3091 строка
67 KiB
C
3091 строка
67 KiB
C
/*
|
|
* Single-step support.
|
|
*
|
|
* Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/prefetch.h>
|
|
#include <asm/sstep.h>
|
|
#include <asm/processor.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/cpu_has_feature.h>
|
|
#include <asm/cputable.h>
|
|
|
|
extern char system_call_common[];
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Bits in SRR1 that are copied from MSR */
|
|
#define MSR_MASK 0xffffffff87c0ffffUL
|
|
#else
|
|
#define MSR_MASK 0x87c0ffff
|
|
#endif
|
|
|
|
/* Bits in XER */
|
|
#define XER_SO 0x80000000U
|
|
#define XER_OV 0x40000000U
|
|
#define XER_CA 0x20000000U
|
|
#define XER_OV32 0x00080000U
|
|
#define XER_CA32 0x00040000U
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
/*
|
|
* Functions in ldstfp.S
|
|
*/
|
|
extern void get_fpr(int rn, double *p);
|
|
extern void put_fpr(int rn, const double *p);
|
|
extern void get_vr(int rn, __vector128 *p);
|
|
extern void put_vr(int rn, __vector128 *p);
|
|
extern void load_vsrn(int vsr, const void *p);
|
|
extern void store_vsrn(int vsr, void *p);
|
|
extern void conv_sp_to_dp(const float *sp, double *dp);
|
|
extern void conv_dp_to_sp(const double *dp, float *sp);
|
|
#endif
|
|
|
|
#ifdef __powerpc64__
|
|
/*
|
|
* Functions in quad.S
|
|
*/
|
|
extern int do_lq(unsigned long ea, unsigned long *regs);
|
|
extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
|
|
extern int do_lqarx(unsigned long ea, unsigned long *regs);
|
|
extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
|
|
unsigned int *crp);
|
|
#endif
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
|
#define IS_LE 1
|
|
#define IS_BE 0
|
|
#else
|
|
#define IS_LE 0
|
|
#define IS_BE 1
|
|
#endif
|
|
|
|
/*
|
|
* Emulate the truncation of 64 bit values in 32-bit mode.
|
|
*/
|
|
static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
|
|
unsigned long val)
|
|
{
|
|
#ifdef __powerpc64__
|
|
if ((msr & MSR_64BIT) == 0)
|
|
val &= 0xffffffffUL;
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Determine whether a conditional branch instruction would branch.
|
|
*/
|
|
static nokprobe_inline int branch_taken(unsigned int instr,
|
|
const struct pt_regs *regs,
|
|
struct instruction_op *op)
|
|
{
|
|
unsigned int bo = (instr >> 21) & 0x1f;
|
|
unsigned int bi;
|
|
|
|
if ((bo & 4) == 0) {
|
|
/* decrement counter */
|
|
op->type |= DECCTR;
|
|
if (((bo >> 1) & 1) ^ (regs->ctr == 1))
|
|
return 0;
|
|
}
|
|
if ((bo & 0x10) == 0) {
|
|
/* check bit from CR */
|
|
bi = (instr >> 16) & 0x1f;
|
|
if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static nokprobe_inline long address_ok(struct pt_regs *regs,
|
|
unsigned long ea, int nb)
|
|
{
|
|
if (!user_mode(regs))
|
|
return 1;
|
|
if (__access_ok(ea, nb, USER_DS))
|
|
return 1;
|
|
if (__access_ok(ea, 1, USER_DS))
|
|
/* Access overlaps the end of the user region */
|
|
regs->dar = USER_DS.seg;
|
|
else
|
|
regs->dar = ea;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate effective address for a D-form instruction
|
|
*/
|
|
static nokprobe_inline unsigned long dform_ea(unsigned int instr,
|
|
const struct pt_regs *regs)
|
|
{
|
|
int ra;
|
|
unsigned long ea;
|
|
|
|
ra = (instr >> 16) & 0x1f;
|
|
ea = (signed short) instr; /* sign-extend */
|
|
if (ra)
|
|
ea += regs->gpr[ra];
|
|
|
|
return ea;
|
|
}
|
|
|
|
#ifdef __powerpc64__
|
|
/*
|
|
* Calculate effective address for a DS-form instruction
|
|
*/
|
|
static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
|
|
const struct pt_regs *regs)
|
|
{
|
|
int ra;
|
|
unsigned long ea;
|
|
|
|
ra = (instr >> 16) & 0x1f;
|
|
ea = (signed short) (instr & ~3); /* sign-extend */
|
|
if (ra)
|
|
ea += regs->gpr[ra];
|
|
|
|
return ea;
|
|
}
|
|
|
|
/*
|
|
* Calculate effective address for a DQ-form instruction
|
|
*/
|
|
static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
|
|
const struct pt_regs *regs)
|
|
{
|
|
int ra;
|
|
unsigned long ea;
|
|
|
|
ra = (instr >> 16) & 0x1f;
|
|
ea = (signed short) (instr & ~0xf); /* sign-extend */
|
|
if (ra)
|
|
ea += regs->gpr[ra];
|
|
|
|
return ea;
|
|
}
|
|
#endif /* __powerpc64 */
|
|
|
|
/*
|
|
* Calculate effective address for an X-form instruction
|
|
*/
|
|
static nokprobe_inline unsigned long xform_ea(unsigned int instr,
|
|
const struct pt_regs *regs)
|
|
{
|
|
int ra, rb;
|
|
unsigned long ea;
|
|
|
|
ra = (instr >> 16) & 0x1f;
|
|
rb = (instr >> 11) & 0x1f;
|
|
ea = regs->gpr[rb];
|
|
if (ra)
|
|
ea += regs->gpr[ra];
|
|
|
|
return ea;
|
|
}
|
|
|
|
/*
|
|
* Return the largest power of 2, not greater than sizeof(unsigned long),
|
|
* such that x is a multiple of it.
|
|
*/
|
|
static nokprobe_inline unsigned long max_align(unsigned long x)
|
|
{
|
|
x |= sizeof(unsigned long);
|
|
return x & -x; /* isolates rightmost bit */
|
|
}
|
|
|
|
static nokprobe_inline unsigned long byterev_2(unsigned long x)
|
|
{
|
|
return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
|
|
}
|
|
|
|
static nokprobe_inline unsigned long byterev_4(unsigned long x)
|
|
{
|
|
return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
|
|
((x & 0xff00) << 8) | ((x & 0xff) << 24);
|
|
}
|
|
|
|
#ifdef __powerpc64__
|
|
static nokprobe_inline unsigned long byterev_8(unsigned long x)
|
|
{
|
|
return (byterev_4(x) << 32) | byterev_4(x >> 32);
|
|
}
|
|
#endif
|
|
|
|
static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
|
|
{
|
|
switch (nb) {
|
|
case 2:
|
|
*(u16 *)ptr = byterev_2(*(u16 *)ptr);
|
|
break;
|
|
case 4:
|
|
*(u32 *)ptr = byterev_4(*(u32 *)ptr);
|
|
break;
|
|
#ifdef __powerpc64__
|
|
case 8:
|
|
*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
|
|
break;
|
|
case 16: {
|
|
unsigned long *up = (unsigned long *)ptr;
|
|
unsigned long tmp;
|
|
tmp = byterev_8(up[0]);
|
|
up[0] = byterev_8(up[1]);
|
|
up[1] = tmp;
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
}
|
|
|
|
static nokprobe_inline int read_mem_aligned(unsigned long *dest,
|
|
unsigned long ea, int nb,
|
|
struct pt_regs *regs)
|
|
{
|
|
int err = 0;
|
|
unsigned long x = 0;
|
|
|
|
switch (nb) {
|
|
case 1:
|
|
err = __get_user(x, (unsigned char __user *) ea);
|
|
break;
|
|
case 2:
|
|
err = __get_user(x, (unsigned short __user *) ea);
|
|
break;
|
|
case 4:
|
|
err = __get_user(x, (unsigned int __user *) ea);
|
|
break;
|
|
#ifdef __powerpc64__
|
|
case 8:
|
|
err = __get_user(x, (unsigned long __user *) ea);
|
|
break;
|
|
#endif
|
|
}
|
|
if (!err)
|
|
*dest = x;
|
|
else
|
|
regs->dar = ea;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Copy from userspace to a buffer, using the largest possible
|
|
* aligned accesses, up to sizeof(long).
|
|
*/
|
|
static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
|
|
struct pt_regs *regs)
|
|
{
|
|
int err = 0;
|
|
int c;
|
|
|
|
for (; nb > 0; nb -= c) {
|
|
c = max_align(ea);
|
|
if (c > nb)
|
|
c = max_align(nb);
|
|
switch (c) {
|
|
case 1:
|
|
err = __get_user(*dest, (unsigned char __user *) ea);
|
|
break;
|
|
case 2:
|
|
err = __get_user(*(u16 *)dest,
|
|
(unsigned short __user *) ea);
|
|
break;
|
|
case 4:
|
|
err = __get_user(*(u32 *)dest,
|
|
(unsigned int __user *) ea);
|
|
break;
|
|
#ifdef __powerpc64__
|
|
case 8:
|
|
err = __get_user(*(unsigned long *)dest,
|
|
(unsigned long __user *) ea);
|
|
break;
|
|
#endif
|
|
}
|
|
if (err) {
|
|
regs->dar = ea;
|
|
return err;
|
|
}
|
|
dest += c;
|
|
ea += c;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
|
|
unsigned long ea, int nb,
|
|
struct pt_regs *regs)
|
|
{
|
|
union {
|
|
unsigned long ul;
|
|
u8 b[sizeof(unsigned long)];
|
|
} u;
|
|
int i;
|
|
int err;
|
|
|
|
u.ul = 0;
|
|
i = IS_BE ? sizeof(unsigned long) - nb : 0;
|
|
err = copy_mem_in(&u.b[i], ea, nb, regs);
|
|
if (!err)
|
|
*dest = u.ul;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Read memory at address ea for nb bytes, return 0 for success
|
|
* or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
|
|
* If nb < sizeof(long), the result is right-justified on BE systems.
|
|
*/
|
|
static int read_mem(unsigned long *dest, unsigned long ea, int nb,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (!address_ok(regs, ea, nb))
|
|
return -EFAULT;
|
|
if ((ea & (nb - 1)) == 0)
|
|
return read_mem_aligned(dest, ea, nb, regs);
|
|
return read_mem_unaligned(dest, ea, nb, regs);
|
|
}
|
|
NOKPROBE_SYMBOL(read_mem);
|
|
|
|
static nokprobe_inline int write_mem_aligned(unsigned long val,
|
|
unsigned long ea, int nb,
|
|
struct pt_regs *regs)
|
|
{
|
|
int err = 0;
|
|
|
|
switch (nb) {
|
|
case 1:
|
|
err = __put_user(val, (unsigned char __user *) ea);
|
|
break;
|
|
case 2:
|
|
err = __put_user(val, (unsigned short __user *) ea);
|
|
break;
|
|
case 4:
|
|
err = __put_user(val, (unsigned int __user *) ea);
|
|
break;
|
|
#ifdef __powerpc64__
|
|
case 8:
|
|
err = __put_user(val, (unsigned long __user *) ea);
|
|
break;
|
|
#endif
|
|
}
|
|
if (err)
|
|
regs->dar = ea;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Copy from a buffer to userspace, using the largest possible
|
|
* aligned accesses, up to sizeof(long).
