WSL2-Linux-Kernel/drivers/net/macsonic.c

668 строки
19 KiB
C

/*
* macsonic.c
*
* (C) 2005 Finn Thain
*
* Converted to DMA API, converted to unified driver model, made it work as
* a module again, and from the mac68k project, introduced more 32-bit cards
* and dhd's support for 16-bit cards.
*
* (C) 1998 Alan Cox
*
* Debugging Andreas Ehliar, Michael Schmitz
*
* Based on code
* (C) 1996 by Thomas Bogendoerfer (tsbogend@bigbug.franken.de)
*
* This driver is based on work from Andreas Busse, but most of
* the code is rewritten.
*
* (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
*
* A driver for the Mac onboard Sonic ethernet chip.
*
* 98/12/21 MSch: judged from tests on Q800, it's basically working,
* but eating up both receive and transmit resources
* and duplicating packets. Needs more testing.
*
* 99/01/03 MSch: upgraded to version 0.92 of the core driver, fixed.
*
* 00/10/31 sammy@oh.verio.com: Updated driver for 2.4 kernels, fixed problems
* on centris.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/nubus.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/bitrev.h>
#include <asm/bootinfo.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/hwtest.h>
#include <asm/dma.h>
#include <asm/macintosh.h>
#include <asm/macints.h>
#include <asm/mac_via.h>
static char mac_sonic_string[] = "macsonic";
static struct platform_device *mac_sonic_device;
#include "sonic.h"
/* These should basically be bus-size and endian independent (since
the SONIC is at least smart enough that it uses the same endianness
as the host, unlike certain less enlightened Macintosh NICs) */
#define SONIC_READ(reg) (nubus_readw(dev->base_addr + (reg * 4) \
+ lp->reg_offset))
#define SONIC_WRITE(reg,val) (nubus_writew(val, dev->base_addr + (reg * 4) \
+ lp->reg_offset))
/* use 0 for production, 1 for verification, >1 for debug */
#ifdef SONIC_DEBUG
static unsigned int sonic_debug = SONIC_DEBUG;
#else
static unsigned int sonic_debug = 1;
#endif
static int sonic_version_printed;
/* For onboard SONIC */
#define ONBOARD_SONIC_REGISTERS 0x50F0A000
#define ONBOARD_SONIC_PROM_BASE 0x50f08000
enum macsonic_type {
MACSONIC_DUODOCK,
MACSONIC_APPLE,
MACSONIC_APPLE16,
MACSONIC_DAYNA,
MACSONIC_DAYNALINK
};
/* For the built-in SONIC in the Duo Dock */
#define DUODOCK_SONIC_REGISTERS 0xe10000
#define DUODOCK_SONIC_PROM_BASE 0xe12000
/* For Apple-style NuBus SONIC */
#define APPLE_SONIC_REGISTERS 0
#define APPLE_SONIC_PROM_BASE 0x40000
/* Daynalink LC SONIC */
#define DAYNALINK_PROM_BASE 0x400000
/* For Dayna-style NuBus SONIC (haven't seen one yet) */
#define DAYNA_SONIC_REGISTERS 0x180000
/* This is what OpenBSD says. However, this is definitely in NuBus
ROM space so we should be able to get it by walking the NuBus
resource directories */
#define DAYNA_SONIC_MAC_ADDR 0xffe004
#define SONIC_READ_PROM(addr) nubus_readb(prom_addr+addr)
/*
* For reversing the PROM address
*/
static inline void bit_reverse_addr(unsigned char addr[6])
{
int i;
for(i = 0; i < 6; i++)
addr[i] = bitrev8(addr[i]);
}
static irqreturn_t macsonic_interrupt(int irq, void *dev_id)
{
irqreturn_t result;
unsigned long flags;
local_irq_save(flags);
result = sonic_interrupt(irq, dev_id);
local_irq_restore(flags);
return result;
}
static int macsonic_open(struct net_device* dev)
{
if (request_irq(dev->irq, &sonic_interrupt, IRQ_FLG_FAST, "sonic", dev)) {
printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
return -EAGAIN;
}
/* Under the A/UX interrupt scheme, the onboard SONIC interrupt comes
* in at priority level 3. However, we sometimes get the level 2 inter-
* rupt as well, which must prevent re-entrance of the sonic handler.
