_exit_handled(svm, false)) {
nsvm_printk("VMexit -> EXCP 0x%x\n", nr);
nested_svm_vmexit(svm);
return 1;
}
}
return 0;
}
static inline int nested_svm_intr(struct vcpu_svm *svm)
{
if (is_nested(svm)) {
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
return 0;
if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
return 0;
svm->vmcb->control.exit_code = SVM_EXIT_INTR;
if (nested_svm_exit_handled(svm, false)) {
nsvm_printk("VMexit -> INTR\n");
nested_svm_vmexit(svm);
return 1;
}
}
return 0;
}
static struct page *nested_svm_get_page(struct vcpu_svm *svm, u64 gpa)
{
struct page *page;
down_read(&current->mm->mmap_sem);
page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
up_read(&current->mm->mmap_sem);
if (is_error_page(page)) {
printk(KERN_INFO "%s: could not find page at 0x%llx\n",
__func__, gpa);
kvm_release_page_clean(page);
kvm_inject_gp(&svm->vcpu, 0);
return NULL;
}
return page;
}
static int nested_svm_do(struct vcpu_svm *svm,
u64 arg1_gpa, u64 arg2_gpa, void *opaque,
int (*handler)(struct vcpu_svm *svm,
void *arg1,
void *arg2,
void *opaque))
{
struct page *arg1_page;
struct page *arg2_page = NULL;
void *arg1;
void *arg2 = NULL;
int retval;
arg1_page = nested_svm_get_page(svm, arg1_gpa);
if(arg1_page == NULL)
return 1;
if (arg2_gpa) {
arg2_page = nested_svm_get_page(svm, arg2_gpa);
if(arg2_page == NULL) {
kvm_release_page_clean(arg1_page);
return 1;
}
}
arg1 = kmap_atomic(arg1_page, KM_USER0);
if (arg2_gpa)
arg2 = kmap_atomic(arg2_page, KM_USER1);
retval = handler(svm, arg1, arg2, opaque);
kunmap_atomic(arg1, KM_USER0);
if (arg2_gpa)
kunmap_atomic(arg2, KM_USER1);
kvm_release_page_dirty(arg1_page);
if (arg2_gpa)
kvm_release_page_dirty(arg2_page);
return retval;
}
static int nested_svm_exit_handled_real(struct vcpu_svm *svm,
void *arg1,
void *arg2,
void *opaque)
{
struct vmcb *nested_vmcb = (struct vmcb *)arg1;
bool kvm_overrides = *(bool *)opaque;
u32 exit_code = svm->vmcb->control.exit_code;
if (kvm_overrides) {
switch (exit_code) {
case SVM_EXIT_INTR:
case SVM_EXIT_NMI:
return 0;
/* For now we are always handling NPFs when using them */
case SVM_EXIT_NPF:
if (npt_enabled)
return 0;
break;
/* When we're shadowing, trap PFs */
case SVM_EXIT_EXCP_BASE + PF_VECTOR:
if (!npt_enabled)
return 0;
break;
default:
break;
}
}
switch (exit_code) {
case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
if (nested_vmcb->control.intercept_cr_read & cr_bits)
return 1;
break;
}
case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
if (nested_vmcb->control.intercept_cr_write & cr_bits)
return 1;
break;
}
case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
if (nested_vmcb->control.intercept_dr_read & dr_bits)
return 1;
break;
}
case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
if (nested_vmcb->control.intercept_dr_write & dr_bits)
return 1;
break;
}
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
if (nested_vmcb->control.intercept_exceptions & excp_bits)
return 1;
break;
}
default: {
u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
nsvm_printk("exit code: 0x%x\n", exit_code);
if (nested_vmcb->control.intercept & exit_bits)
return 1;
}
}
return 0;
}
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm,
void *arg1, void *arg2,
void *opaque)
{
struct vmcb *nested_vmcb = (struct vmcb *)arg1;
u8 *msrpm = (u8 *)arg2;
u32 t0, t1;
u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
u32 param = svm->vmcb->control.exit_info_1 & 1;
if (!(nested_vmcb->control.intercept & (1ULL << INTERCEPT_MSR_PROT)))
return 0;
switch(msr) {
case 0 ... 0x1fff:
t0 = (msr * 2) % 8;
t1 = msr / 8;
break;
case 0xc0000000 ... 0xc0001fff:
t0 = (8192 + msr - 0xc0000000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
case 0xc0010000 ... 0xc0011fff:
t0 = (16384 + msr - 0xc0010000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
default:
return 1;
break;
}
if (msrpm[t1] & ((1 << param) << t0))
return 1;
return 0;
}
static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override)
{
bool k = kvm_override;
switch (svm->vmcb->control.exit_code) {
case SVM_EXIT_MSR:
return nested_svm_do(svm, svm->nested_vmcb,