|
|
*/
|
|
static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
|
|
struct pt_regs *regs)
|
|
{
|
|
int err = 0;
|
|
int c;
|
|
|
|
for (; nb > 0; nb -= c) {
|
|
c = max_align(ea);
|
|
if (c > nb)
|
|
c = max_align(nb);
|
|
switch (c) {
|
|
case 1:
|
|
err = __put_user(*dest, (unsigned char __user *) ea);
|
|
break;
|
|
case 2:
|
|
err = __put_user(*(u16 *)dest,
|
|
(unsigned short __user *) ea);
|
|
break;
|
|
case 4:
|
|
err = __put_user(*(u32 *)dest,
|
|
(unsigned int __user *) ea);
|
|
break;
|
|
#ifdef __powerpc64__
|
|
case 8:
|
|
err = __put_user(*(unsigned long *)dest,
|
|
(unsigned long __user *) ea);
|
|
break;
|
|
#endif
|
|
}
|
|
if (err) {
|
|
regs->dar = ea;
|
|
return err;
|
|
}
|
|
dest += c;
|
|
ea += c;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static nokprobe_inline int write_mem_unaligned(unsigned long val,
|
|
unsigned long ea, int nb,
|
|
struct pt_regs *regs)
|
|
{
|
|
union {
|
|
unsigned long ul;
|
|
u8 b[sizeof(unsigned long)];
|
|
} u;
|
|
int i;
|
|
|
|
u.ul = val;
|
|
i = IS_BE ? sizeof(unsigned long) - nb : 0;
|
|
return copy_mem_out(&u.b[i], ea, nb, regs);
|
|
}
|
|
|
|
/*
|
|
* Write memory at address ea for nb bytes, return 0 for success
|
|
* or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
|
|
*/
|
|
static int write_mem(unsigned long val, unsigned long ea, int nb,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (!address_ok(regs, ea, nb))
|
|
return -EFAULT;
|
|
if ((ea & (nb - 1)) == 0)
|
|
return write_mem_aligned(val, ea, nb, regs);
|
|
return write_mem_unaligned(val, ea, nb, regs);
|
|
}
|
|
NOKPROBE_SYMBOL(write_mem);
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
/*
|
|
* These access either the real FP register or the image in the
|
|
* thread_struct, depending on regs->msr & MSR_FP.
|
|
*/
|
|
static int do_fp_load(struct instruction_op *op, unsigned long ea,
|
|
struct pt_regs *regs, bool cross_endian)
|
|
{
|
|
int err, rn, nb;
|
|
union {
|
|
int i;
|
|
unsigned int u;
|
|
float f;
|
|
double d[2];
|
|
unsigned long l[2];
|
|
u8 b[2 * sizeof(double)];
|
|
} u;
|
|
|
|
nb = GETSIZE(op->type);
|
|
if (!address_ok(regs, ea, nb))
|
|
return -EFAULT;
|
|
rn = op->reg;
|
|
err = copy_mem_in(u.b, ea, nb, regs);
|
|
if (err)
|
|
return err;
|
|
if (unlikely(cross_endian)) {
|
|
do_byte_reverse(u.b, min(nb, 8));
|
|
if (nb == 16)
|
|
do_byte_reverse(&u.b[8], 8);
|
|
}
|
|
preempt_disable();
|
|
if (nb == 4) {
|
|
if (op->type & FPCONV)
|
|
conv_sp_to_dp(&u.f, &u.d[0]);
|
|
else if (op->type & SIGNEXT)
|
|
u.l[0] = u.i;
|
|
else
|
|
u.l[0] = u.u;
|
|
}
|
|
if (regs->msr & MSR_FP)
|
|
put_fpr(rn, &u.d[0]);
|
|
else
|
|
current->thread.TS_FPR(rn) = u.l[0];
|
|
if (nb == 16) {
|
|
/* lfdp */
|
|
rn |= 1;
|
|
if (regs->msr & MSR_FP)
|
|
put_fpr(rn, &u.d[1]);
|
|
else
|
|
current->thread.TS_FPR(rn) = u.l[1];
|
|
}
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(do_fp_load);
|
|
|
|
static int do_fp_store(struct instruction_op *op, unsigned long ea,
|
|
struct pt_regs *regs, bool cross_endian)
|
|
{
|
|
int rn, nb;
|
|
union {
|
|
unsigned int u;
|
|
float f;
|
|
double d[2];
|
|
unsigned long l[2];
|
|
u8 b[2 * sizeof(double)];
|
|
} u;
|
|
|
|
nb = GETSIZE(op->type);
|
|
if (!address_ok(regs, ea, nb))
|
|
return -EFAULT;
|
|
rn = op->reg;
|
|
preempt_disable();
|
|
if (regs->msr & MSR_FP)
|
|
get_fpr(rn, &u.d[0]);
|
|
else
|
|
u.l[0] = current->thread.TS_FPR(rn);
|
|
if (nb == 4) {
|
|
if (op->type & FPCONV)
|
|
conv_dp_to_sp(&u.d[0], &u.f);
|
|
else
|
|
u.u = u.l[0];
|
|
}
|
|
if (nb == 16) {
|
|
rn |= 1;
|
|
if (regs->msr & MSR_FP)
|
|
get_fpr(rn, &u.d[1]);
|
|
else
|
|
u.l[1] = current->thread.TS_FPR(rn);
|
|
}
|
|
preempt_enable();
|
|
if (unlikely(cross_endian)) {
|
|
do_byte_reverse(u.b, min(nb, 8));
|
|
if (nb == 16)
|
|
do_byte_reverse(&u.b[8], 8);
|
|
}
|
|
return copy_mem_out(u.b, ea, nb, regs);
|
|
}
|
|
NOKPROBE_SYMBOL(do_fp_store);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* For Altivec/VMX, no need to worry about alignment */
|
|
static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
|
|
int size, struct pt_regs *regs,
|
|
bool cross_endian)
|
|
{
|
|
int err;
|
|
union {
|
|
__vector128 v;
|
|
u8 b[sizeof(__vector128)];
|
|
} u = {};
|
|
|
|
if (!address_ok(regs, ea & ~0xfUL, 16))
|
|
return -EFAULT;
|
|
/* align to multiple of size */
|
|
ea &= ~(size - 1);
|
|
err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
|
|
if (err)
|
|
return err;
|
|
if (unlikely(cross_endian))
|
|
do_byte_reverse(&u.b[ea & 0xf], size);
|
|
preempt_disable();
|
|
if (regs->msr & MSR_VEC)
|
|
put_vr(rn, &u.v);
|
|
else
|
|
current->thread.vr_state.vr[rn] = u.v;
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
|
|
static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
|
|
int size, struct pt_regs *regs,
|
|
bool cross_endian)
|
|
{
|
|
union {
|
|
__vector128 v;
|
|
u8 b[sizeof(__vector128)];
|
|
} u;
|
|
|
|
if (!address_ok(regs, ea & ~0xfUL, 16))
|
|
return -EFAULT;
|
|
/* align to multiple of size */
|
|
ea &= ~(size - 1);
|
|
|
|
preempt_disable();
|
|
if (regs->msr & MSR_VEC)
|
|
get_vr(rn, &u.v);
|
|
else
|
|
u.v = current->thread.vr_state.vr[rn];
|
|
preempt_enable();
|
|
if (unlikely(cross_endian))
|
|
do_byte_reverse(&u.b[ea & 0xf], size);
|
|
return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
|
|
}
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef __powerpc64__
|
|
static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
|
|
int reg, bool cross_endian)
|
|
{
|
|
int err;
|
|
|
|
if (!address_ok(regs, ea, 16))
|
|
return -EFAULT;
|
|
/* if aligned, should be atomic */
|
|
if ((ea & 0xf) == 0) {
|
|
err = do_lq(ea, ®s->gpr[reg]);
|
|
} else {
|
|
err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
|
|
if (!err)
|
|
err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
|
|
}
|
|
if (!err && unlikely(cross_endian))
|
|
do_byte_reverse(®s->gpr[reg], 16);
|
|
return err;
|
|
}
|
|
|
|
static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
|
|
int reg, bool cross_endian)
|
|
{
|
|
int err;
|
|
unsigned long vals[2];
|
|
|
|
if (!address_ok(regs, ea, 16))
|
|
return -EFAULT;
|
|
vals[0] = regs->gpr[reg];
|
|
vals[1] = regs->gpr[reg + 1];
|
|
if (unlikely(cross_endian))
|
|
do_byte_reverse(vals, 16);
|
|
|
|
/* if aligned, should be atomic */
|
|
if ((ea & 0xf) == 0)
|
|
return do_stq(ea, vals[0], vals[1]);
|
|
|
|
err = write_mem(vals[IS_LE], ea, 8, regs);
|
|
if (!err)
|
|
err = write_mem(vals[IS_BE], ea + 8, 8, regs);
|
|
return err;
|
|
}
|
|
#endif /* __powerpc64 */
|
|
|
|
#ifdef CONFIG_VSX
|
|
void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
|
|
const void *mem, bool rev)
|
|
{
|
|
int size, read_size;
|
|
int i, j;
|
|
const unsigned int *wp;
|
|
const unsigned short *hp;
|
|
const unsigned char *bp;
|
|
|
|
size = GETSIZE(op->type);
|
|
reg->d[0] = reg->d[1] = 0;
|
|
|
|
switch (op->element_size) {
|
|
case 16:
|
|
/* whole vector; lxv[x] or lxvl[l] */
|
|
if (size == 0)
|
|
break;
|
|
memcpy(reg, mem, size);
|
|
if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
|
|
rev = !rev;
|
|
if (rev)
|
|
do_byte_reverse(reg, 16);
|
|
break;
|
|
case 8:
|
|
/* scalar loads, lxvd2x, lxvdsx */
|
|
read_size = (size >= 8) ? 8 : size;
|
|
i = IS_LE ? 8 : 8 - read_size;
|
|
memcpy(®->b[i], mem, read_size);
|
|
if (rev)
|
|
do_byte_reverse(®->b[i], 8);
|
|
if (size < 8) {
|
|
if (op->type & SIGNEXT) {
|
|
/* size == 4 is the only case here */
|
|
reg->d[IS_LE] = (signed int) reg->d[IS_LE];
|
|
} else if (op->vsx_flags & VSX_FPCONV) {
|
|
preempt_disable();
|
|
conv_sp_to_dp(®->fp[1 + IS_LE],
|
|
®->dp[IS_LE]);
|
|
preempt_enable();
|
|
}
|
|
} else {
|
|
if (size == 16) {
|
|
unsigned long v = *(unsigned long *)(mem + 8);
|
|
reg->d[IS_BE] = !rev ? v : byterev_8(v);
|
|
} else if (op->vsx_flags & VSX_SPLAT)
|
|
reg->d[IS_BE] = reg->d[IS_LE];
|
|
}
|
|
break;
|
|
case 4:
|
|
/* lxvw4x, lxvwsx */
|
|
wp = mem;
|
|
for (j = 0; j < size / 4; ++j) {
|
|
i = IS_LE ? 3 - j : j;
|
|
reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
|
|
}
|
|
if (op->vsx_flags & VSX_SPLAT) {
|
|
u32 val = reg->w[IS_LE ? 3 : 0];
|
|
for (; j < 4; ++j) {
|
|
i = IS_LE ? 3 - j : j;
|
|
reg->w[i] = val;
|
|
}
|
|
}
|
|
break;
|
|
case 2:
|
|
/* lxvh8x */
|
|
hp = mem;
|
|
for (j = 0; j < size / 2; ++j) {
|
|
i = IS_LE ? 7 - j : j;
|
|
reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
|
|
}
|
|
break;
|
|
case 1:
|
|
/* lxvb16x */
|
|
bp = mem;
|
|
for (j = 0; j < size; ++j) {
|
|
i = IS_LE ? 15 - j : j;
|
|
reg->b[i] = *bp++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(emulate_vsx_load);
|
|
NOKPROBE_SYMBOL(emulate_vsx_load);
|
|
|
|
void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
|
|
void *mem, bool rev)
|
|
{
|
|
int size, write_size;
|
|
int i, j;
|
|
union vsx_reg buf;
|
|
unsigned int *wp;
|
|
unsigned short *hp;
|
|
unsigned char *bp;
|
|
|
|
size = GETSIZE(op->type);
|
|
|
|
switch (op->element_size) {
|
|
case 16:
|
|
/* stxv, stxvx, stxvl, stxvll */
|
|
if (size == 0)
|
|
break;
|
|
if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
|
|
rev = !rev;
|
|
if (rev) {
|
|
/* reverse 16 bytes */
|
|
buf.d[0] = byterev_8(reg->d[1]);
|
|
buf.d[1] = byterev_8(reg->d[0]);
|
|
reg = &buf;
|
|
}
|
|
memcpy(mem, reg, size);
|
|
break;
|
|
case 8:
|
|
/* scalar stores, stxvd2x */
|
|
write_size = (size >= 8) ? 8 : size;
|
|
i = IS_LE ? 8 : 8 - write_size;
|
|
if (size < 8 && op->vsx_flags & VSX_FPCONV) {
|
|
buf.d[0] = buf.d[1] = 0;
|
|
preempt_disable();
|
|
conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
|
|
preempt_enable();
