415 строки
11 KiB
C
415 строки
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/kvm/reset.c
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <kvm/arm_arch_timer.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nested.h>
|
|
#include <asm/virt.h>
|
|
|
|
/* Maximum phys_shift supported for any VM on this host */
|
|
static u32 __ro_after_init kvm_ipa_limit;
|
|
|
|
/*
|
|
* ARMv8 Reset Values
|
|
*/
|
|
#define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
|
|
PSR_F_BIT | PSR_D_BIT)
|
|
|
|
#define VCPU_RESET_PSTATE_EL2 (PSR_MODE_EL2h | PSR_A_BIT | PSR_I_BIT | \
|
|
PSR_F_BIT | PSR_D_BIT)
|
|
|
|
#define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
|
|
PSR_AA32_I_BIT | PSR_AA32_F_BIT)
|
|
|
|
unsigned int __ro_after_init kvm_sve_max_vl;
|
|
|
|
int __init kvm_arm_init_sve(void)
|
|
{
|
|
if (system_supports_sve()) {
|
|
kvm_sve_max_vl = sve_max_virtualisable_vl();
|
|
|
|
/*
|
|
* The get_sve_reg()/set_sve_reg() ioctl interface will need
|
|
* to be extended with multiple register slice support in
|
|
* order to support vector lengths greater than
|
|
* VL_ARCH_MAX:
|
|
*/
|
|
if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX))
|
|
kvm_sve_max_vl = VL_ARCH_MAX;
|
|
|
|
/*
|
|
* Don't even try to make use of vector lengths that
|
|
* aren't available on all CPUs, for now:
|
|
*/
|
|
if (kvm_sve_max_vl < sve_max_vl())
|
|
pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
|
|
kvm_sve_max_vl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!system_supports_sve())
|
|
return -EINVAL;
|
|
|
|
vcpu->arch.sve_max_vl = kvm_sve_max_vl;
|
|
|
|
/*
|
|
* Userspace can still customize the vector lengths by writing
|
|
* KVM_REG_ARM64_SVE_VLS. Allocation is deferred until
|
|
* kvm_arm_vcpu_finalize(), which freezes the configuration.
|
|
*/
|
|
vcpu_set_flag(vcpu, GUEST_HAS_SVE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finalize vcpu's maximum SVE vector length, allocating
|
|
* vcpu->arch.sve_state as necessary.
|
|
*/
|
|
static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
|
|
{
|
|
void *buf;
|
|
unsigned int vl;
|
|
size_t reg_sz;
|
|
int ret;
|
|
|
|
vl = vcpu->arch.sve_max_vl;
|
|
|
|
/*
|
|
* Responsibility for these properties is shared between
|
|
* kvm_arm_init_sve(), kvm_vcpu_enable_sve() and
|
|
* set_sve_vls(). Double-check here just to be sure:
|
|
*/
|
|
if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() ||
|
|
vl > VL_ARCH_MAX))
|
|
return -EIO;
|
|
|
|
reg_sz = vcpu_sve_state_size(vcpu);
|
|
buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
ret = kvm_share_hyp(buf, buf + reg_sz);
|
|
if (ret) {
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
vcpu->arch.sve_state = buf;
|
|
vcpu_set_flag(vcpu, VCPU_SVE_FINALIZED);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
|
|
{
|
|
switch (feature) {
|
|
case KVM_ARM_VCPU_SVE:
|
|
if (!vcpu_has_sve(vcpu))
|
|
return -EINVAL;
|
|
|
|
if (kvm_arm_vcpu_sve_finalized(vcpu))
|
|
return -EPERM;
|
|
|
|
return kvm_vcpu_finalize_sve(vcpu);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
void *sve_state = vcpu->arch.sve_state;
|
|
|
|
kvm_vcpu_unshare_task_fp(vcpu);
|
|
kvm_unshare_hyp(vcpu, vcpu + 1);
|
|
if (sve_state)
|
|
kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu));
|
|
kfree(sve_state);
|
|
kfree(vcpu->arch.ccsidr);
|
|
}
|
|
|
|
static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu_has_sve(vcpu))
|
|
memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
|
|
}
|
|
|
|
static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* For now make sure that both address/generic pointer authentication
|
|
* features are requested by the userspace together and the system
|
|
* supports these capabilities.