svm->nested_vmcb_msrpm, NULL,
nested_svm_exit_handled_msr);
default: break;
}
return nested_svm_do(svm, svm->nested_vmcb, 0, &k,
nested_svm_exit_handled_real);
}
static int nested_svm_vmexit_real(struct vcpu_svm *svm, void *arg1,
void *arg2, void *opaque)
{
struct vmcb *nested_vmcb = (struct vmcb *)arg1;
struct vmcb *hsave = svm->hsave;
u64 nested_save[] = { nested_vmcb->save.cr0,
nested_vmcb->save.cr3,
nested_vmcb->save.cr4,
nested_vmcb->save.efer,
nested_vmcb->control.intercept_cr_read,
nested_vmcb->control.intercept_cr_write,
nested_vmcb->control.intercept_dr_read,
nested_vmcb->control.intercept_dr_write,
nested_vmcb->control.intercept_exceptions,
nested_vmcb->control.intercept,
nested_vmcb->control.msrpm_base_pa,
nested_vmcb->control.iopm_base_pa,
nested_vmcb->control.tsc_offset };
/* Give the current vmcb to the guest */
memcpy(nested_vmcb, svm->vmcb, sizeof(struct vmcb));
nested_vmcb->save.cr0 = nested_save[0];
if (!npt_enabled)
nested_vmcb->save.cr3 = nested_save[1];
nested_vmcb->save.cr4 = nested_save[2];
nested_vmcb->save.efer = nested_save[3];
nested_vmcb->control.intercept_cr_read = nested_save[4];
nested_vmcb->control.intercept_cr_write = nested_save[5];
nested_vmcb->control.intercept_dr_read = nested_save[6];
nested_vmcb->control.intercept_dr_write = nested_save[7];
nested_vmcb->control.intercept_exceptions = nested_save[8];
nested_vmcb->control.intercept = nested_save[9];
nested_vmcb->control.msrpm_base_pa = nested_save[10];
nested_vmcb->control.iopm_base_pa = nested_save[11];
nested_vmcb->control.tsc_offset = nested_save[12];
/* We always set V_INTR_MASKING and remember the old value in hflags */
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
if ((nested_vmcb->control.int_ctl & V_IRQ_MASK) &&
(nested_vmcb->control.int_vector)) {
nsvm_printk("WARNING: IRQ 0x%x still enabled on #VMEXIT\n",
nested_vmcb->control.int_vector);
}
/* Restore the original control entries */
svm->vmcb->control = hsave->control;
/* Kill any pending exceptions */
if (svm->vcpu.arch.exception.pending == true)
nsvm_printk("WARNING: Pending Exception\n");
svm->vcpu.arch.exception.pending = false;
/* Restore selected save entries */
svm->vmcb->save.es = hsave->save.es;
svm->vmcb->save.cs = hsave->save.cs;
svm->vmcb->save.ss = hsave->save.ss;
svm->vmcb->save.ds = hsave->save.ds;
svm->vmcb->save.gdtr = hsave->save.gdtr;
svm->vmcb->save.idtr = hsave->save.idtr;
svm->vmcb->save.rflags = hsave->save.rflags;
svm_set_efer(&svm->vcpu, hsave->save.efer);
svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
svm_set_cr4(&svm->vcpu, hsave->save.cr4);
if (npt_enabled) {
svm->vmcb->save.cr3 = hsave->save.cr3;
svm->vcpu.arch.cr3 = hsave->save.cr3;
} else {
kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
}
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
svm->vmcb->save.dr7 = 0;
svm->vmcb->save.cpl = 0;
svm->vmcb->control.exit_int_info = 0;
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
/* Exit nested SVM mode */
svm->nested_vmcb = 0;
return 0;
}
static int nested_svm_vmexit(struct vcpu_svm *svm)
{
nsvm_printk("VMexit\n");
if (nested_svm_do(svm, svm->nested_vmcb, 0,
NULL, nested_svm_vmexit_real))
return 1;
kvm_mmu_reset_context(&svm->vcpu);
kvm_mmu_load(&svm->vcpu);
return 0;
}
static int nested_svm_vmrun_msrpm(struct vcpu_svm *svm, void *arg1,
void *arg2, void *opaque)
{
int i;
u32 *nested_msrpm = (u32*)arg1;
for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
svm->nested_msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
svm->vmcb->control.msrpm_base_pa = __pa(svm->nested_msrpm);
return 0;
}
static int nested_svm_vmrun(struct vcpu_svm *svm, void *arg1,
void *arg2, void *opaque)
{
struct vmcb *nested_vmcb = (struct vmcb *)arg1;
struct vmcb *hsave = svm->hsave;
/* nested_vmcb is our indicator if nested SVM is activated */
svm->nested_vmcb = svm->vmcb->save.rax;
/* Clear internal status */
svm->vcpu.arch.exception.pending = false;
/* Save the old vmcb, so we don't need to pick what we save, but
can restore everything when a VMEXIT occurs */
memcpy(hsave, svm->vmcb, sizeof(struct vmcb));
/* We need to remember the original CR3 in the SPT case */