|
|
reg = &buf;
|
|
}
|
|
memcpy(mem, ®->b[i], write_size);
|
|
if (size == 16)
|
|
memcpy(mem + 8, ®->d[IS_BE], 8);
|
|
if (unlikely(rev)) {
|
|
do_byte_reverse(mem, write_size);
|
|
if (size == 16)
|
|
do_byte_reverse(mem + 8, 8);
|
|
}
|
|
break;
|
|
case 4:
|
|
/* stxvw4x */
|
|
wp = mem;
|
|
for (j = 0; j < size / 4; ++j) {
|
|
i = IS_LE ? 3 - j : j;
|
|
*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
|
|
}
|
|
break;
|
|
case 2:
|
|
/* stxvh8x */
|
|
hp = mem;
|
|
for (j = 0; j < size / 2; ++j) {
|
|
i = IS_LE ? 7 - j : j;
|
|
*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
|
|
}
|
|
break;
|
|
case 1:
|
|
/* stvxb16x */
|
|
bp = mem;
|
|
for (j = 0; j < size; ++j) {
|
|
i = IS_LE ? 15 - j : j;
|
|
*bp++ = reg->b[i];
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(emulate_vsx_store);
|
|
NOKPROBE_SYMBOL(emulate_vsx_store);
|
|
|
|
static nokprobe_inline int do_vsx_load(struct instruction_op *op,
|
|
unsigned long ea, struct pt_regs *regs,
|
|
bool cross_endian)
|
|
{
|
|
int reg = op->reg;
|
|
u8 mem[16];
|
|
union vsx_reg buf;
|
|
int size = GETSIZE(op->type);
|
|
|
|
if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
|
|
return -EFAULT;
|
|
|
|
emulate_vsx_load(op, &buf, mem, cross_endian);
|
|
preempt_disable();
|
|
if (reg < 32) {
|
|
/* FP regs + extensions */
|
|
if (regs->msr & MSR_FP) {
|
|
load_vsrn(reg, &buf);
|
|
} else {
|
|
current->thread.fp_state.fpr[reg][0] = buf.d[0];
|
|
current->thread.fp_state.fpr[reg][1] = buf.d[1];
|
|
}
|
|
} else {
|
|
if (regs->msr & MSR_VEC)
|
|
load_vsrn(reg, &buf);
|
|
else
|
|
current->thread.vr_state.vr[reg - 32] = buf.v;
|
|
}
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
|
|
static nokprobe_inline int do_vsx_store(struct instruction_op *op,
|
|
unsigned long ea, struct pt_regs *regs,
|
|
bool cross_endian)
|
|
{
|
|
int reg = op->reg;
|
|
u8 mem[16];
|
|
union vsx_reg buf;
|
|
int size = GETSIZE(op->type);
|
|
|
|
if (!address_ok(regs, ea, size))
|
|
return -EFAULT;
|
|
|
|
preempt_disable();
|
|
if (reg < 32) {
|
|
/* FP regs + extensions */
|
|
if (regs->msr & MSR_FP) {
|
|
store_vsrn(reg, &buf);
|
|
} else {
|
|
buf.d[0] = current->thread.fp_state.fpr[reg][0];
|
|
buf.d[1] = current->thread.fp_state.fpr[reg][1];
|
|
}
|
|
} else {
|
|
if (regs->msr & MSR_VEC)
|
|
store_vsrn(reg, &buf);
|
|
else
|
|
buf.v = current->thread.vr_state.vr[reg - 32];
|
|
}
|
|
preempt_enable();
|
|
emulate_vsx_store(op, &buf, mem, cross_endian);
|
|
return copy_mem_out(mem, ea, size, regs);
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
|
|
int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
|
|
{
|
|
int err;
|
|
unsigned long i, size;
|
|
|
|
#ifdef __powerpc64__
|
|
size = ppc64_caches.l1d.block_size;
|
|
if (!(regs->msr & MSR_64BIT))
|
|
ea &= 0xffffffffUL;
|
|
#else
|
|
size = L1_CACHE_BYTES;
|
|
#endif
|
|
ea &= ~(size - 1);
|
|
if (!address_ok(regs, ea, size))
|
|
return -EFAULT;
|
|
for (i = 0; i < size; i += sizeof(long)) {
|
|
err = __put_user(0, (unsigned long __user *) (ea + i));
|
|
if (err) {
|
|
regs->dar = ea;
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(emulate_dcbz);
|
|
|
|
#define __put_user_asmx(x, addr, err, op, cr) \
|
|
__asm__ __volatile__( \
|
|
"1: " op " %2,0,%3\n" \
|
|
" mfcr %1\n" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: li %0,%4\n" \
|
|
" b 2b\n" \
|
|
".previous\n" \
|
|
EX_TABLE(1b, 3b) \
|
|
: "=r" (err), "=r" (cr) \
|
|
: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
|
|
|
|
#define __get_user_asmx(x, addr, err, op) \
|
|
__asm__ __volatile__( \
|
|
"1: "op" %1,0,%2\n" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: li %0,%3\n" \
|
|
" b 2b\n" \
|
|
".previous\n" \
|
|
EX_TABLE(1b, 3b) \
|
|
: "=r" (err), "=r" (x) \
|
|
: "r" (addr), "i" (-EFAULT), "0" (err))
|
|
|
|
#define __cacheop_user_asmx(addr, err, op) \
|
|
__asm__ __volatile__( \
|
|
"1: "op" 0,%1\n" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: li %0,%3\n" \
|
|
" b 2b\n" \
|
|
".previous\n" \
|
|
EX_TABLE(1b, 3b) \
|
|
: "=r" (err) \
|
|
: "r" (addr), "i" (-EFAULT), "0" (err))
|
|
|
|
static nokprobe_inline void set_cr0(const struct pt_regs *regs,
|
|
struct instruction_op *op)
|
|
{
|
|
long val = op->val;
|
|
|
|
op->type |= SETCC;
|
|
op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
|
|
#ifdef __powerpc64__
|
|
if (!(regs->msr & MSR_64BIT))
|
|
val = (int) val;
|
|
#endif
|
|
if (val < 0)
|
|
op->ccval |= 0x80000000;
|
|
else if (val > 0)
|
|
op->ccval |= 0x40000000;
|
|
else
|
|
op->ccval |= 0x20000000;
|
|
}
|
|
|
|
static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
if (val)
|
|
op->xerval |= XER_CA32;
|
|
else
|
|
op->xerval &= ~XER_CA32;
|
|
}
|
|
}
|
|
|
|
static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
|
|
struct instruction_op *op, int rd,
|
|
unsigned long val1, unsigned long val2,
|
|
unsigned long carry_in)
|
|
{
|
|
unsigned long val = val1 + val2;
|
|
|
|
if (carry_in)
|
|
++val;
|
|
op->type = COMPUTE + SETREG + SETXER;
|
|
op->reg = rd;
|
|
op->val = val;
|
|
#ifdef __powerpc64__
|
|
if (!(regs->msr & MSR_64BIT)) {
|
|
val = (unsigned int) val;
|
|
val1 = (unsigned int) val1;
|
|
}
|
|
#endif
|
|
op->xerval = regs->xer;
|
|
if (val < val1 || (carry_in && val == val1))
|
|
op->xerval |= XER_CA;
|
|
else
|
|
op->xerval &= ~XER_CA;
|
|
|
|
set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
|
|
(carry_in && (unsigned int)val == (unsigned int)val1));
|
|
}
|
|
|
|
static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
|
|
struct instruction_op *op,
|
|
long v1, long v2, int crfld)
|
|
{
|
|
unsigned int crval, shift;
|
|
|
|
op->type = COMPUTE + SETCC;
|
|
crval = (regs->xer >> 31) & 1; /* get SO bit */
|
|
if (v1 < v2)
|
|
crval |= 8;
|
|
else if (v1 > v2)
|
|
crval |= 4;
|
|
else
|
|
crval |= 2;
|
|
shift = (7 - crfld) * 4;
|
|
op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
|
|
}
|
|
|
|
static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
|
|
struct instruction_op *op,
|
|
unsigned long v1,
|
|
unsigned long v2, int crfld)
|
|
{
|
|
unsigned int crval, shift;
|
|
|
|
op->type = COMPUTE + SETCC;
|
|
crval = (regs->xer >> 31) & 1; /* get SO bit */
|
|
if (v1 < v2)
|
|
crval |= 8;
|
|
else if (v1 > v2)
|
|
crval |= 4;
|
|
else
|
|
crval |= 2;
|
|
shift = (7 - crfld) * 4;
|
|
op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
|
|
}
|
|
|
|
static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
|
|
struct instruction_op *op,
|
|
unsigned long v1, unsigned long v2)
|
|
{
|
|
unsigned long long out_val, mask;
|
|
int i;
|
|
|
|
out_val = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
mask = 0xffUL << (i * 8);
|
|
if ((v1 & mask) == (v2 & mask))
|
|
out_val |= mask;
|
|
}
|
|
op->val = out_val;
|
|
}
|
|
|
|
/*
|
|
* The size parameter is used to adjust the equivalent popcnt instruction.
|
|
* popcntb = 8, popcntw = 32, popcntd = 64
|
|
*/
|
|
static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
|
|
struct instruction_op *op,
|
|
unsigned long v1, int size)
|
|
{
|
|
unsigned long long out = v1;
|
|
|
|
out -= (out >> 1) & 0x5555555555555555;
|
|
out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
|
|
out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
|
|
|
|
if (size == 8) { /* popcntb */
|
|
op->val = out;
|
|
return;
|
|
}
|
|
out += out >> 8;
|
|
out += out >> 16;
|
|
if (size == 32) { /* popcntw */
|
|
op->val = out & 0x0000003f0000003f;
|
|
return;
|
|
}
|
|
|
|
out = (out + (out >> 32)) & 0x7f;
|
|
op->val = out; /* popcntd */
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
|
|
struct instruction_op *op,
|
|
unsigned long v1, unsigned long v2)
|
|
{
|
|
unsigned char perm, idx;
|
|
unsigned int i;
|
|
|
|
perm = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
idx = (v1 >> (i * 8)) & 0xff;
|
|
if (idx < 64)
|
|
if (v2 & PPC_BIT(idx))
|
|
perm |= 1 << i;
|
|
}
|
|
op->val = perm;
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
/*
|
|
* The size parameter adjusts the equivalent prty instruction.
|
|
* prtyw = 32, prtyd = 64
|
|
*/
|
|
static nokprobe_inline void do_prty(const struct pt_regs *regs,
|
|
struct instruction_op *op,
|
|
unsigned long v, int size)
|
|
{
|
|
unsigned long long res = v ^ (v >> 8);
|
|
|
|
res ^= res >> 16;
|
|
if (size == 32) { /* prtyw */
|
|
op->val = res & 0x0000000100000001;
|
|
return;
|
|
}
|
|
|
|
res ^= res >> 32;
|
|
op->val = res & 1; /*prtyd */
|
|
}
|
|
|
|
static nokprobe_inline int trap_compare(long v1, long v2)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (v1 < v2)
|
|
ret |= 0x10;
|
|
else if (v1 > v2)
|
|
ret |= 0x08;
|
|
else
|
|
ret |= 0x04;
|
|
if ((unsigned long)v1 < (unsigned long)v2)
|
|
ret |= 0x02;
|
|
else if ((unsigned long)v1 > (unsigned long)v2)
|
|
ret |= 0x01;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Elements of 32-bit rotate and mask instructions.
|
|
*/
|
|
#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
|
|
((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
|
|
#ifdef __powerpc64__
|
|
#define MASK64_L(mb) (~0UL >> (mb))
|
|
#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
|
|
#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
|
|
#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
|
|
#else
|
|
#define DATA32(x) (x)
|
|
#endif
|
|
#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
|
|
|
|
/*
|
|
* Decode an instruction, and return information about it in *op
|
|
* without changing *regs.
|
|
* Integer arithmetic and logical instructions, branches, and barrier
|
|
* instructions can be emulated just using the information in *op.