*/
if (dev->irq == IRQ_AUTO_3)
if (request_irq(IRQ_NUBUS_9, &macsonic_interrupt, IRQ_FLG_FAST, "sonic", dev)) {
printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, IRQ_NUBUS_9);
free_irq(dev->irq, dev);
return -EAGAIN;
}
return sonic_open(dev);
}
static int macsonic_close(struct net_device* dev)
{
int err;
err = sonic_close(dev);
free_irq(dev->irq, dev);
if (dev->irq == IRQ_AUTO_3)
free_irq(IRQ_NUBUS_9, dev);
return err;
}
static const struct net_device_ops macsonic_netdev_ops = {
.ndo_open = macsonic_open,
.ndo_stop = macsonic_close,
.ndo_start_xmit = sonic_send_packet,
.ndo_set_multicast_list = sonic_multicast_list,
.ndo_tx_timeout = sonic_tx_timeout,
.ndo_get_stats = sonic_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
};
static int __init macsonic_init(struct net_device *dev)
{
struct sonic_local* lp = netdev_priv(dev);
/* Allocate the entire chunk of memory for the descriptors.
Note that this cannot cross a 64K boundary. */
if ((lp->descriptors = dma_alloc_coherent(lp->device,
SIZEOF_SONIC_DESC * SONIC_BUS_SCALE(lp->dma_bitmode),
&lp->descriptors_laddr, GFP_KERNEL)) == NULL) {
printk(KERN_ERR "%s: couldn't alloc DMA memory for descriptors.\n",
dev_name(lp->device));
return -ENOMEM;
}
/* Now set up the pointers to point to the appropriate places */
lp->cda = lp->descriptors;
lp->tda = lp->cda + (SIZEOF_SONIC_CDA
* SONIC_BUS_SCALE(lp->dma_bitmode));
lp->rda = lp->tda + (SIZEOF_SONIC_TD * SONIC_NUM_TDS
* SONIC_BUS_SCALE(lp->dma_bitmode));
lp->rra = lp->rda + (SIZEOF_SONIC_RD * SONIC_NUM_RDS
* SONIC_BUS_SCALE(lp->dma_bitmode));
lp->cda_laddr = lp->descriptors_laddr;
lp->tda_laddr = lp->cda_laddr + (SIZEOF_SONIC_CDA
* SONIC_BUS_SCALE(lp->dma_bitmode));
lp->rda_laddr = lp->tda_laddr + (SIZEOF_SONIC_TD * SONIC_NUM_TDS
* SONIC_BUS_SCALE(lp->dma_bitmode));
lp->rra_laddr = lp->rda_laddr + (SIZEOF_SONIC_RD * SONIC_NUM_RDS
* SONIC_BUS_SCALE(lp->dma_bitmode));
dev->netdev_ops = &macsonic_netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
/*
* clear tally counter
*/
SONIC_WRITE(SONIC_CRCT, 0xffff);
SONIC_WRITE(SONIC_FAET, 0xffff);
SONIC_WRITE(SONIC_MPT, 0xffff);
return 0;
}
static int __init mac_onboard_sonic_ethernet_addr(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
const int prom_addr = ONBOARD_SONIC_PROM_BASE;
int i;
/* On NuBus boards we can sometimes look in the ROM resources.