if (!npt_enabled)
hsave->save.cr3 = svm->vcpu.arch.cr3;
hsave->save.cr4 = svm->vcpu.arch.cr4;
hsave->save.rip = svm->next_rip;
if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
svm->vcpu.arch.hflags |= HF_HIF_MASK;
else
svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
/* Load the nested guest state */
svm->vmcb->save.es = nested_vmcb->save.es;
svm->vmcb->save.cs = nested_vmcb->save.cs;
svm->vmcb->save.ss = nested_vmcb->save.ss;
svm->vmcb->save.ds = nested_vmcb->save.ds;
svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
svm->vmcb->save.idtr = nested_vmcb->save.idtr;
svm->vmcb->save.rflags = nested_vmcb->save.rflags;
svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
if (npt_enabled) {
svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
} else {
kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
kvm_mmu_reset_context(&svm->vcpu);
}
svm->vmcb->save.cr2 = nested_vmcb->save.cr2;
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
/* In case we don't even reach vcpu_run, the fields are not updated */
svm->vmcb->save.rax = nested_vmcb->save.rax;
svm->vmcb->save.rsp = nested_vmcb->save.rsp;
svm->vmcb->save.rip = nested_vmcb->save.rip;
svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
svm->vmcb->save.cpl = nested_vmcb->save.cpl;
/* We don't want a nested guest to be more powerful than the guest,
so all intercepts are ORed */
svm->vmcb->control.intercept_cr_read |=
nested_vmcb->control.intercept_cr_read;
svm->vmcb->control.intercept_cr_write |=
nested_vmcb->control.intercept_cr_write;
svm->vmcb->control.intercept_dr_read |=
nested_vmcb->control.intercept_dr_read;
svm->vmcb->control.intercept_dr_write |=
nested_vmcb->control.intercept_dr_write;
svm->vmcb->control.intercept_exceptions |=
nested_vmcb->control.intercept_exceptions;
svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
svm->nested_vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
force_new_asid(&svm->vcpu);
svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
nested_vmcb->control.int_ctl);
}
if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
svm->vcpu.arch.hflags |= HF_VINTR_MASK;
else
svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
nested_vmcb->control.exit_int_info,
nested_vmcb->control.int_state);
svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
svm->vmcb->control.int_state = nested_vmcb->control.int_state;
svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
nsvm_printk("Injecting Event: 0x%x\n",
nested_vmcb->control.event_inj);
svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
svm->vcpu.arch.hflags |= HF_GIF_MASK;
return 0;
}
static int nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
{
to_vmcb->save.fs = from_vmcb->save.fs;
to_vmcb->save.gs = from_vmcb->save.gs;
to_vmcb->save.tr = from_vmcb->save.tr;
to_vmcb->save.ldtr = from_vmcb->save.ldtr;
to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
to_vmcb->save.star = from_vmcb->save.star;
to_vmcb->save.lstar = from_vmcb->save.lstar;
to_vmcb->save.cstar = from_vmcb->save.cstar;
to_vmcb->save.sfmask = from_vmcb->save.sfmask;
to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
return 1;
}
static int nested_svm_vmload(struct vcpu_svm *svm, void *nested_vmcb,
void *arg2, void *opaque)
{
return nested_svm_vmloadsave((struct vmcb *)nested_vmcb, svm->vmcb);
}
static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
void *arg2, void *opaque)
{
return nested_svm_vmloadsave(svm->vmcb, (struct vmcb *)nested_vmcb);
}
static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmload);
return 1;
}
static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmsave);
return 1;
}
static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
nsvm_printk("VMrun\n");
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
if (nested_svm_do(svm, svm->vmcb->save.rax, 0,
NULL, nested_svm_vmrun))
return 1;
if (nested_svm_do(svm, svm->nested_vmcb_msrpm, 0,
NULL, nested_svm_vmrun_msrpm))
return 1;
return 1;
}
static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
svm->vcpu.arch.hflags |= HF_GIF_MASK;
return 1;
}
static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