|
|
*
|
|
* Return value is 1 if the instruction can be emulated just by
|
|
* updating *regs with the information in *op, -1 if we need the
|
|
* GPRs but *regs doesn't contain the full register set, or 0
|
|
* otherwise.
|
|
*/
|
|
int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
|
|
unsigned int instr)
|
|
{
|
|
unsigned int opcode, ra, rb, rd, spr, u;
|
|
unsigned long int imm;
|
|
unsigned long int val, val2;
|
|
unsigned int mb, me, sh;
|
|
long ival;
|
|
|
|
op->type = COMPUTE;
|
|
|
|
opcode = instr >> 26;
|
|
switch (opcode) {
|
|
case 16: /* bc */
|
|
op->type = BRANCH;
|
|
imm = (signed short)(instr & 0xfffc);
|
|
if ((instr & 2) == 0)
|
|
imm += regs->nip;
|
|
op->val = truncate_if_32bit(regs->msr, imm);
|
|
if (instr & 1)
|
|
op->type |= SETLK;
|
|
if (branch_taken(instr, regs, op))
|
|
op->type |= BRTAKEN;
|
|
return 1;
|
|
#ifdef CONFIG_PPC64
|
|
case 17: /* sc */
|
|
if ((instr & 0xfe2) == 2)
|
|
op->type = SYSCALL;
|
|
else
|
|
op->type = UNKNOWN;
|
|
return 0;
|
|
#endif
|
|
case 18: /* b */
|
|
op->type = BRANCH | BRTAKEN;
|
|
imm = instr & 0x03fffffc;
|
|
if (imm & 0x02000000)
|
|
imm -= 0x04000000;
|
|
if ((instr & 2) == 0)
|
|
imm += regs->nip;
|
|
op->val = truncate_if_32bit(regs->msr, imm);
|
|
if (instr & 1)
|
|
op->type |= SETLK;
|
|
return 1;
|
|
case 19:
|
|
switch ((instr >> 1) & 0x3ff) {
|
|
case 0: /* mcrf */
|
|
op->type = COMPUTE + SETCC;
|
|
rd = 7 - ((instr >> 23) & 0x7);
|
|
ra = 7 - ((instr >> 18) & 0x7);
|
|
rd *= 4;
|
|
ra *= 4;
|
|
val = (regs->ccr >> ra) & 0xf;
|
|
op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
|
|
return 1;
|
|
|
|
case 16: /* bclr */
|
|
case 528: /* bcctr */
|
|
op->type = BRANCH;
|
|
imm = (instr & 0x400)? regs->ctr: regs->link;
|
|
op->val = truncate_if_32bit(regs->msr, imm);
|
|
if (instr & 1)
|
|
op->type |= SETLK;
|
|
if (branch_taken(instr, regs, op))
|
|
op->type |= BRTAKEN;
|
|
return 1;
|
|
|
|
case 18: /* rfid, scary */
|
|
if (regs->msr & MSR_PR)
|
|
goto priv;
|
|
op->type = RFI;
|
|
return 0;
|
|
|
|
case 150: /* isync */
|
|
op->type = BARRIER | BARRIER_ISYNC;
|
|
return 1;
|
|
|
|
case 33: /* crnor */
|
|
case 129: /* crandc */
|
|
case 193: /* crxor */
|
|
case 225: /* crnand */
|
|
case 257: /* crand */
|
|
case 289: /* creqv */
|
|
case 417: /* crorc */
|
|
case 449: /* cror */
|
|
op->type = COMPUTE + SETCC;
|
|
ra = (instr >> 16) & 0x1f;
|
|
rb = (instr >> 11) & 0x1f;
|
|
rd = (instr >> 21) & 0x1f;
|
|
ra = (regs->ccr >> (31 - ra)) & 1;
|
|
rb = (regs->ccr >> (31 - rb)) & 1;
|
|
val = (instr >> (6 + ra * 2 + rb)) & 1;
|
|
op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
|
|
(val << (31 - rd));
|
|
return 1;
|
|
}
|
|
break;
|
|
case 31:
|
|
switch ((instr >> 1) & 0x3ff) {
|
|
case 598: /* sync */
|
|
op->type = BARRIER + BARRIER_SYNC;
|
|
#ifdef __powerpc64__
|
|
switch ((instr >> 21) & 3) {
|
|
case 1: /* lwsync */
|
|
op->type = BARRIER + BARRIER_LWSYNC;
|
|
break;
|
|
case 2: /* ptesync */
|
|
op->type = BARRIER + BARRIER_PTESYNC;
|
|
break;
|
|
}
|
|
#endif
|
|
return 1;
|
|
|
|
case 854: /* eieio */
|
|
op->type = BARRIER + BARRIER_EIEIO;
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Following cases refer to regs->gpr[], so we need all regs */
|
|
if (!FULL_REGS(regs))
|
|
return -1;
|
|
|
|
rd = (instr >> 21) & 0x1f;
|
|
ra = (instr >> 16) & 0x1f;
|
|
rb = (instr >> 11) & 0x1f;
|
|
|
|
switch (opcode) {
|
|
#ifdef __powerpc64__
|
|
case 2: /* tdi */
|
|
if (rd & trap_compare(regs->gpr[ra], (short) instr))
|
|
goto trap;
|
|
return 1;
|
|
#endif
|
|
case 3: /* twi */
|
|
if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
|
|
goto trap;
|
|
return 1;
|
|
|
|
case 7: /* mulli */
|
|
op->val = regs->gpr[ra] * (short) instr;
|
|
goto compute_done;
|
|
|
|
case 8: /* subfic */
|
|
imm = (short) instr;
|
|
add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
|
|
return 1;
|
|
|
|
case 10: /* cmpli */
|
|
imm = (unsigned short) instr;
|
|
val = regs->gpr[ra];
|
|
#ifdef __powerpc64__
|
|
if ((rd & 1) == 0)
|
|
val = (unsigned int) val;
|
|
#endif
|
|
do_cmp_unsigned(regs, op, val, imm, rd >> 2);
|
|
return 1;
|
|
|
|
case 11: /* cmpi */
|
|
imm = (short) instr;
|
|
val = regs->gpr[ra];
|
|
#ifdef __powerpc64__
|
|
if ((rd & 1) == 0)
|
|
val = (int) val;
|
|
#endif
|
|
do_cmp_signed(regs, op, val, imm, rd >> 2);
|
|
return 1;
|
|
|
|
case 12: /* addic */
|
|
imm = (short) instr;
|
|
add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
|
|
return 1;
|
|
|
|
case 13: /* addic. */
|
|
imm = (short) instr;
|
|
add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
|
|
set_cr0(regs, op);
|
|
return 1;
|
|
|
|
case 14: /* addi */
|
|
imm = (short) instr;
|
|
if (ra)
|
|
imm += regs->gpr[ra];
|
|
op->val = imm;
|
|
goto compute_done;
|
|
|
|
case 15: /* addis */
|
|
imm = ((short) instr) << 16;
|
|
if (ra)
|
|
imm += regs->gpr[ra];
|
|
op->val = imm;
|
|
goto compute_done;
|
|
|
|
case 19:
|
|
if (((instr >> 1) & 0x1f) == 2) {
|
|
/* addpcis */
|
|
imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
|
|
imm |= (instr >> 15) & 0x3e; /* d1 field */
|
|
op->val = regs->nip + (imm << 16) + 4;
|
|
goto compute_done;
|
|
}
|
|
op->type = UNKNOWN;
|
|
return 0;
|
|
|
|
case 20: /* rlwimi */
|
|
mb = (instr >> 6) & 0x1f;
|
|
me = (instr >> 1) & 0x1f;
|
|
val = DATA32(regs->gpr[rd]);
|
|
imm = MASK32(mb, me);
|
|
op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
|
|
goto logical_done;
|
|
|
|
case 21: /* rlwinm */
|
|
mb = (instr >> 6) & 0x1f;
|
|
me = (instr >> 1) & 0x1f;
|
|
val = DATA32(regs->gpr[rd]);
|
|
op->val = ROTATE(val, rb) & MASK32(mb, me);
|
|
goto logical_done;
|
|
|
|
case 23: /* rlwnm */
|
|
mb = (instr >> 6) & 0x1f;
|
|
me = (instr >> 1) & 0x1f;
|
|
rb = regs->gpr[rb] & 0x1f;
|
|
val = DATA32(regs->gpr[rd]);
|
|
op->val = ROTATE(val, rb) & MASK32(mb, me);
|
|
goto logical_done;
|
|
|
|
case 24: /* ori */
|
|
op->val = regs->gpr[rd] | (unsigned short) instr;
|
|
goto logical_done_nocc;
|
|
|
|
case 25: /* oris */
|
|
imm = (unsigned short) instr;
|
|
op->val = regs->gpr[rd] | (imm << 16);
|
|
goto logical_done_nocc;
|
|
|
|
case 26: /* xori */
|
|
op->val = regs->gpr[rd] ^ (unsigned short) instr;
|
|
goto logical_done_nocc;
|
|
|
|
case 27: /* xoris */
|
|
imm = (unsigned short) instr;
|
|
op->val = regs->gpr[rd] ^ (imm << 16);
|
|
goto logical_done_nocc;
|
|
|
|
case 28: /* andi. */
|
|
op->val = regs->gpr[rd] & (unsigned short) instr;
|
|
set_cr0(regs, op);
|
|
goto logical_done_nocc;
|
|
|
|
case 29: /* andis. */
|
|
imm = (unsigned short) instr;
|
|
op->val = regs->gpr[rd] & (imm << 16);
|
|
set_cr0(regs, op);
|
|
goto logical_done_nocc;
|
|
|
|
#ifdef __powerpc64__
|
|
case 30: /* rld* */
|
|
mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
|
|
val = regs->gpr[rd];
|
|
if ((instr & 0x10) == 0) {
|
|
sh = rb | ((instr & 2) << 4);
|
|
val = ROTATE(val, sh);
|
|
switch ((instr >> 2) & 3) {
|
|
case 0: /* rldicl */
|
|
val &= MASK64_L(mb);
|
|
break;
|
|
case 1: /* rldicr */
|
|
val &= MASK64_R(mb);
|
|
break;
|
|
case 2: /* rldic */
|
|
val &= MASK64(mb, 63 - sh);
|
|
break;
|
|
case 3: /* rldimi */
|
|
imm = MASK64(mb, 63 - sh);
|
|
val = (regs->gpr[ra] & ~imm) |
|
|
(val & imm);
|
|
}
|
|
op->val = val;
|
|
goto logical_done;
|
|
} else {
|
|
sh = regs->gpr[rb] & 0x3f;
|
|
val = ROTATE(val, sh);
|
|
switch ((instr >> 1) & 7) {
|
|
case 0: /* rldcl */
|
|
op->val = val & MASK64_L(mb);
|
|
goto logical_done;
|
|
case 1: /* rldcr */
|
|
op->val = val & MASK64_R(mb);
|
|
goto logical_done;
|
|
}
|
|
}
|
|
#endif
|
|
op->type = UNKNOWN; /* illegal instruction */
|
|
return 0;
|
|
|
|
case 31:
|
|
/* isel occupies 32 minor opcodes */
|
|
if (((instr >> 1) & 0x1f) == 15) {
|
|
mb = (instr >> 6) & 0x1f; /* bc field */
|
|
val = (regs->ccr >> (31 - mb)) & 1;
|
|
val2 = (ra) ? regs->gpr[ra] : 0;
|
|
|
|
op->val = (val) ? val2 : regs->gpr[rb];
|
|
goto compute_done;
|
|
}
|
|
|
|
switch ((instr >> 1) & 0x3ff) {
|
|
case 4: /* tw */
|
|
if (rd == 0x1f ||
|
|
(rd & trap_compare((int)regs->gpr[ra],
|
|
(int)regs->gpr[rb])))
|
|
goto trap;
|
|
return 1;
|
|
#ifdef __powerpc64__
|
|
case 68: /* td */
|
|
if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
|
|
goto trap;
|
|
return 1;
|
|
#endif
|
|
case 83: /* mfmsr */
|
|
if (regs->msr & MSR_PR)
|
|
goto priv;
|
|
op->type = MFMSR;
|
|
op->reg = rd;
|
|
return 0;
|
|
case 146: /* mtmsr */
|
|
if (regs->msr & MSR_PR)
|
|
goto priv;
|
|
op->type = MTMSR;
|
|
op->reg = rd;
|
|
op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
|
|
return 0;
|
|
#ifdef CONFIG_PPC64
|
|
case 178: /* mtmsrd */
|
|
if (regs->msr & MSR_PR)
|
|
goto priv;
|
|
op->type = MTMSR;
|
|
op->reg = rd;
|
|
/* only MSR_EE and MSR_RI get changed if bit 15 set */
|
|
/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
|
|
imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
|
|
op->val = imm;
|
|
return 0;
|
|
#endif
|
|
|
|
case 19: /* mfcr */
|
|
imm = 0xffffffffUL;
|
|
if ((instr >> 20) & 1) {
|
|
imm = 0xf0000000UL;
|
|
for (sh = 0; sh < 8; ++sh) {
|
|
if (instr & (0x80000 >> sh))
|
|
break;
|
|
imm >>= 4;
|
|
}
|
|
}
|
|
op->val = regs->ccr & imm;
|
|
goto compute_done;
|
|
|
|
case 144: /* mtcrf */
|
|
op->type = COMPUTE + SETCC;
|
|
imm = 0xf0000000UL;
|
|
val = regs->gpr[rd];
|
|
op->ccval = regs->ccr;
|
|
for (sh = 0; sh < 8; ++sh) {
|
|
if (instr & (0x80000 >> sh))
|
|
op->ccval = (op->ccval & ~imm) |
|
|
(val & imm);
|
|
imm >>= 4;
|
|
}
|
|
return 1;
|
|
|
|
case 339: /* mfspr */