No such luck for comm-slot/onboard. */
for(i = 0; i < 6; i++)
dev->dev_addr[i] = SONIC_READ_PROM(i);
/* Most of the time, the address is bit-reversed. The NetBSD
source has a rather long and detailed historical account of
why this is so. */
if (memcmp(dev->dev_addr, "\x08\x00\x07", 3) &&
memcmp(dev->dev_addr, "\x00\xA0\x40", 3) &&
memcmp(dev->dev_addr, "\x00\x80\x19", 3) &&
memcmp(dev->dev_addr, "\x00\x05\x02", 3))
bit_reverse_addr(dev->dev_addr);
else
return 0;
/* If we still have what seems to be a bogus address, we'll
look in the CAM. The top entry should be ours. */
/* Danger! This only works if MacOS has already initialized
the card... */
if (memcmp(dev->dev_addr, "\x08\x00\x07", 3) &&
memcmp(dev->dev_addr, "\x00\xA0\x40", 3) &&
memcmp(dev->dev_addr, "\x00\x80\x19", 3) &&
memcmp(dev->dev_addr, "\x00\x05\x02", 3))
{
unsigned short val;
printk(KERN_INFO "macsonic: PROM seems to be wrong, trying CAM entry 15\n");
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
SONIC_WRITE(SONIC_CEP, 15);
val = SONIC_READ(SONIC_CAP2);
dev->dev_addr[5] = val >> 8;
dev->dev_addr[4] = val & 0xff;
val = SONIC_READ(SONIC_CAP1);
dev->dev_addr[3] = val >> 8;
dev->dev_addr[2] = val & 0xff;
val = SONIC_READ(SONIC_CAP0);
dev->dev_addr[1] = val >> 8;
dev->dev_addr[0] = val & 0xff;
printk(KERN_INFO "HW Address from CAM 15: %pM\n",
dev->dev_addr);
} else return 0;
if (memcmp(dev->dev_addr, "\x08\x00\x07", 3) &&
memcmp(dev->dev_addr, "\x00\xA0\x40", 3) &&
memcmp(dev->dev_addr, "\x00\x80\x19", 3) &&
memcmp(dev->dev_addr, "\x00\x05\x02", 3))
{
/*
* Still nonsense ... messed up someplace!
*/
printk(KERN_ERR "macsonic: ERROR (INVALID MAC)\n");
return -EIO;
} else return 0;
}
static int __init mac_onboard_sonic_probe(struct net_device *dev)
{
/* Bwahahaha */
static int once_is_more_than_enough;
struct sonic_local* lp = netdev_priv(dev);
int sr;
int commslot = 0;
if (once_is_more_than_enough)
return -ENODEV;
once_is_more_than_enough = 1;
if (!MACH_IS_MAC)
return -ENODEV;
if (macintosh_config->ether_type != MAC_ETHER_SONIC)
return -ENODEV;
printk(KERN_INFO "Checking for internal Macintosh ethernet (SONIC).. ");
/* Bogus probing, on the models which may or may not have
Ethernet (BTW, the Ethernet *is* always at the same
address, and nothing else lives there, at least if Apple's
documentation is to be believed) */
if (macintosh_config->ident == MAC_MODEL_Q630 ||
macintosh_config->ident == MAC_MODEL_P588 ||
macintosh_config->ident == MAC_MODEL_P575 ||
macintosh_config->ident == MAC_MODEL_C610) {
unsigned long flags;
int card_present;
local_irq_save(flags);
card_present = hwreg_present((void*)ONBOARD_SONIC_REGISTERS);
local_irq_restore(flags);
if (!card_present) {
printk("none.\n");
return -ENODEV;
}
commslot = 1;
}
printk("yes\n");
/* Danger! My arms are flailing wildly! You *must* set lp->reg_offset
* and dev->base_addr before using SONIC_READ() or SONIC_WRITE() */
dev->base_addr = ONBOARD_SONIC_REGISTERS;
if (via_alt_mapping)