/* After a CLGI no interrupts should come */
svm_clear_vintr(svm);
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
return 1;
}
static int invalid_op_interception(struct vcpu_svm *svm,
struct kvm_run *kvm_run)
{
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
static int task_switch_interception(struct vcpu_svm *svm,
struct kvm_run *kvm_run)
{
u16 tss_selector;
tss_selector = (u16)svm->vmcb->control.exit_info_1;
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
return kvm_task_switch(&svm->vcpu, tss_selector,
TASK_SWITCH_IRET);
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
return kvm_task_switch(&svm->vcpu, tss_selector,
TASK_SWITCH_JMP);
return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
}
static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
kvm_emulate_cpuid(&svm->vcpu);
return 1;
}
static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
return 1;
}
static int emulate_on_interception(struct vcpu_svm *svm,
struct kvm_run *kvm_run)
{
if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
return 1;
}
static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
if (irqchip_in_kernel(svm->vcpu.kvm))
return 1;
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
{
struct vcpu_svm *svm = to_svm(vcpu);
switch (ecx) {
case MSR_IA32_TIME_STAMP_COUNTER: {
u64 tsc;
rdtscll(tsc);
*data = svm->vmcb->control.tsc_offset + tsc;
break;
}
case MSR_K6_STAR:
*data = svm->vmcb->save.star;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
*data = svm->vmcb->save.lstar;
break;
case MSR_CSTAR:
*data = svm->vmcb->save.cstar;
break;
case MSR_KERNEL_GS_BASE:
*data = svm->vmcb->save.kernel_gs_base;
break;
case MSR_SYSCALL_MASK:
*data = svm->vmcb->save.sfmask;
break;
#endif
case MSR_IA32_SYSENTER_CS:
*data = svm->vmcb->save.sysenter_cs;
break;
case MSR_IA32_SYSENTER_EIP:
*data = svm->vmcb->save.sysenter_eip;
break;
case MSR_IA32_SYSENTER_ESP:
*data = svm->vmcb->save.sysenter_esp;
break;
/* Nobody will change the following 5 values in the VMCB so
we can safely return them on rdmsr. They will always be 0
until LBRV is implemented. */
case MSR_IA32_DEBUGCTLMSR:
*data = svm->vmcb->save.dbgctl;
break;
case MSR_IA32_LASTBRANCHFROMIP:
*data = svm->vmcb->save.br_from;
break;
case MSR_IA32_LASTBRANCHTOIP:
*data = svm->vmcb->save.br_to;
break;
case MSR_IA32_LASTINTFROMIP:
*data = svm->vmcb->save.last_excp_from;
break;
case MSR_IA32_LASTINTTOIP:
*data = svm->vmcb->save.last_excp_to;
break;
case MSR_VM_HSAVE_PA:
*data = svm->hsave_msr;
break;
case MSR_VM_CR:
*data = 0;
break;
case MSR_IA32_UCODE_REV:
*data = 0x01000065;
break;
default:
return kvm_get_msr_common(vcpu, ecx, data);
}
return 0;
}
static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
u64 data;
if (svm_get_msr(&svm->vcpu, ecx, &data))
kvm_inject_gp(&svm->vcpu, 0);
else {
KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
(u32)(data >> 32), handler);
svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
skip_emulated_instruction(&svm->vcpu);
}
return 1;
}
static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
{
struct vcpu_svm *svm = to_svm(vcpu);
switch (ecx) {
case MSR_IA32_TIME_STAMP_COUNTER: {
u64 tsc;
rdtscll(tsc);
svm->vmcb->control.tsc_offset = data - tsc;
break;
}
case MSR_K6_STAR:
svm->vmcb->save.star = data;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
svm->vmcb->save.lstar = data;
break;
case MSR_CSTAR:
svm->vmcb->save.cstar = data;
break;
case MSR_KERNEL_GS_BASE:
svm->vmcb->save.kernel_gs_base = data;
break;
case MSR_SYSCALL_MASK:
svm->vmcb->save.sfmask = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
svm->vmcb->save.sysenter_cs = data;
break;
case MSR_IA32_SYSENTER_EIP:
svm->vmcb->save.sysenter_eip = data;
break;
case MSR_IA32_SYSENTER_ESP:
svm->vmcb->save.sysenter_esp = data;
break;
case MSR_IA32_DEBUGCTLMSR:
if (!svm_has(SVM_FEATURE_LBRV)) {
pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
__func__, data);
break;
}
if (data & DEBUGCTL_RESERVED_BITS)
return 1;
svm->vmcb->save.dbgctl = data;
if (data & (1ULL<<0))
svm_enable_lbrv(svm);
else
svm_disable_lbrv(svm);
break;
case MSR_K7_EVNTSEL0:
case MSR_K7_EVNTSEL1:
case MSR_K7_EVNTSEL2:
case MSR_K7_EVNTSEL3:
case MSR_K7_PERFCTR0:
case MSR_K7_PERFCTR1:
case MSR_K7_PERFCTR2:
case MSR_K7_PERFCTR3:
/*
* Just discard all writes to the performance counters; this
* should keep both older linux and windows 64-bit guests
* happy
*/
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
break;
case MSR_VM_HSAVE_PA:
svm->hsave_msr = data;
break;
default:
return kvm_set_msr_common(vcpu, ecx, data);
}
return 0;
}
static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
handler);
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
if (svm_set_msr(&svm->vcpu, ecx, data))
kvm_inject_gp(&svm->vcpu, 0);
else
skip_emulated_instruction(&svm->vcpu);
return 1;
}
static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (svm->vmcb->control.exit_info_1)
return wrmsr_interception(svm, kvm_run);
else
return rdmsr_interception(svm, kvm_run);
}
static int interrupt_window_interception(struct vcpu_svm *svm,
struct kvm_run *kvm_run)
{
KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
svm_clear_vintr(svm);
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
/*
* If the user space waits to inject interrupts, exit as soon as
* possible
*/
if (kvm_run->request_interrupt_window &&
!svm->vcpu.arch.irq_summary) {
++svm->vcpu.stat.irq_window_exits;
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
return 0;
}
return 1;
}
static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
struct kvm_run *kvm_run) = {
[SVM_EXIT_READ_CR0] = emulate_on_interception,
[SVM_EXIT_READ_CR3] = emulate_on_interception,
[SVM_EXIT_READ_CR4] = emulate_on_interception,
[SVM_EXIT_READ_CR8] = emulate_on_interception,
/* for now: */
[SVM_EXIT_WRITE_CR0] = emulate_on_interception,
[SVM_EXIT_WRITE_CR3] = emulate_on_interception,
[SVM_EXIT_WRITE_CR4] = emulate_on_interception,
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
[SVM_EXIT_READ_DR0] = emulate_on_interception,
[SVM_EXIT_READ_DR1] = emulate_on_interception,
[SVM_EXIT_READ_DR2] = emulate_on_interception,
[SVM_EXIT_READ_DR3] = emulate_on_interception,
[SVM_EXIT_WRITE_DR0] = emulate_on_interception,
[SVM_EXIT_WRITE_DR1] = emulate_on_interception,
[SVM_EXIT_WRITE_DR2] = emulate_on_interception,
[SVM_EXIT_WRITE_DR3] = emulate_on_interception,
[SVM_EXIT_WRITE_DR5] = emulate_on_interception,
[SVM_EXIT_WRITE_DR7] = emulate_on_interception,
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
[SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
[SVM_EXIT_INTR] = intr_interception,
[SVM_EXIT_NMI] = nmi_interception,
[SVM_EXIT_SMI] = nop_on_interception,
[SVM_EXIT_INIT] = nop_on_interception,
[SVM_EXIT_VINTR] = interrupt_window_interception,
/* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
[SVM_EXIT_CPUID] = cpuid_interception,
[SVM_EXIT_INVD] = emulate_on_interception,
[SVM_EXIT_HLT] = halt_interception,
[SVM_EXIT_INVLPG] = invlpg_interception,
[SVM_EXIT_INVLPGA] = invalid_op_interception,
[SVM_EXIT_IOIO] = io_interception,
[SVM_EXIT_MSR] = msr_interception,
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
[SVM_EXIT_VMRUN] = vmrun_interception,
[SVM_EXIT_VMMCALL] = vmmcall_interception,
[SVM_EXIT_VMLOAD] = vmload_interception,
[SVM_EXIT_VMSAVE] = vmsave_interception,
[SVM_EXIT_STGI] = stgi_interception,
[SVM_EXIT_CLGI] = clgi_interception,
[SVM_EXIT_SKINIT] = invalid_op_interception,
[SVM_EXIT_WBINVD] = emulate_on_interception,
[SVM_EXIT_MONITOR] = invalid_op_interception,
[SVM_EXIT_MWAIT] = invalid_op_interception,
[SVM_EXIT_NPF] = pf_interception,
};
static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 exit_code = svm->vmcb->control.exit_code;
KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
(u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
if (is_nested(svm)) {
nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
exit_code, svm->vmcb->control.exit_info_1,
svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
if (nested_svm_exit_handled(svm, true)) {
nested_svm_vmexit(svm);
nsvm_printk("-> #VMEXIT\n");
return 1;
}
}
if (npt_enabled) {
int mmu_reload = 0;
if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