|
|
spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
|
|
op->type = MFSPR;
|
|
op->reg = rd;
|
|
op->spr = spr;
|
|
if (spr == SPRN_XER || spr == SPRN_LR ||
|
|
spr == SPRN_CTR)
|
|
return 1;
|
|
return 0;
|
|
|
|
case 467: /* mtspr */
|
|
spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
|
|
op->type = MTSPR;
|
|
op->val = regs->gpr[rd];
|
|
op->spr = spr;
|
|
if (spr == SPRN_XER || spr == SPRN_LR ||
|
|
spr == SPRN_CTR)
|
|
return 1;
|
|
return 0;
|
|
|
|
/*
|
|
* Compare instructions
|
|
*/
|
|
case 0: /* cmp */
|
|
val = regs->gpr[ra];
|
|
val2 = regs->gpr[rb];
|
|
#ifdef __powerpc64__
|
|
if ((rd & 1) == 0) {
|
|
/* word (32-bit) compare */
|
|
val = (int) val;
|
|
val2 = (int) val2;
|
|
}
|
|
#endif
|
|
do_cmp_signed(regs, op, val, val2, rd >> 2);
|
|
return 1;
|
|
|
|
case 32: /* cmpl */
|
|
val = regs->gpr[ra];
|
|
val2 = regs->gpr[rb];
|
|
#ifdef __powerpc64__
|
|
if ((rd & 1) == 0) {
|
|
/* word (32-bit) compare */
|
|
val = (unsigned int) val;
|
|
val2 = (unsigned int) val2;
|
|
}
|
|
#endif
|
|
do_cmp_unsigned(regs, op, val, val2, rd >> 2);
|
|
return 1;
|
|
|
|
case 508: /* cmpb */
|
|
do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
|
|
goto logical_done_nocc;
|
|
|
|
/*
|
|
* Arithmetic instructions
|
|
*/
|
|
case 8: /* subfc */
|
|
add_with_carry(regs, op, rd, ~regs->gpr[ra],
|
|
regs->gpr[rb], 1);
|
|
goto arith_done;
|
|
#ifdef __powerpc64__
|
|
case 9: /* mulhdu */
|
|
asm("mulhdu %0,%1,%2" : "=r" (op->val) :
|
|
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
|
|
goto arith_done;
|
|
#endif
|
|
case 10: /* addc */
|
|
add_with_carry(regs, op, rd, regs->gpr[ra],
|
|
regs->gpr[rb], 0);
|
|
goto arith_done;
|
|
|
|
case 11: /* mulhwu */
|
|
asm("mulhwu %0,%1,%2" : "=r" (op->val) :
|
|
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
|
|
goto arith_done;
|
|
|
|
case 40: /* subf */
|
|
op->val = regs->gpr[rb] - regs->gpr[ra];
|
|
goto arith_done;
|
|
#ifdef __powerpc64__
|
|
case 73: /* mulhd */
|
|
asm("mulhd %0,%1,%2" : "=r" (op->val) :
|
|
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
|
|
goto arith_done;
|
|
#endif
|
|
case 75: /* mulhw */
|
|
asm("mulhw %0,%1,%2" : "=r" (op->val) :
|
|
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
|
|
goto arith_done;
|
|
|
|
case 104: /* neg */
|
|
op->val = -regs->gpr[ra];
|
|
goto arith_done;
|
|
|
|
case 136: /* subfe */
|
|
add_with_carry(regs, op, rd, ~regs->gpr[ra],
|
|
regs->gpr[rb], regs->xer & XER_CA);
|
|
goto arith_done;
|
|
|
|
case 138: /* adde */
|
|
add_with_carry(regs, op, rd, regs->gpr[ra],
|
|
regs->gpr[rb], regs->xer & XER_CA);
|
|
goto arith_done;
|
|
|
|
case 200: /* subfze */
|
|
add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
|
|
regs->xer & XER_CA);
|
|
goto arith_done;
|
|
|
|
case 202: /* addze */
|
|
add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
|
|
regs->xer & XER_CA);
|
|
goto arith_done;
|
|
|
|
case 232: /* subfme */
|
|
add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
|
|
regs->xer & XER_CA);
|
|
goto arith_done;
|
|
#ifdef __powerpc64__
|
|
case 233: /* mulld */
|
|
op->val = regs->gpr[ra] * regs->gpr[rb];
|
|
goto arith_done;
|
|
#endif
|
|
case 234: /* addme */
|
|
add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
|
|
regs->xer & XER_CA);
|
|
goto arith_done;
|
|
|
|
case 235: /* mullw */
|
|
op->val = (long)(int) regs->gpr[ra] *
|
|
(int) regs->gpr[rb];
|
|
|
|
goto arith_done;
|
|
|
|
case 266: /* add */
|
|
op->val = regs->gpr[ra] + regs->gpr[rb];
|
|
goto arith_done;
|
|
#ifdef __powerpc64__
|
|
case 457: /* divdu */
|
|
op->val = regs->gpr[ra] / regs->gpr[rb];
|
|
goto arith_done;
|
|
#endif
|
|
case 459: /* divwu */
|
|
op->val = (unsigned int) regs->gpr[ra] /
|
|
(unsigned int) regs->gpr[rb];
|
|
goto arith_done;
|
|
#ifdef __powerpc64__
|
|
case 489: /* divd */
|
|
op->val = (long int) regs->gpr[ra] /
|
|
(long int) regs->gpr[rb];
|
|
goto arith_done;
|
|
#endif
|
|
case 491: /* divw */
|
|
op->val = (int) regs->gpr[ra] /
|
|
(int) regs->gpr[rb];
|
|
goto arith_done;
|
|
|
|
|
|
/*
|
|
* Logical instructions
|
|
*/
|
|
case 26: /* cntlzw */
|
|
val = (unsigned int) regs->gpr[rd];
|
|
op->val = ( val ? __builtin_clz(val) : 32 );
|
|
goto logical_done;
|
|
#ifdef __powerpc64__
|
|
case 58: /* cntlzd */
|
|
val = regs->gpr[rd];
|
|
op->val = ( val ? __builtin_clzl(val) : 64 );
|
|
goto logical_done;
|
|
#endif
|
|
case 28: /* and */
|
|
op->val = regs->gpr[rd] & regs->gpr[rb];
|
|
goto logical_done;
|
|
|
|
case 60: /* andc */
|
|
op->val = regs->gpr[rd] & ~regs->gpr[rb];
|
|
goto logical_done;
|
|
|
|
case 122: /* popcntb */
|
|
do_popcnt(regs, op, regs->gpr[rd], 8);
|
|
goto logical_done_nocc;
|
|
|
|
case 124: /* nor */
|
|
op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
|
|
goto logical_done;
|
|
|
|
case 154: /* prtyw */
|
|
do_prty(regs, op, regs->gpr[rd], 32);
|
|
goto logical_done_nocc;
|
|
|
|
case 186: /* prtyd */
|
|
do_prty(regs, op, regs->gpr[rd], 64);
|
|
goto logical_done_nocc;
|
|
#ifdef CONFIG_PPC64
|
|
case 252: /* bpermd */
|
|
do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
|
|
goto logical_done_nocc;
|
|
#endif
|
|
case 284: /* xor */
|
|
op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
|
|
goto logical_done;
|
|
|
|
case 316: /* xor */
|
|
op->val = regs->gpr[rd] ^ regs->gpr[rb];
|
|
goto logical_done;
|
|
|
|
case 378: /* popcntw */
|
|
do_popcnt(regs, op, regs->gpr[rd], 32);
|
|
goto logical_done_nocc;
|
|
|
|
case 412: /* orc */
|
|
op->val = regs->gpr[rd] | ~regs->gpr[rb];
|
|
goto logical_done;
|
|
|
|
case 444: /* or */
|
|
op->val = regs->gpr[rd] | regs->gpr[rb];
|
|
goto logical_done;
|
|
|
|
case 476: /* nand */
|
|
op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
|
|
goto logical_done;
|
|
#ifdef CONFIG_PPC64
|
|
case 506: /* popcntd */
|
|
do_popcnt(regs, op, regs->gpr[rd], 64);
|
|
goto logical_done_nocc;
|
|
#endif
|
|
case 922: /* extsh */
|
|
op->val = (signed short) regs->gpr[rd];
|
|
goto logical_done;
|
|
|
|
case 954: /* extsb */
|
|
op->val = (signed char) regs->gpr[rd];
|
|
goto logical_done;
|
|
#ifdef __powerpc64__
|
|
case 986: /* extsw */
|
|
op->val = (signed int) regs->gpr[rd];
|
|
goto logical_done;
|
|
#endif
|
|
|
|
/*
|
|
* Shift instructions
|
|
*/
|
|
case 24: /* slw */
|
|
sh = regs->gpr[rb] & 0x3f;
|
|
if (sh < 32)
|
|
op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
|
|
else
|
|
op->val = 0;
|
|
goto logical_done;
|
|
|
|
case 536: /* srw */
|
|
sh = regs->gpr[rb] & 0x3f;
|
|
if (sh < 32)
|
|
op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
|
|
else
|
|
op->val = 0;
|
|
goto logical_done;
|
|
|
|
case 792: /* sraw */
|
|
op->type = COMPUTE + SETREG + SETXER;
|
|
sh = regs->gpr[rb] & 0x3f;
|
|
ival = (signed int) regs->gpr[rd];
|
|
op->val = ival >> (sh < 32 ? sh : 31);
|
|
op->xerval = regs->xer;
|
|
if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
|
|
op->xerval |= XER_CA;
|
|
else
|
|
op->xerval &= ~XER_CA;
|
|
set_ca32(op, op->xerval & XER_CA);
|
|
goto logical_done;
|
|
|
|
case 824: /* srawi */
|
|
op->type = COMPUTE + SETREG + SETXER;
|
|
sh = rb;
|
|
ival = (signed int) regs->gpr[rd];
|
|
op->val = ival >> sh;
|
|
op->xerval = regs->xer;
|
|
if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
|
|
op->xerval |= XER_CA;
|
|
else
|
|
op->xerval &= ~XER_CA;
|
|
set_ca32(op, op->xerval & XER_CA);
|
|
goto logical_done;
|
|
|
|
#ifdef __powerpc64__
|
|
case 27: /* sld */
|
|
sh = regs->gpr[rb] & 0x7f;
|
|
if (sh < 64)
|
|
op->val = regs->gpr[rd] << sh;
|
|
else
|
|
op->val = 0;
|
|
goto logical_done;
|
|
|
|
case 539: /* srd */
|
|
sh = regs->gpr[rb] & 0x7f;
|
|
if (sh < 64)
|
|
op->val = regs->gpr[rd] >> sh;
|
|
else
|
|
op->val = 0;
|
|
goto logical_done;
|
|
|
|
case 794: /* srad */
|
|
op->type = COMPUTE + SETREG + SETXER;
|
|
sh = regs->gpr[rb] & 0x7f;
|
|
ival = (signed long int) regs->gpr[rd];
|
|
op->val = ival >> (sh < 64 ? sh : 63);
|
|
op->xerval = regs->xer;
|
|
if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
|
|
op->xerval |= XER_CA;
|
|
else
|
|
op->xerval &= ~XER_CA;
|
|
set_ca32(op, op->xerval & XER_CA);
|
|
goto logical_done;
|
|
|
|
case 826: /* sradi with sh_5 = 0 */
|
|
case 827: /* sradi with sh_5 = 1 */
|
|
op->type = COMPUTE + SETREG + SETXER;
|
|
sh = rb | ((instr & 2) << 4);
|
|
ival = (signed long int) regs->gpr[rd];
|
|
op->val = ival >> sh;
|
|
op->xerval = regs->xer;
|
|
if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
|
|
op->xerval |= XER_CA;
|
|
else
|
|
op->xerval &= ~XER_CA;
|
|
set_ca32(op, op->xerval & XER_CA);
|
|
goto logical_done;
|
|
#endif /* __powerpc64__ */
|
|
|
|
/*
|
|
* Cache instructions
|
|
*/
|
|
case 54: /* dcbst */
|
|
op->type = MKOP(CACHEOP, DCBST, 0);
|
|
op->ea = xform_ea(instr, regs);
|
|
return 0;
|
|
|
|
case 86: /* dcbf */
|
|
op->type = MKOP(CACHEOP, DCBF, 0);
|
|
op->ea = xform_ea(instr, regs);
|
|
return 0;
|
|
|
|
case 246: /* dcbtst */
|
|
op->type = MKOP(CACHEOP, DCBTST, 0);
|
|
op->ea = xform_ea(instr, regs);
|
|
op->reg = rd;
|
|
return 0;
|
|
|
|
case 278: /* dcbt */
|
|
op->type = MKOP(CACHEOP, DCBTST, 0);
|
|
op->ea = xform_ea(instr, regs);
|
|
op->reg = rd;
|
|
return 0;
|
|
|
|
case 982: /* icbi */
|
|
op->type = MKOP(CACHEOP, ICBI, 0);
|
|
op->ea = xform_ea(instr, regs);
|
|
return 0;
|
|
|
|
case 1014: /* dcbz */
|
|
op->type = MKOP(CACHEOP, DCBZ, 0);
|
|
op->ea = xform_ea(instr, regs);
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Loads and stores.