dev->irq = IRQ_AUTO_3;
else
dev->irq = IRQ_NUBUS_9;
if (!sonic_version_printed) {
printk(KERN_INFO "%s", version);
sonic_version_printed = 1;
}
printk(KERN_INFO "%s: onboard / comm-slot SONIC at 0x%08lx\n",
dev_name(lp->device), dev->base_addr);
/* The PowerBook's SONIC is 16 bit always. */
if (macintosh_config->ident == MAC_MODEL_PB520) {
lp->reg_offset = 0;
lp->dma_bitmode = SONIC_BITMODE16;
sr = SONIC_READ(SONIC_SR);
} else if (commslot) {
/* Some of the comm-slot cards are 16 bit. But some
of them are not. The 32-bit cards use offset 2 and
have known revisions, we try reading the revision
register at offset 2, if we don't get a known revision
we assume 16 bit at offset 0. */
lp->reg_offset = 2;
lp->dma_bitmode = SONIC_BITMODE16;
sr = SONIC_READ(SONIC_SR);
if (sr == 0x0004 || sr == 0x0006 || sr == 0x0100 || sr == 0x0101)
/* 83932 is 0x0004 or 0x0006, 83934 is 0x0100 or 0x0101 */
lp->dma_bitmode = SONIC_BITMODE32;
else {
lp->dma_bitmode = SONIC_BITMODE16;
lp->reg_offset = 0;
sr = SONIC_READ(SONIC_SR);
}
} else {
/* All onboard cards are at offset 2 with 32 bit DMA. */
lp->reg_offset = 2;
lp->dma_bitmode = SONIC_BITMODE32;
sr = SONIC_READ(SONIC_SR);
}
printk(KERN_INFO
"%s: revision 0x%04x, using %d bit DMA and register offset %d\n",
dev_name(lp->device), sr, lp->dma_bitmode?32:16, lp->reg_offset);
#if 0 /* This is sometimes useful to find out how MacOS configured the card. */
printk(KERN_INFO "%s: DCR: 0x%04x, DCR2: 0x%04x\n", dev_name(lp->device),
SONIC_READ(SONIC_DCR) & 0xffff, SONIC_READ(SONIC_DCR2) & 0xffff);
#endif
/* Software reset, then initialize control registers. */
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
SONIC_WRITE(SONIC_DCR, SONIC_DCR_EXBUS | SONIC_DCR_BMS |
SONIC_DCR_RFT1 | SONIC_DCR_TFT0 |
(lp->dma_bitmode ? SONIC_DCR_DW : 0));
/* This *must* be written back to in order to restore the
* extended programmable output bits, as it may not have been
* initialised since the hardware reset. */
SONIC_WRITE(SONIC_DCR2, 0);
/* Clear *and* disable interrupts to be on the safe side */
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, 0x7fff);
/* Now look for the MAC address. */
if (mac_onboard_sonic_ethernet_addr(dev) != 0)
return -ENODEV;
/* Shared init code */
return macsonic_init(dev);
}
static int __init mac_nubus_sonic_ethernet_addr(struct net_device *dev,
unsigned long prom_addr,
int id)
{
int i;
for(i = 0; i < 6; i++)
dev->dev_addr[i] = SONIC_READ_PROM(i);
/* Some of the addresses are bit-reversed */
if (id != MACSONIC_DAYNA)
bit_reverse_addr(dev->dev_addr);
return 0;
}
static int __init macsonic_ident(struct nubus_dev *ndev)
{
if (ndev->dr_hw == NUBUS_DRHW_ASANTE_LC &&
ndev->dr_sw == NUBUS_DRSW_SONIC_LC)
return MACSONIC_DAYNALINK;
if (ndev->dr_hw == NUBUS_DRHW_SONIC &&
ndev->dr_sw == NUBUS_DRSW_APPLE) {
/* There has to be a better way to do this... */
if (strstr(ndev->board->name, "DuoDock"))
return MACSONIC_DUODOCK;
else
return MACSONIC_APPLE;