svm_set_cr0(vcpu, svm->vmcb->save.cr0);
mmu_reload = 1;
}
vcpu->arch.cr0 = svm->vmcb->save.cr0;
vcpu->arch.cr3 = svm->vmcb->save.cr3;
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
}
if (mmu_reload) {
kvm_mmu_reset_context(vcpu);
kvm_mmu_load(vcpu);
}
}
kvm_reput_irq(svm);
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
kvm_run->fail_entry.hardware_entry_failure_reason
= svm->vmcb->control.exit_code;
return 0;
}
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
exit_code != SVM_EXIT_NPF)
printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
"exit_code 0x%x\n",
__func__, svm->vmcb->control.exit_int_info,
exit_code);
if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
|| !svm_exit_handlers[exit_code]) {
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
kvm_run->hw.hardware_exit_reason = exit_code;
return 0;
}
return svm_exit_handlers[exit_code](svm, kvm_run);
}
static void reload_tss(struct kvm_vcpu *vcpu)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
load_TR_desc();
}
static void pre_svm_run(struct vcpu_svm *svm)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
if (svm->vcpu.cpu != cpu ||
svm->asid_generation != svm_data->asid_generation)
new_asid(svm, svm_data);
}
static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
{
struct vmcb_control_area *control;
KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
++svm->vcpu.stat.irq_injections;
control = &svm->vmcb->control;
control->int_vector = irq;
control->int_ctl &= ~V_INTR_PRIO_MASK;
control->int_ctl |= V_IRQ_MASK |
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
}
static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
{
struct vcpu_svm *svm = to_svm(vcpu);
nested_svm_intr(svm);
svm_inject_irq(svm, irq);
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
int max_irr, tpr;
if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
return;
vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
max_irr = kvm_lapic_find_highest_irr(vcpu);
if (max_irr == -1)
return;
tpr = kvm_lapic_get_cr8(vcpu) << 4;
if (tpr >= (max_irr & 0xf0))
vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
}
static void svm_intr_assist(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
int intr_vector = -1;
if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
intr_vector = vmcb->control.exit_int_info &
SVM_EVTINJ_VEC_MASK;
vmcb->control.exit_int_info = 0;
svm_inject_irq(svm, intr_vector);
goto out;
}
if (vmcb->control.int_ctl & V_IRQ_MASK)
goto out;
if (!kvm_cpu_has_interrupt(vcpu))
goto out;
if (nested_svm_intr(svm))
goto out;
if (!(svm->vcpu.arch.hflags & HF_GIF_MASK))
goto out;
if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
(vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
/* unable to deliver irq, set pending irq */
svm_set_vintr(svm);
svm_inject_irq(svm, 0x0);
goto out;
}
/* Okay, we can deliver the interrupt: grab it and update PIC state. */
intr_vector = kvm_cpu_get_interrupt(vcpu);
svm_inject_irq(svm, intr_vector);
out:
update_cr8_intercept(vcpu);
}
static void kvm_reput_irq(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
if ((control->int_ctl & V_IRQ_MASK)
&& !irqchip_in_kernel(svm->vcpu.kvm)) {
control->int_ctl &= ~V_IRQ_MASK;
push_irq(&svm->vcpu, control->int_vector);
}
svm->vcpu.arch.interrupt_window_open =
!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
(svm->vcpu.arch.hflags & HF_GIF_MASK);
}
static void svm_do_inject_vector(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
int word_index = __ffs(vcpu->arch.irq_summary);
int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
if (!vcpu->arch.irq_pending[word_index])
clear_bit(word_index, &vcpu->arch.irq_summary);
svm_inject_irq(svm, irq);
}
static void do_interrupt_requests(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
if (nested_svm_intr(svm))
return;
svm->vcpu.arch.interrupt_window_open =
(!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
(svm->vmcb->save.rflags & X86_EFLAGS_IF) &&
(svm->vcpu.arch.hflags & HF_GIF_MASK));
if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
/*
* If interrupts enabled, and not blocked by sti or mov ss. Good.