|
|
*/
|
|
op->type = UNKNOWN;
|
|
op->update_reg = ra;
|
|
op->reg = rd;
|
|
op->val = regs->gpr[rd];
|
|
u = (instr >> 20) & UPDATE;
|
|
op->vsx_flags = 0;
|
|
|
|
switch (opcode) {
|
|
case 31:
|
|
u = instr & UPDATE;
|
|
op->ea = xform_ea(instr, regs);
|
|
switch ((instr >> 1) & 0x3ff) {
|
|
case 20: /* lwarx */
|
|
op->type = MKOP(LARX, 0, 4);
|
|
break;
|
|
|
|
case 150: /* stwcx. */
|
|
op->type = MKOP(STCX, 0, 4);
|
|
break;
|
|
|
|
#ifdef __powerpc64__
|
|
case 84: /* ldarx */
|
|
op->type = MKOP(LARX, 0, 8);
|
|
break;
|
|
|
|
case 214: /* stdcx. */
|
|
op->type = MKOP(STCX, 0, 8);
|
|
break;
|
|
|
|
case 52: /* lbarx */
|
|
op->type = MKOP(LARX, 0, 1);
|
|
break;
|
|
|
|
case 694: /* stbcx. */
|
|
op->type = MKOP(STCX, 0, 1);
|
|
break;
|
|
|
|
case 116: /* lharx */
|
|
op->type = MKOP(LARX, 0, 2);
|
|
break;
|
|
|
|
case 726: /* sthcx. */
|
|
op->type = MKOP(STCX, 0, 2);
|
|
break;
|
|
|
|
case 276: /* lqarx */
|
|
if (!((rd & 1) || rd == ra || rd == rb))
|
|
op->type = MKOP(LARX, 0, 16);
|
|
break;
|
|
|
|
case 182: /* stqcx. */
|
|
if (!(rd & 1))
|
|
op->type = MKOP(STCX, 0, 16);
|
|
break;
|
|
#endif
|
|
|
|
case 23: /* lwzx */
|
|
case 55: /* lwzux */
|
|
op->type = MKOP(LOAD, u, 4);
|
|
break;
|
|
|
|
case 87: /* lbzx */
|
|
case 119: /* lbzux */
|
|
op->type = MKOP(LOAD, u, 1);
|
|
break;
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/*
|
|
* Note: for the load/store vector element instructions,
|
|
* bits of the EA say which field of the VMX register to use.
|
|
*/
|
|
case 7: /* lvebx */
|
|
op->type = MKOP(LOAD_VMX, 0, 1);
|
|
op->element_size = 1;
|
|
break;
|
|
|
|
case 39: /* lvehx */
|
|
op->type = MKOP(LOAD_VMX, 0, 2);
|
|
op->element_size = 2;
|
|
break;
|
|
|
|
case 71: /* lvewx */
|
|
op->type = MKOP(LOAD_VMX, 0, 4);
|
|
op->element_size = 4;
|
|
break;
|
|
|
|
case 103: /* lvx */
|
|
case 359: /* lvxl */
|
|
op->type = MKOP(LOAD_VMX, 0, 16);
|
|
op->element_size = 16;
|
|
break;
|
|
|
|
case 135: /* stvebx */
|
|
op->type = MKOP(STORE_VMX, 0, 1);
|
|
op->element_size = 1;
|
|
break;
|
|
|
|
case 167: /* stvehx */
|
|
op->type = MKOP(STORE_VMX, 0, 2);
|
|
op->element_size = 2;
|
|
break;
|
|
|
|
case 199: /* stvewx */
|
|
op->type = MKOP(STORE_VMX, 0, 4);
|
|
op->element_size = 4;
|
|
break;
|
|
|
|
case 231: /* stvx */
|
|
case 487: /* stvxl */
|
|
op->type = MKOP(STORE_VMX, 0, 16);
|
|
break;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef __powerpc64__
|
|
case 21: /* ldx */
|
|
case 53: /* ldux */
|
|
op->type = MKOP(LOAD, u, 8);
|
|
break;
|
|
|
|
case 149: /* stdx */
|
|
case 181: /* stdux */
|
|
op->type = MKOP(STORE, u, 8);
|
|
break;
|
|
#endif
|
|
|
|
case 151: /* stwx */
|
|
case 183: /* stwux */
|
|
op->type = MKOP(STORE, u, 4);
|
|
break;
|
|
|
|
case 215: /* stbx */
|
|
case 247: /* stbux */
|
|
op->type = MKOP(STORE, u, 1);
|
|
break;
|
|
|
|
case 279: /* lhzx */
|
|
case 311: /* lhzux */
|
|
op->type = MKOP(LOAD, u, 2);
|
|
break;
|
|
|
|
#ifdef __powerpc64__
|
|
case 341: /* lwax */
|
|
case 373: /* lwaux */
|
|
op->type = MKOP(LOAD, SIGNEXT | u, 4);
|
|
break;
|
|
#endif
|
|
|
|
case 343: /* lhax */
|
|
case 375: /* lhaux */
|
|
op->type = MKOP(LOAD, SIGNEXT | u, 2);
|
|
break;
|
|
|
|
case 407: /* sthx */
|
|
case 439: /* sthux */
|
|
op->type = MKOP(STORE, u, 2);
|
|
break;
|
|
|
|
#ifdef __powerpc64__
|
|
case 532: /* ldbrx */
|
|
op->type = MKOP(LOAD, BYTEREV, 8);
|
|
break;
|
|
|
|
#endif
|
|
case 533: /* lswx */
|
|
op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
|
|
break;
|
|
|
|
case 534: /* lwbrx */
|
|
op->type = MKOP(LOAD, BYTEREV, 4);
|
|
break;
|
|
|
|
case 597: /* lswi */
|
|
if (rb == 0)
|
|
rb = 32; /* # bytes to load */
|
|
op->type = MKOP(LOAD_MULTI, 0, rb);
|
|
op->ea = ra ? regs->gpr[ra] : 0;
|
|
break;
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
case 535: /* lfsx */
|
|
case 567: /* lfsux */
|
|
op->type = MKOP(LOAD_FP, u | FPCONV, 4);
|
|
break;
|
|
|
|
case 599: /* lfdx */
|
|
case 631: /* lfdux */
|
|
op->type = MKOP(LOAD_FP, u, 8);
|
|
break;
|
|
|
|
case 663: /* stfsx */
|
|
case 695: /* stfsux */
|
|
op->type = MKOP(STORE_FP, u | FPCONV, 4);
|
|
break;
|
|
|
|
case 727: /* stfdx */
|
|
case 759: /* stfdux */
|
|
op->type = MKOP(STORE_FP, u, 8);
|
|
break;
|
|
|
|
#ifdef __powerpc64__
|
|
case 791: /* lfdpx */
|
|
op->type = MKOP(LOAD_FP, 0, 16);
|
|
break;
|
|
|
|
case 855: /* lfiwax */
|
|
op->type = MKOP(LOAD_FP, SIGNEXT, 4);
|
|
break;
|
|
|
|
case 887: /* lfiwzx */
|
|
op->type = MKOP(LOAD_FP, 0, 4);
|
|
break;
|
|
|
|
case 919: /* stfdpx */
|
|
op->type = MKOP(STORE_FP, 0, 16);
|
|
break;
|
|
|
|
case 983: /* stfiwx */
|
|
op->type = MKOP(STORE_FP, 0, 4);
|
|
break;
|
|
#endif /* __powerpc64 */
|
|
#endif /* CONFIG_PPC_FPU */
|
|
|
|
#ifdef __powerpc64__
|
|
case 660: /* stdbrx */
|
|
op->type = MKOP(STORE, BYTEREV, 8);
|
|
op->val = byterev_8(regs->gpr[rd]);
|
|
break;
|
|
|
|
#endif
|
|
case 661: /* stswx */
|
|
op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
|
|
break;
|
|
|
|
case 662: /* stwbrx */
|
|
op->type = MKOP(STORE, BYTEREV, 4);
|
|
op->val = byterev_4(regs->gpr[rd]);
|
|
break;
|
|
|
|
case 725: /* stswi */
|
|
if (rb == 0)
|
|
rb = 32; /* # bytes to store */
|
|
op->type = MKOP(STORE_MULTI, 0, rb);
|
|
op->ea = ra ? regs->gpr[ra] : 0;
|
|
break;
|
|
|
|
case 790: /* lhbrx */
|
|
op->type = MKOP(LOAD, BYTEREV, 2);
|
|
break;
|
|
|
|
case 918: /* sthbrx */
|
|
op->type = MKOP(STORE, BYTEREV, 2);
|
|
op->val = byterev_2(regs->gpr[rd]);
|
|
break;
|
|
|
|
#ifdef CONFIG_VSX
|
|
case 12: /* lxsiwzx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 4);
|
|
op->element_size = 8;
|
|
break;
|
|
|
|
case 76: /* lxsiwax */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
|
|
op->element_size = 8;
|
|
break;
|
|
|
|
case 140: /* stxsiwx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 4);
|
|
op->element_size = 8;
|
|
break;
|
|
|
|
case 268: /* lxvx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 16);
|
|
op->element_size = 16;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 269: /* lxvl */
|
|
case 301: { /* lxvll */
|
|
int nb;
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->ea = ra ? regs->gpr[ra] : 0;
|
|
nb = regs->gpr[rb] & 0xff;
|
|
if (nb > 16)
|
|
nb = 16;
|
|
op->type = MKOP(LOAD_VSX, 0, nb);
|
|
op->element_size = 16;
|
|
op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
|
|
VSX_CHECK_VEC;
|
|
break;
|
|
}
|
|
case 332: /* lxvdsx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 8);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_SPLAT;
|
|
break;
|
|
|
|
case 364: /* lxvwsx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 4);
|
|
op->element_size = 4;
|
|
op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 396: /* stxvx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 16);
|
|
op->element_size = 16;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 397: /* stxvl */
|
|
case 429: { /* stxvll */
|
|
int nb;
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->ea = ra ? regs->gpr[ra] : 0;
|
|
nb = regs->gpr[rb] & 0xff;
|
|
if (nb > 16)
|
|
nb = 16;
|
|
op->type = MKOP(STORE_VSX, 0, nb);
|
|
op->element_size = 16;
|
|
op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
|
|
VSX_CHECK_VEC;
|
|
break;
|
|
}
|
|
case 524: /* lxsspx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 4);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_FPCONV;
|
|
break;
|
|
|
|
case 588: /* lxsdx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 8);
|
|
op->element_size = 8;
|
|
break;
|
|
|
|
case 652: /* stxsspx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 4);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_FPCONV;
|
|
break;
|
|
|
|
case 716: /* stxsdx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 8);
|
|
op->element_size = 8;
|
|
break;
|
|
|
|
case 780: /* lxvw4x */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 16);
|
|
op->element_size = 4;
|
|
break;
|
|
|
|
case 781: /* lxsibzx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 1);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 812: /* lxvh8x */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 16);
|
|
op->element_size = 2;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 813: /* lxsihzx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 2);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 844: /* lxvd2x */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 16);
|
|
op->element_size = 8;
|
|
break;
|
|
|
|
case 876: /* lxvb16x */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(LOAD_VSX, 0, 16);
|
|
op->element_size = 1;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 908: /* stxvw4x */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 16);
|
|
op->element_size = 4;
|
|
break;
|
|
|
|
case 909: /* stxsibx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 1);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 940: /* stxvh8x */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 16);
|