}
if (ndev->dr_hw == NUBUS_DRHW_SMC9194 &&
ndev->dr_sw == NUBUS_DRSW_DAYNA)
return MACSONIC_DAYNA;
if (ndev->dr_hw == NUBUS_DRHW_APPLE_SONIC_LC &&
ndev->dr_sw == 0) { /* huh? */
return MACSONIC_APPLE16;
}
return -1;
}
static int __init mac_nubus_sonic_probe(struct net_device *dev)
{
static int slots;
struct nubus_dev* ndev = NULL;
struct sonic_local* lp = netdev_priv(dev);
unsigned long base_addr, prom_addr;
u16 sonic_dcr;
int id = -1;
int reg_offset, dma_bitmode;
/* Find the first SONIC that hasn't been initialized already */
while ((ndev = nubus_find_type(NUBUS_CAT_NETWORK,
NUBUS_TYPE_ETHERNET, ndev)) != NULL)
{
/* Have we seen it already? */
if (slots & (1<<ndev->board->slot))
continue;
slots |= 1<<ndev->board->slot;
/* Is it one of ours? */
if ((id = macsonic_ident(ndev)) != -1)
break;
}
if (ndev == NULL)
return -ENODEV;
switch (id) {
case MACSONIC_DUODOCK:
base_addr = ndev->board->slot_addr + DUODOCK_SONIC_REGISTERS;
prom_addr = ndev->board->slot_addr + DUODOCK_SONIC_PROM_BASE;
sonic_dcr = SONIC_DCR_EXBUS | SONIC_DCR_RFT0 | SONIC_DCR_RFT1 |
SONIC_DCR_TFT0;
reg_offset = 2;
dma_bitmode = SONIC_BITMODE32;
break;
case MACSONIC_APPLE:
base_addr = ndev->board->slot_addr + APPLE_SONIC_REGISTERS;
prom_addr = ndev->board->slot_addr + APPLE_SONIC_PROM_BASE;
sonic_dcr = SONIC_DCR_BMS | SONIC_DCR_RFT1 | SONIC_DCR_TFT0;
reg_offset = 0;
dma_bitmode = SONIC_BITMODE32;
break;
case MACSONIC_APPLE16:
base_addr = ndev->board->slot_addr + APPLE_SONIC_REGISTERS;
prom_addr = ndev->board->slot_addr + APPLE_SONIC_PROM_BASE;
sonic_dcr = SONIC_DCR_EXBUS | SONIC_DCR_RFT1 | SONIC_DCR_TFT0 |
SONIC_DCR_PO1 | SONIC_DCR_BMS;
reg_offset = 0;
dma_bitmode = SONIC_BITMODE16;
break;
case MACSONIC_DAYNALINK:
base_addr = ndev->board->slot_addr + APPLE_SONIC_REGISTERS;
prom_addr = ndev->board->slot_addr + DAYNALINK_PROM_BASE;
sonic_dcr = SONIC_DCR_RFT1 | SONIC_DCR_TFT0 |
SONIC_DCR_PO1 | SONIC_DCR_BMS;
reg_offset = 0;
dma_bitmode = SONIC_BITMODE16;
break;
case MACSONIC_DAYNA:
base_addr = ndev->board->slot_addr + DAYNA_SONIC_REGISTERS;
prom_addr = ndev->board->slot_addr + DAYNA_SONIC_MAC_ADDR;
sonic_dcr = SONIC_DCR_BMS |
SONIC_DCR_RFT1 | SONIC_DCR_TFT0 | SONIC_DCR_PO1;
reg_offset = 0;
dma_bitmode = SONIC_BITMODE16;
break;
default:
printk(KERN_ERR "macsonic: WTF, id is %d\n", id);
return -ENODEV;
}
/* Danger! My arms are flailing wildly! You *must* set lp->reg_offset
* and dev->base_addr before using SONIC_READ() or SONIC_WRITE() */
dev->base_addr = base_addr;
lp->reg_offset = reg_offset;
lp->dma_bitmode = dma_bitmode;
dev->irq = SLOT2IRQ(ndev->board->slot);
if (!sonic_version_printed) {
printk(KERN_INFO "%s", version);
sonic_version_printed = 1;
}
printk(KERN_INFO "%s: %s in slot %X\n",
dev_name(lp->device), ndev->board->name, ndev->board->slot);
printk(KERN_INFO "%s: revision 0x%04x, using %d bit DMA and register offset %d\n",
dev_name(lp->device), SONIC_READ(SONIC_SR), dma_bitmode?32:16, reg_offset);
