WSL2-Linux-Kernel/drivers/gpu/drm/drm_modes.c

1131 строка
32 KiB
C

/*
* Copyright © 1997-2003 by The XFree86 Project, Inc.
* Copyright © 2007 Dave Airlie
* Copyright © 2007-2008 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
* Copyright 2005-2006 Luc Verhaegen
* Copyright (c) 2001, Andy Ritger aritger@nvidia.com
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of the copyright holder(s)
* and author(s) shall not be used in advertising or otherwise to promote
* the sale, use or other dealings in this Software without prior written
* authorization from the copyright holder(s) and author(s).
*/
#include <linux/list.h>
#include <linux/list_sort.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
/**
* drm_mode_debug_printmodeline - debug print a mode
* @dev: DRM device
* @mode: mode to print
*
* LOCKING:
* None.
*
* Describe @mode using DRM_DEBUG.
*/
void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
{
DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
"0x%x 0x%x\n",
mode->base.id, mode->name, mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal, mode->type, mode->flags);
}
EXPORT_SYMBOL(drm_mode_debug_printmodeline);
/**
* drm_cvt_mode -create a modeline based on CVT algorithm
* @dev: DRM device
* @hdisplay: hdisplay size
* @vdisplay: vdisplay size
* @vrefresh : vrefresh rate
* @reduced : Whether the GTF calculation is simplified
* @interlaced:Whether the interlace is supported
*
* LOCKING:
* none.
*
* return the modeline based on CVT algorithm
*
* This function is called to generate the modeline based on CVT algorithm
* according to the hdisplay, vdisplay, vrefresh.
* It is based from the VESA(TM) Coordinated Video Timing Generator by
* Graham Loveridge April 9, 2003 available at
* http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
*
* And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
* What I have done is to translate it by using integer calculation.
*/
#define HV_FACTOR 1000
struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
int vdisplay, int vrefresh,
bool reduced, bool interlaced, bool margins)
{
/* 1) top/bottom margin size (% of height) - default: 1.8, */
#define CVT_MARGIN_PERCENTAGE 18
/* 2) character cell horizontal granularity (pixels) - default 8 */
#define CVT_H_GRANULARITY 8
/* 3) Minimum vertical porch (lines) - default 3 */
#define CVT_MIN_V_PORCH 3
/* 4) Minimum number of vertical back porch lines - default 6 */
#define CVT_MIN_V_BPORCH 6
/* Pixel Clock step (kHz) */
#define CVT_CLOCK_STEP 250
struct drm_display_mode *drm_mode;
unsigned int vfieldrate, hperiod;
int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
int interlace;
/* allocate the drm_display_mode structure. If failure, we will
* return directly
*/
drm_mode = drm_mode_create(dev);
if (!drm_mode)
return NULL;
/* the CVT default refresh rate is 60Hz */
if (!vrefresh)
vrefresh = 60;
/* the required field fresh rate */
if (interlaced)
vfieldrate = vrefresh * 2;
else
vfieldrate = vrefresh;
/* horizontal pixels */
hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
/* determine the left&right borders */
hmargin = 0;
if (margins) {
hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
hmargin -= hmargin % CVT_H_GRANULARITY;
}
/* find the total active pixels */
drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
/* find the number of lines per field */
if (interlaced)
vdisplay_rnd = vdisplay / 2;
else
vdisplay_rnd = vdisplay;
/* find the top & bottom borders */
vmargin = 0;
if (margins)
vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
drm_mode->vdisplay = vdisplay + 2 * vmargin;
/* Interlaced */
if (interlaced)
interlace = 1;
else
interlace = 0;
/* Determine VSync Width from aspect ratio */
if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
vsync = 4;
else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
vsync = 5;
else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
vsync = 6;
else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
vsync = 7;
else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
vsync = 7;
else /* custom */
vsync = 10;
if (!reduced) {