|
op->element_size = 2;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 941: /* stxsihx */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 2);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 972: /* stxvd2x */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 16);
|
|
op->element_size = 8;
|
|
break;
|
|
|
|
case 1004: /* stxvb16x */
|
|
op->reg = rd | ((instr & 1) << 5);
|
|
op->type = MKOP(STORE_VSX, 0, 16);
|
|
op->element_size = 1;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
#endif /* CONFIG_VSX */
|
|
}
|
|
break;
|
|
|
|
case 32: /* lwz */
|
|
case 33: /* lwzu */
|
|
op->type = MKOP(LOAD, u, 4);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 34: /* lbz */
|
|
case 35: /* lbzu */
|
|
op->type = MKOP(LOAD, u, 1);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 36: /* stw */
|
|
case 37: /* stwu */
|
|
op->type = MKOP(STORE, u, 4);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 38: /* stb */
|
|
case 39: /* stbu */
|
|
op->type = MKOP(STORE, u, 1);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 40: /* lhz */
|
|
case 41: /* lhzu */
|
|
op->type = MKOP(LOAD, u, 2);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 42: /* lha */
|
|
case 43: /* lhau */
|
|
op->type = MKOP(LOAD, SIGNEXT | u, 2);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 44: /* sth */
|
|
case 45: /* sthu */
|
|
op->type = MKOP(STORE, u, 2);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 46: /* lmw */
|
|
if (ra >= rd)
|
|
break; /* invalid form, ra in range to load */
|
|
op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 47: /* stmw */
|
|
op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
case 48: /* lfs */
|
|
case 49: /* lfsu */
|
|
op->type = MKOP(LOAD_FP, u | FPCONV, 4);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 50: /* lfd */
|
|
case 51: /* lfdu */
|
|
op->type = MKOP(LOAD_FP, u, 8);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 52: /* stfs */
|
|
case 53: /* stfsu */
|
|
op->type = MKOP(STORE_FP, u | FPCONV, 4);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
|
|
case 54: /* stfd */
|
|
case 55: /* stfdu */
|
|
op->type = MKOP(STORE_FP, u, 8);
|
|
op->ea = dform_ea(instr, regs);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef __powerpc64__
|
|
case 56: /* lq */
|
|
if (!((rd & 1) || (rd == ra)))
|
|
op->type = MKOP(LOAD, 0, 16);
|
|
op->ea = dqform_ea(instr, regs);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_VSX
|
|
case 57: /* lfdp, lxsd, lxssp */
|
|
op->ea = dsform_ea(instr, regs);
|
|
switch (instr & 3) {
|
|
case 0: /* lfdp */
|
|
if (rd & 1)
|
|
break; /* reg must be even */
|
|
op->type = MKOP(LOAD_FP, 0, 16);
|
|
break;
|
|
case 2: /* lxsd */
|
|
op->reg = rd + 32;
|
|
op->type = MKOP(LOAD_VSX, 0, 8);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
case 3: /* lxssp */
|
|
op->reg = rd + 32;
|
|
op->type = MKOP(LOAD_VSX, 0, 4);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
|
|
break;
|
|
}
|
|
break;
|
|
#endif /* CONFIG_VSX */
|
|
|
|
#ifdef __powerpc64__
|
|
case 58: /* ld[u], lwa */
|
|
op->ea = dsform_ea(instr, regs);
|
|
switch (instr & 3) {
|
|
case 0: /* ld */
|
|
op->type = MKOP(LOAD, 0, 8);
|
|
break;
|
|
case 1: /* ldu */
|
|
op->type = MKOP(LOAD, UPDATE, 8);
|
|
break;
|
|
case 2: /* lwa */
|
|
op->type = MKOP(LOAD, SIGNEXT, 4);
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_VSX
|
|
case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
|
|
switch (instr & 7) {
|
|
case 0: /* stfdp with LSB of DS field = 0 */
|
|
case 4: /* stfdp with LSB of DS field = 1 */
|
|
op->ea = dsform_ea(instr, regs);
|
|
op->type = MKOP(STORE_FP, 0, 16);
|
|
break;
|
|
|
|
case 1: /* lxv */
|
|
op->ea = dqform_ea(instr, regs);
|
|
if (instr & 8)
|
|
op->reg = rd + 32;
|
|
op->type = MKOP(LOAD_VSX, 0, 16);
|
|
op->element_size = 16;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 2: /* stxsd with LSB of DS field = 0 */
|
|
case 6: /* stxsd with LSB of DS field = 1 */
|
|
op->ea = dsform_ea(instr, regs);
|
|
op->reg = rd + 32;
|
|
op->type = MKOP(STORE_VSX, 0, 8);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 3: /* stxssp with LSB of DS field = 0 */
|
|
case 7: /* stxssp with LSB of DS field = 1 */
|
|
op->ea = dsform_ea(instr, regs);
|
|
op->reg = rd + 32;
|
|
op->type = MKOP(STORE_VSX, 0, 4);
|
|
op->element_size = 8;
|
|
op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
|
|
break;
|
|
|
|
case 5: /* stxv */
|
|
op->ea = dqform_ea(instr, regs);
|
|
if (instr & 8)
|
|
op->reg = rd + 32;
|
|
op->type = MKOP(STORE_VSX, 0, 16);
|
|
op->element_size = 16;
|
|
op->vsx_flags = VSX_CHECK_VEC;
|
|
break;
|
|
}
|
|
break;
|
|
#endif /* CONFIG_VSX */
|
|
|
|
#ifdef __powerpc64__
|
|
case 62: /* std[u] */
|
|
op->ea = dsform_ea(instr, regs);
|
|
switch (instr & 3) {
|
|
case 0: /* std */
|
|
op->type = MKOP(STORE, 0, 8);
|
|
break;
|
|
case 1: /* stdu */
|
|
op->type = MKOP(STORE, UPDATE, 8);
|
|
break;
|
|
case 2: /* stq */
|
|
if (!(rd & 1))
|
|
op->type = MKOP(STORE, 0, 16);
|
|
break;
|
|
}
|
|
break;
|
|
#endif /* __powerpc64__ */
|
|
|
|
}
|
|
return 0;
|
|
|
|
logical_done:
|
|
if (instr & 1)
|
|
set_cr0(regs, op);
|
|
logical_done_nocc:
|
|
op->reg = ra;
|
|
op->type |= SETREG;
|
|
return 1;
|
|
|
|
arith_done:
|
|
if (instr & 1)
|
|
set_cr0(regs, op);
|
|
compute_done:
|
|
op->reg = rd;
|
|
op->type |= SETREG;
|
|
return 1;
|
|
|
|
priv:
|
|
op->type = INTERRUPT | 0x700;
|
|
op->val = SRR1_PROGPRIV;
|
|
return 0;
|
|
|
|
trap:
|
|
op->type = INTERRUPT | 0x700;
|
|
op->val = SRR1_PROGTRAP;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(analyse_instr);
|
|
NOKPROBE_SYMBOL(analyse_instr);
|
|
|
|
/*
|
|
* For PPC32 we always use stwu with r1 to change the stack pointer.
|
|
* So this emulated store may corrupt the exception frame, now we
|
|
* have to provide the exception frame trampoline, which is pushed
|
|
* below the kprobed function stack. So we only update gpr[1] but
|
|
* don't emulate the real store operation. We will do real store
|
|
* operation safely in exception return code by checking this flag.
|
|
*/
|
|
static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_PPC32
|
|
/*
|
|
* Check if we will touch kernel stack overflow
|
|
*/
|
|
if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
|
|
printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
|
|
return -EINVAL;
|
|
}
|
|
#endif /* CONFIG_PPC32 */
|
|
/*
|
|
* Check if we already set since that means we'll
|
|
* lose the previous value.
|
|
*/
|
|
WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
|
|
set_thread_flag(TIF_EMULATE_STACK_STORE);
|
|
return 0;
|
|
}
|
|
|
|
static nokprobe_inline void do_signext(unsigned long *valp, int size)
|
|
{
|
|
switch (size) {
|
|
case 2:
|
|
*valp = (signed short) *valp;
|
|
break;
|
|
case 4:
|
|
*valp = (signed int) *valp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static nokprobe_inline void do_byterev(unsigned long *valp, int size)
|
|
{
|
|
switch (size) {
|
|
case 2:
|
|
*valp = byterev_2(*valp);
|
|
break;
|
|
case 4:
|
|
*valp = byterev_4(*valp);
|
|
break;
|
|
#ifdef __powerpc64__
|
|
case 8:
|
|
*valp = byterev_8(*valp);
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Emulate an instruction that can be executed just by updating
|
|
* fields in *regs.
|
|
*/
|
|
void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
|
|
{
|
|
unsigned long next_pc;
|
|
|
|
next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
|
|
switch (op->type & INSTR_TYPE_MASK) {
|
|
case COMPUTE:
|
|
if (op->type & SETREG)
|
|
regs->gpr[op->reg] = op->val;
|
|
if (op->type & SETCC)
|
|
regs->ccr = op->ccval;
|
|
if (op->type & SETXER)
|
|
regs->xer = op->xerval;
|
|
break;
|
|
|
|
case BRANCH:
|
|
if (op->type & SETLK)
|
|
regs->link = next_pc;
|
|
if (op->type & BRTAKEN)
|
|
next_pc = op->val;
|
|
if (op->type & DECCTR)
|
|
--regs->ctr;
|
|
break;
|
|
|
|
case BARRIER:
|
|
switch (op->type & BARRIER_MASK) {
|
|
case BARRIER_SYNC:
|
|
mb();
|
|
break;
|
|
case BARRIER_ISYNC:
|
|
isync();
|
|
break;
|
|
case BARRIER_EIEIO:
|
|
eieio();
|
|
break;
|
|
case BARRIER_LWSYNC:
|
|
asm volatile("lwsync" : : : "memory");
|
|
break;
|
|
case BARRIER_PTESYNC:
|
|
asm volatile("ptesync" : : : "memory");
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case MFSPR:
|
|
switch (op->spr) {
|
|
case SPRN_XER:
|
|
regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
|
|
break;
|
|
case SPRN_LR:
|
|
regs->gpr[op->reg] = regs->link;
|
|
break;
|
|
case SPRN_CTR:
|
|
regs->gpr[op->reg] = regs->ctr;
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
break;
|
|
|
|
case MTSPR:
|
|
switch (op->spr) {
|
|
case SPRN_XER:
|
|
regs->xer = op->val & 0xffffffffUL;
|
|
break;
|
|
case SPRN_LR:
|
|
regs->link = op->val;
|
|
break;
|
|
case SPRN_CTR:
|
|
regs->ctr = op->val;
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
regs->nip = next_pc;
|
|
}
|
|
NOKPROBE_SYMBOL(emulate_update_regs);
|
|
|
|
/*
|
|
* Emulate a previously-analysed load or store instruction.