|
|
*/
|
|
if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
|
|
!test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
|
|
!system_has_full_ptr_auth())
|
|
return -EINVAL;
|
|
|
|
vcpu_set_flag(vcpu, GUEST_HAS_PTRAUTH);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_set_vm_width() - set the register width for the guest
|
|
* @vcpu: Pointer to the vcpu being configured
|
|
*
|
|
* Set both KVM_ARCH_FLAG_EL1_32BIT and KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED
|
|
* in the VM flags based on the vcpu's requested register width, the HW
|
|
* capabilities and other options (such as MTE).
|
|
* When REG_WIDTH_CONFIGURED is already set, the vcpu settings must be
|
|
* consistent with the value of the FLAG_EL1_32BIT bit in the flags.
|
|
*
|
|
* Return: 0 on success, negative error code on failure.
|
|
*/
|
|
static int kvm_set_vm_width(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
bool is32bit;
|
|
|
|
is32bit = vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
|
|
|
|
lockdep_assert_held(&kvm->lock);
|
|
|
|
if (test_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED, &kvm->arch.flags)) {
|
|
/*
|
|
* The guest's register width is already configured.
|
|
* Make sure that the vcpu is consistent with it.
|
|
*/
|
|
if (is32bit == test_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1) && is32bit)
|
|
return -EINVAL;
|
|
|
|
/* MTE is incompatible with AArch32 */
|
|
if (kvm_has_mte(kvm) && is32bit)
|
|
return -EINVAL;
|
|
|
|
/* NV is incompatible with AArch32 */
|
|
if (vcpu_has_nv(vcpu) && is32bit)
|
|
return -EINVAL;
|
|
|
|
if (is32bit)
|
|
set_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags);
|
|
|
|
set_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED, &kvm->arch.flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_reset_vcpu - sets core registers and sys_regs to reset value
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* This function sets the registers on the virtual CPU struct to their
|
|
* architecturally defined reset values, except for registers whose reset is
|
|
* deferred until kvm_arm_vcpu_finalize().
|
|
*
|
|
* Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
|
|
* ioctl or as part of handling a request issued by another VCPU in the PSCI
|
|
* handling code. In the first case, the VCPU will not be loaded, and in the
|
|
* second case the VCPU will be loaded. Because this function operates purely
|
|
* on the memory-backed values of system registers, we want to do a full put if
|
|
* we were loaded (handling a request) and load the values back at the end of
|
|
* the function. Otherwise we leave the state alone. In both cases, we
|
|
* disable preemption around the vcpu reset as we would otherwise race with
|
|
* preempt notifiers which also call put/load.