#if 0 /* This is sometimes useful to find out how MacOS configured the card. */
printk(KERN_INFO "%s: DCR: 0x%04x, DCR2: 0x%04x\n", dev_name(lp->device),
SONIC_READ(SONIC_DCR) & 0xffff, SONIC_READ(SONIC_DCR2) & 0xffff);
#endif
/* Software reset, then initialize control registers. */
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
SONIC_WRITE(SONIC_DCR, sonic_dcr | (dma_bitmode ? SONIC_DCR_DW : 0));
/* This *must* be written back to in order to restore the
* extended programmable output bits, since it may not have been
* initialised since the hardware reset. */
SONIC_WRITE(SONIC_DCR2, 0);
/* Clear *and* disable interrupts to be on the safe side */
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, 0x7fff);
/* Now look for the MAC address. */
if (mac_nubus_sonic_ethernet_addr(dev, prom_addr, id) != 0)
return -ENODEV;
/* Shared init code */
return macsonic_init(dev);
}
static int __init mac_sonic_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct sonic_local *lp;
int err;
dev = alloc_etherdev(sizeof(struct sonic_local));
if (!dev)
return -ENOMEM;
lp = netdev_priv(dev);
lp->device = &pdev->dev;
SET_NETDEV_DEV(dev, &pdev->dev);
/* This will catch fatal stuff like -ENOMEM as well as success */
err = mac_onboard_sonic_probe(dev);
if (err == 0)
goto found;
if (err != -ENODEV)
goto out;
err = mac_nubus_sonic_probe(dev);
if (err)
goto out;
found:
err = register_netdev(dev);
if (err)
goto out;
printk("%s: MAC %pM IRQ %d\n", dev->name, dev->dev_addr, dev->irq);
return 0;
out:
free_netdev(dev);
return err;
}
MODULE_DESCRIPTION("Macintosh SONIC ethernet driver");
module_param(sonic_debug, int, 0);
MODULE_PARM_DESC(sonic_debug, "macsonic debug level (1-4)");
#include "sonic.c"
static int __devexit mac_sonic_device_remove (struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct sonic_local* lp = netdev_priv(dev);
unregister_netdev(dev);
dma_free_coherent(lp->device, SIZEOF_SONIC_DESC * SONIC_BUS_SCALE(lp->dma_bitmode),
lp->descriptors, lp->descriptors_laddr);
free_netdev(dev);
return 0;
}
static struct platform_driver mac_sonic_driver = {
.probe = mac_sonic_probe,
.remove = __devexit_p(mac_sonic_device_remove),
.driver = {
.name = mac_sonic_string,
},
};
static int __init mac_sonic_init_module(void)
{
int err;
if ((err = platform_driver_register(&mac_sonic_driver))) {
printk(KERN_ERR "Driver registration failed\n");
return err;
}
mac_sonic_device = platform_device_alloc(mac_sonic_string, 0);
if (!mac_sonic_device)
goto out_unregister;
if (platform_device_add(mac_sonic_device)) {
platform_device_put(mac_sonic_device);
mac_sonic_device = NULL;
}
return 0;
out_unregister:
platform_driver_unregister(&mac_sonic_driver);
return -ENOMEM;
}
static void __exit mac_sonic_cleanup_module(void)
{
platform_driver_unregister(&mac_sonic_driver);
if (mac_sonic_device) {
platform_device_unregister(mac_sonic_device);
mac_sonic_device = NULL;
}
}
module_init(mac_sonic_init_module);
module_exit(mac_sonic_cleanup_module);