|
|
* Return values are:
|
|
* 0 = instruction emulated successfully
|
|
* -EFAULT = address out of range or access faulted (regs->dar
|
|
* contains the faulting address)
|
|
* -EACCES = misaligned access, instruction requires alignment
|
|
* -EINVAL = unknown operation in *op
|
|
*/
|
|
int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
|
|
{
|
|
int err, size, type;
|
|
int i, rd, nb;
|
|
unsigned int cr;
|
|
unsigned long val;
|
|
unsigned long ea;
|
|
bool cross_endian;
|
|
|
|
err = 0;
|
|
size = GETSIZE(op->type);
|
|
type = op->type & INSTR_TYPE_MASK;
|
|
cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
|
|
ea = truncate_if_32bit(regs->msr, op->ea);
|
|
|
|
switch (type) {
|
|
case LARX:
|
|
if (ea & (size - 1))
|
|
return -EACCES; /* can't handle misaligned */
|
|
if (!address_ok(regs, ea, size))
|
|
return -EFAULT;
|
|
err = 0;
|
|
val = 0;
|
|
switch (size) {
|
|
#ifdef __powerpc64__
|
|
case 1:
|
|
__get_user_asmx(val, ea, err, "lbarx");
|
|
break;
|
|
case 2:
|
|
__get_user_asmx(val, ea, err, "lharx");
|
|
break;
|
|
#endif
|
|
case 4:
|
|
__get_user_asmx(val, ea, err, "lwarx");
|
|
break;
|
|
#ifdef __powerpc64__
|
|
case 8:
|
|
__get_user_asmx(val, ea, err, "ldarx");
|
|
break;
|
|
case 16:
|
|
err = do_lqarx(ea, ®s->gpr[op->reg]);
|
|
break;
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (err) {
|
|
regs->dar = ea;
|
|
break;
|
|
}
|
|
if (size < 16)
|
|
regs->gpr[op->reg] = val;
|
|
break;
|
|
|
|
case STCX:
|
|
if (ea & (size - 1))
|
|
return -EACCES; /* can't handle misaligned */
|
|
if (!address_ok(regs, ea, size))
|
|
return -EFAULT;
|
|
err = 0;
|
|
switch (size) {
|
|
#ifdef __powerpc64__
|
|
case 1:
|
|
__put_user_asmx(op->val, ea, err, "stbcx.", cr);
|
|
break;
|
|
case 2:
|
|
__put_user_asmx(op->val, ea, err, "stbcx.", cr);
|
|
break;
|
|
#endif
|
|
case 4:
|
|
__put_user_asmx(op->val, ea, err, "stwcx.", cr);
|
|
break;
|
|
#ifdef __powerpc64__
|
|
case 8:
|
|
__put_user_asmx(op->val, ea, err, "stdcx.", cr);
|
|
break;
|
|
case 16:
|
|
err = do_stqcx(ea, regs->gpr[op->reg],
|
|
regs->gpr[op->reg + 1], &cr);
|
|
break;
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (!err)
|
|
regs->ccr = (regs->ccr & 0x0fffffff) |
|
|
(cr & 0xe0000000) |
|
|
((regs->xer >> 3) & 0x10000000);
|
|
else
|
|
regs->dar = ea;
|
|
break;
|
|
|
|
case LOAD:
|
|
#ifdef __powerpc64__
|
|
if (size == 16) {
|
|
err = emulate_lq(regs, ea, op->reg, cross_endian);
|
|
break;
|
|
}
|
|
#endif
|
|
err = read_mem(®s->gpr[op->reg], ea, size, regs);
|
|
if (!err) {
|
|
if (op->type & SIGNEXT)
|
|
do_signext(®s->gpr[op->reg], size);
|
|
if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
|
|
do_byterev(®s->gpr[op->reg], size);
|
|
}
|
|
break;
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
case LOAD_FP:
|
|
/*
|
|
* If the instruction is in userspace, we can emulate it even
|
|
* if the VMX state is not live, because we have the state
|
|
* stored in the thread_struct. If the instruction is in
|
|
* the kernel, we must not touch the state in the thread_struct.
|
|
*/
|
|
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
|
|
return 0;
|
|
err = do_fp_load(op, ea, regs, cross_endian);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_ALTIVEC
|
|
case LOAD_VMX:
|
|
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
|
|
return 0;
|
|
err = do_vec_load(op->reg, ea, size, regs, cross_endian);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
case LOAD_VSX: {
|
|
unsigned long msrbit = MSR_VSX;
|
|
|
|
/*
|
|
* Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
|
|
* when the target of the instruction is a vector register.
|
|
*/
|
|
if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
|
|
msrbit = MSR_VEC;
|
|
if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
|
|
return 0;
|
|
err = do_vsx_load(op, ea, regs, cross_endian);
|
|
break;
|
|
}
|
|
#endif
|
|
case LOAD_MULTI:
|
|
if (!address_ok(regs, ea, size))
|
|
return -EFAULT;
|
|
rd = op->reg;
|
|
for (i = 0; i < size; i += 4) {
|
|
unsigned int v32 = 0;
|
|
|
|
nb = size - i;
|
|
if (nb > 4)
|
|
nb = 4;
|
|
err = copy_mem_in((u8 *) &v32, ea, nb, regs);
|
|
if (err)
|
|
break;
|
|
if (unlikely(cross_endian))
|
|
v32 = byterev_4(v32);
|
|
regs->gpr[rd] = v32;
|
|
ea += 4;
|
|
/* reg number wraps from 31 to 0 for lsw[ix] */
|
|
rd = (rd + 1) & 0x1f;
|
|
}
|
|
break;
|
|
|
|
case STORE:
|
|
#ifdef __powerpc64__
|
|
if (size == 16) {
|
|
err = emulate_stq(regs, ea, op->reg, cross_endian);
|
|
break;
|
|
}
|
|
#endif
|
|
if ((op->type & UPDATE) && size == sizeof(long) &&
|
|
op->reg == 1 && op->update_reg == 1 &&
|
|
!(regs->msr & MSR_PR) &&
|
|
ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
|
|
err = handle_stack_update(ea, regs);
|
|
break;
|
|
}
|
|
if (unlikely(cross_endian))
|
|
do_byterev(&op->val, size);
|
|
err = write_mem(op->val, ea, size, regs);
|
|
break;
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
case STORE_FP:
|
|
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
|
|
return 0;
|
|
err = do_fp_store(op, ea, regs, cross_endian);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_ALTIVEC
|
|
case STORE_VMX:
|
|
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
|
|
return 0;
|
|
err = do_vec_store(op->reg, ea, size, regs, cross_endian);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
case STORE_VSX: {
|
|
unsigned long msrbit = MSR_VSX;
|
|
|
|
/*
|
|
* Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
|
|
* when the target of the instruction is a vector register.
|
|
*/
|
|
if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
|
|
msrbit = MSR_VEC;
|
|
if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
|
|
return 0;
|
|
err = do_vsx_store(op, ea, regs, cross_endian);
|
|
break;
|
|
}
|
|
#endif
|
|
case STORE_MULTI:
|
|
if (!address_ok(regs, ea, size))
|
|
return -EFAULT;
|
|
rd = op->reg;
|
|
for (i = 0; i < size; i += 4) {
|
|
unsigned int v32 = regs->gpr[rd];
|
|
|
|
nb = size - i;
|
|
if (nb > 4)
|
|
nb = 4;
|
|
if (unlikely(cross_endian))
|
|
v32 = byterev_4(v32);
|
|
err = copy_mem_out((u8 *) &v32, ea, nb, regs);
|
|
if (err)
|
|
break;
|
|
ea += 4;
|
|
/* reg number wraps from 31 to 0 for stsw[ix] */
|
|
rd = (rd + 1) & 0x1f;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (op->type & UPDATE)
|
|
regs->gpr[op->update_reg] = op->ea;
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(emulate_loadstore);
|
|
|
|
/*
|
|
* Emulate instructions that cause a transfer of control,
|
|
* loads and stores, and a few other instructions.
|
|
* Returns 1 if the step was emulated, 0 if not,
|
|
* or -1 if the instruction is one that should not be stepped,
|
|
* such as an rfid, or a mtmsrd that would clear MSR_RI.
|
|
*/
|
|
int emulate_step(struct pt_regs *regs, unsigned int instr)
|
|
{
|
|
struct instruction_op op;
|
|
int r, err, type;
|
|
unsigned long val;
|
|
unsigned long ea;
|
|
|
|
r = analyse_instr(&op, regs, instr);
|
|
if (r < 0)
|
|
return r;
|
|
if (r > 0) {
|
|
emulate_update_regs(regs, &op);
|
|
return 1;
|
|
}
|
|
|
|
err = 0;
|
|
type = op.type & INSTR_TYPE_MASK;
|
|
|
|
if (OP_IS_LOAD_STORE(type)) {
|
|
err = emulate_loadstore(regs, &op);
|
|
if (err)
|
|
return 0;
|
|
goto instr_done;
|
|
}
|
|
|
|
switch (type) {
|
|
case CACHEOP:
|
|
ea = truncate_if_32bit(regs->msr, op.ea);
|
|
if (!address_ok(regs, ea, 8))
|
|
return 0;
|
|
switch (op.type & CACHEOP_MASK) {
|
|
case DCBST:
|
|
__cacheop_user_asmx(ea, err, "dcbst");
|
|
break;
|
|
case DCBF:
|
|
__cacheop_user_asmx(ea, err, "dcbf");
|
|
break;
|
|
case DCBTST:
|
|
if (op.reg == 0)
|
|
prefetchw((void *) ea);
|
|
break;
|
|
case DCBT:
|
|
if (op.reg == 0)
|
|
prefetch((void *) ea);
|
|
break;
|
|
case ICBI:
|
|
__cacheop_user_asmx(ea, err, "icbi");
|
|
break;
|
|
case DCBZ:
|
|
err = emulate_dcbz(ea, regs);
|
|
break;
|
|
}
|
|
if (err) {
|
|
regs->dar = ea;
|
|
return 0;
|
|
}
|
|
goto instr_done;
|
|
|
|
case MFMSR:
|
|
regs->gpr[op.reg] = regs->msr & MSR_MASK;
|
|
goto instr_done;
|
|
|
|
case MTMSR:
|
|
val = regs->gpr[op.reg];
|
|
if ((val & MSR_RI) == 0)
|
|
/* can't step mtmsr[d] that would clear MSR_RI */
|
|
return -1;
|
|
/* here op.val is the mask of bits to change */
|
|
regs->msr = (regs->msr & ~op.val) | (val & op.val);
|
|
goto instr_done;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
case SYSCALL: /* sc */
|
|
/*
|
|
* N.B. this uses knowledge about how the syscall
|
|
* entry code works. If that is changed, this will
|
|
* need to be changed also.
|
|
*/
|
|
if (regs->gpr[0] == 0x1ebe &&
|
|
cpu_has_feature(CPU_FTR_REAL_LE)) {
|
|
regs->msr ^= MSR_LE;
|
|
goto instr_done;
|
|
}
|
|
regs->gpr[9] = regs->gpr[13];
|
|
regs->gpr[10] = MSR_KERNEL;
|
|
regs->gpr[11] = regs->nip + 4;
|
|
regs->gpr[12] = regs->msr & MSR_MASK;
|
|
regs->gpr[13] = (unsigned long) get_paca();
|
|
regs->nip = (unsigned long) &system_call_common;
|
|
regs->msr = MSR_KERNEL;
|
|
return 1;
|
|
|
|
case RFI:
|
|
return -1;
|
|
#endif
|
|
}
|
|
return 0;
|
|
|
|
instr_done:
|
|
regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(emulate_step);
|