*/
svm_do_inject_vector(svm);
/*
* Interrupts blocked. Wait for unblock.
*/
if (!svm->vcpu.arch.interrupt_window_open &&
(svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
svm_set_vintr(svm);
else
svm_clear_vintr(svm);
}
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
return 0;
}
static void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
force_new_asid(vcpu);
}
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
{
}
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
kvm_lapic_set_tpr(vcpu, cr8);
}
}
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 cr8;
if (!irqchip_in_kernel(vcpu->kvm))
return;
cr8 = kvm_get_cr8(vcpu);
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}
#ifdef CONFIG_X86_64
#define R "r"
#else
#define R "e"
#endif
static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
struct vcpu_svm *svm = to_svm(vcpu);
u16 fs_selector;
u16 gs_selector;
u16 ldt_selector;
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
pre_svm_run(svm);
sync_lapic_to_cr8(vcpu);
save_host_msrs(vcpu);
fs_selector = kvm_read_fs();
gs_selector = kvm_read_gs();
ldt_selector = kvm_read_ldt();
svm->host_cr2 = kvm_read_cr2();
if (!is_nested(svm))
svm->vmcb->save.cr2 = vcpu->arch.cr2;
/* required for live migration with NPT */
if (npt_enabled)
svm->vmcb->save.cr3 = vcpu->arch.cr3;
clgi();
local_irq_enable();
asm volatile (
"push %%"R"bp; \n\t"
"mov %c[rbx](%[svm]), %%"R"bx \n\t"
"mov %c[rcx](%[svm]), %%"R"cx \n\t"
"mov %c[rdx](%[svm]), %%"R"dx \n\t"
"mov %c[rsi](%[svm]), %%"R"si \n\t"
"mov %c[rdi](%[svm]), %%"R"di \n\t"
"mov %c[rbp](%[svm]), %%"R"bp \n\t"
#ifdef CONFIG_X86_64
"mov %c[r8](%[svm]), %%r8 \n\t"
"mov %c[r9](%[svm]), %%r9 \n\t"
"mov %c[r10](%[svm]), %%r10 \n\t"
"mov %c[r11](%[svm]), %%r11 \n\t"
"mov %c[r12](%[svm]), %%r12 \n\t"
"mov %c[r13](%[svm]), %%r13 \n\t"
"mov %c[r14](%[svm]), %%r14 \n\t"
"mov %c[r15](%[svm]), %%r15 \n\t"
#endif
/* Enter guest mode */
"push %%"R"ax \n\t"
"mov %c[vmcb](%[svm]), %%"R"ax \n\t"
__ex(SVM_VMLOAD) "\n\t"
__ex(SVM_VMRUN) "\n\t"
__ex(SVM_VMSAVE) "\n\t"
"pop %%"R"ax \n\t"
/* Save guest registers, load host registers */
"mov %%"R"bx, %c[rbx](%[svm]) \n\t"
"mov %%"R"cx, %c[rcx](%[svm]) \n\t"
"mov %%"R"dx, %c[rdx](%[svm]) \n\t"
"mov %%"R"si, %c[rsi](%[svm]) \n\t"
"mov %%"R"di, %c[rdi](%[svm]) \n\t"
"mov %%"R"bp, %c[rbp](%[svm]) \n\t"
#ifdef CONFIG_X86_64
"mov %%r8, %c[r8](%[svm]) \n\t"
"mov %%r9, %c[r9](%[svm]) \n\t"
"mov %%r10, %c[r10](%[svm]) \n\t"
"mov %%r11, %c[r11](%[svm]) \n\t"
"mov %%r12, %c[r12](%[svm]) \n\t"
"mov %%r13, %c[r13](%[svm]) \n\t"
"mov %%r14, %c[r14](%[svm]) \n\t"
"mov %%r15, %c[r15](%[svm]) \n\t"
#endif
"pop %%"R"bp"
:
: [svm]"a"(svm),
[vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
[rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
#ifdef CONFIG_X86_64
, [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
[r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
[r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
#endif
: "cc", "memory"
, R"bx", R"cx", R"dx", R"si", R"di"
#ifdef CONFIG_X86_64
, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
#endif
);
vcpu->arch.cr2 = svm->vmcb->save.cr2;
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
kvm_write_cr2(svm->host_cr2);
kvm_load_fs(fs_selector);
kvm_load_gs(gs_selector);
kvm_load_ldt(ldt_selector);
load_host_msrs(vcpu);
reload_tss(vcpu);
local_irq_disable();
stgi();
sync_cr8_to_lapic(vcpu);
svm->next_rip = 0;
}
#undef R
static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (npt_enabled) {
svm->vmcb->control.nested_cr3 = root;
force_new_asid(vcpu);
return;
}
svm->vmcb->save.cr3 = root;
force_new_asid(vcpu);
if (vcpu->fpu_active) {
svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
svm->vmcb->save.cr0 |= X86_CR0_TS;
vcpu->fpu_active = 0;
}
}
static int is_disabled(void)
{
u64 vm_cr;
rdmsrl(MSR_VM_CR, vm_cr);
if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
return 1;
return 0;
}
static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xd9;
}
static void svm_check_processor_compat(void *rtn)
{
*(int *)rtn = 0;
}
static bool svm_cpu_has_accelerated_tpr(void)
{
return false;
}
static int get_npt_level(void)
{
#ifdef CONFIG_X86_64
return PT64_ROOT_LEVEL;
#else
return PT32E_ROOT_LEVEL;
#endif
}
static int svm_get_mt_mask_shift(void)
{
return 0;
}
static struct kvm_x86_ops svm_x86_ops = {
.cpu_has_kvm_support = has_svm,
.disabled_by_bios = is_disabled,
.hardware_setup = svm_hardware_setup,
.hardware_unsetup = svm_hardware_unsetup,
.check_processor_compatibility = svm_check_processor_compat,
.hardware_enable = svm_hardware_enable,
.hardware_disable = svm_hardware_disable,
.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
.vcpu_create = svm_create_vcpu,
.vcpu_free = svm_free_vcpu,
.vcpu_reset = svm_vcpu_reset,
.prepare_guest_switch = svm_prepare_guest_switch,
.vcpu_load = svm_vcpu_load,
.vcpu_put = svm_vcpu_put,
.set_guest_debug = svm_guest_debug,
.get_msr = svm_get_msr,
.set_msr = svm_set_msr,
.get_segment_base = svm_get_segment_base,
.get_segment = svm_get_segment,
.set_segment = svm_set_segment,
.get_cpl = svm_get_cpl,
.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
.set_cr0 = svm_set_cr0,
.set_cr3 = svm_set_cr3,
.set_cr4 = svm_set_cr4,
.set_efer = svm_set_efer,
.get_idt = svm_get_idt,
.set_idt = svm_set_idt,
.get_gdt = svm_get_gdt,
.set_gdt = svm_set_gdt,
.get_dr = svm_get_dr,
.set_dr = svm_set_dr,
.get_rflags = svm_get_rflags,
.set_rflags = svm_set_rflags,
.tlb_flush = svm_flush_tlb,
.run = svm_vcpu_run,
.handle_exit = handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.patch_hypercall = svm_patch_hypercall,
.get_irq = svm_get_irq,
.set_irq = svm_set_irq,
.queue_exception = svm_queue_exception,
.exception_injected = svm_exception_injected,
.inject_pending_irq = svm_intr_assist,
.inject_pending_vectors = do_interrupt_requests,
.set_tss_addr = svm_set_tss_addr,
.get_tdp_level = get_npt_level,
.get_mt_mask_shift = svm_get_mt_mask_shift,
};
static int __init svm_init(void)
{
return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
THIS_MODULE);
}
static void __exit svm_exit(void)
{
kvm_exit();
}
module_init(svm_init)
module_exit(svm_exit)