|
|
*/
|
|
int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_reset_state reset_state;
|
|
int ret;
|
|
bool loaded;
|
|
u32 pstate;
|
|
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
ret = kvm_set_vm_width(vcpu);
|
|
if (!ret) {
|
|
reset_state = vcpu->arch.reset_state;
|
|
WRITE_ONCE(vcpu->arch.reset_state.reset, false);
|
|
}
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Reset PMU outside of the non-preemptible section */
|
|
kvm_pmu_vcpu_reset(vcpu);
|
|
|
|
preempt_disable();
|
|
loaded = (vcpu->cpu != -1);
|
|
if (loaded)
|
|
kvm_arch_vcpu_put(vcpu);
|
|
|
|
/* Disallow NV+SVE for the time being */
|
|
if (vcpu_has_nv(vcpu) && vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
|
|
if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
|
|
ret = kvm_vcpu_enable_sve(vcpu);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
} else {
|
|
kvm_vcpu_reset_sve(vcpu);
|
|
}
|
|
|
|
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
|
|
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
|
|
if (kvm_vcpu_enable_ptrauth(vcpu)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
switch (vcpu->arch.target) {
|
|
default:
|
|
if (vcpu_el1_is_32bit(vcpu)) {
|
|
pstate = VCPU_RESET_PSTATE_SVC;
|
|
} else if (vcpu_has_nv(vcpu)) {
|
|
pstate = VCPU_RESET_PSTATE_EL2;
|
|
} else {
|
|
pstate = VCPU_RESET_PSTATE_EL1;
|
|
}
|
|
|
|
if (kvm_vcpu_has_pmu(vcpu) && !kvm_arm_support_pmu_v3()) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Reset core registers */
|
|
memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
|
|
memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
|
|
vcpu->arch.ctxt.spsr_abt = 0;
|
|
vcpu->arch.ctxt.spsr_und = 0;
|
|
vcpu->arch.ctxt.spsr_irq = 0;
|
|
vcpu->arch.ctxt.spsr_fiq = 0;
|
|
vcpu_gp_regs(vcpu)->pstate = pstate;
|
|
|
|
/* Reset system registers */
|
|
kvm_reset_sys_regs(vcpu);
|
|
|
|
/*
|
|
* Additional reset state handling that PSCI may have imposed on us.
|
|
* Must be done after all the sys_reg reset.
|
|
*/
|
|
if (reset_state.reset) {
|
|
unsigned long target_pc = reset_state.pc;
|
|
|
|
/* Gracefully handle Thumb2 entry point */
|
|
if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
|
|
target_pc &= ~1UL;
|
|
vcpu_set_thumb(vcpu);
|
|
}
|
|
|
|
/* Propagate caller endianness */
|
|
if (reset_state.be)
|
|
kvm_vcpu_set_be(vcpu);
|
|
|
|
*vcpu_pc(vcpu) = target_pc;
|
|
vcpu_set_reg(vcpu, 0, reset_state.r0);
|
|
}
|
|
|
|
/* Reset timer */
|
|
ret = kvm_timer_vcpu_reset(vcpu);
|
|
out:
|
|
if (loaded)
|
|
kvm_arch_vcpu_load(vcpu, smp_processor_id());
|
|
preempt_enable();
|
|
return ret;
|
|
}
|
|
|
|
u32 get_kvm_ipa_limit(void)
|
|
{
|
|
return kvm_ipa_limit;
|
|
}
|
|
|
|
int __init kvm_set_ipa_limit(void)
|
|
{
|
|
unsigned int parange;
|
|
u64 mmfr0;
|
|
|
|
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
|
parange = cpuid_feature_extract_unsigned_field(mmfr0,
|
|
ID_AA64MMFR0_EL1_PARANGE_SHIFT);
|
|
/*
|
|
* IPA size beyond 48 bits could not be supported
|
|
* on either 4K or 16K page size. Hence let's cap
|
|
* it to 48 bits, in case it's reported as larger
|
|
* on the system.
|
|
*/
|
|
if (PAGE_SIZE != SZ_64K)
|
|
parange = min(parange, (unsigned int)ID_AA64MMFR0_EL1_PARANGE_48);
|
|
|
|
/*
|
|
* Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
|
|
* Stage-2. If not, things will stop very quickly.
|
|
*/
|
|
switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_TGRAN_2_SHIFT)) {
|
|
case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE:
|
|
kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
|
|
return -EINVAL;
|
|
case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT:
|
|
kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
|
|
break;
|
|
case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX:
|
|
kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
|
|
break;
|
|
default:
|
|
kvm_err("Unsupported value for TGRAN_2, giving up\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
|
|
kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
|
|
((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
|
|
" (Reduced IPA size, limited VM/VMM compatibility)" : ""));
|
|
|
|
return 0;
|
|
}
|