/* simplify the GTF calculation */
/* 4) Minimum time of vertical sync + back porch interval (µs)
* default 550.0
*/
int tmp1, tmp2;
#define CVT_MIN_VSYNC_BP 550
/* 3) Nominal HSync width (% of line period) - default 8 */
#define CVT_HSYNC_PERCENTAGE 8
unsigned int hblank_percentage;
int vsyncandback_porch, vback_porch, hblank;
/* estimated the horizontal period */
tmp1 = HV_FACTOR * 1000000 -
CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
interlace;
hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
/* 9. Find number of lines in sync + backporch */
if (tmp1 < (vsync + CVT_MIN_V_PORCH))
vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
else
vsyncandback_porch = tmp1;
/* 10. Find number of lines in back porch */
vback_porch = vsyncandback_porch - vsync;
drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
vsyncandback_porch + CVT_MIN_V_PORCH;
/* 5) Definition of Horizontal blanking time limitation */
/* Gradient (%/kHz) - default 600 */
#define CVT_M_FACTOR 600
/* Offset (%) - default 40 */
#define CVT_C_FACTOR 40
/* Blanking time scaling factor - default 128 */
#define CVT_K_FACTOR 128
/* Scaling factor weighting - default 20 */
#define CVT_J_FACTOR 20
#define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256)
#define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
CVT_J_FACTOR)
/* 12. Find ideal blanking duty cycle from formula */
hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
hperiod / 1000;
/* 13. Blanking time */
if (hblank_percentage < 20 * HV_FACTOR)
hblank_percentage = 20 * HV_FACTOR;
hblank = drm_mode->hdisplay * hblank_percentage /
(100 * HV_FACTOR - hblank_percentage);
hblank -= hblank % (2 * CVT_H_GRANULARITY);
/* 14. find the total pixes per line */
drm_mode->htotal = drm_mode->hdisplay + hblank;
drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
drm_mode->hsync_start = drm_mode->hsync_end -
(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
drm_mode->hsync_start += CVT_H_GRANULARITY -
drm_mode->hsync_start % CVT_H_GRANULARITY;
/* fill the Vsync values */
drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
drm_mode->vsync_end = drm_mode->vsync_start + vsync;
} else {
/* Reduced blanking */
/* Minimum vertical blanking interval time (µs)- default 460 */
#define CVT_RB_MIN_VBLANK 460
/* Fixed number of clocks for horizontal sync */
#define CVT_RB_H_SYNC 32
/* Fixed number of clocks for horizontal blanking */
#define CVT_RB_H_BLANK 160
/* Fixed number of lines for vertical front porch - default 3*/
#define CVT_RB_VFPORCH 3
int vbilines;
int tmp1, tmp2;
/* 8. Estimate Horizontal period. */
tmp1 = HV_FACTOR * 1000000 -
CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
tmp2 = vdisplay_rnd + 2 * vmargin;
hperiod = tmp1 / (tmp2 * vfieldrate);
/* 9. Find number of lines in vertical blanking */
vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
/* 10. Check if vertical blanking is sufficient */
if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
/* 11. Find total number of lines in vertical field */
drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
/* 12. Find total number of pixels in a line */
drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
/* Fill in HSync values */
drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
/* Fill in VSync values */
drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
drm_mode->vsync_end = drm_mode->vsync_start + vsync;
}
/* 15/13. Find pixel clock frequency (kHz for xf86) */
drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
/* 18/16. Find actual vertical frame frequency */
/* ignore - just set the mode flag for interlaced */
if (interlaced) {
drm_mode->vtotal *= 2;
drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
}
/* Fill the mode line name */
drm_mode_set_name(drm_mode);
if (reduced)
drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
DRM_MODE_FLAG_NVSYNC);
else
drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_NHSYNC);
return drm_mode;
}
EXPORT_SYMBOL(drm_cvt_mode);
/**
* drm_gtf_mode_complex - create the modeline based on full GTF algorithm
*
* @dev :drm device
* @hdisplay :hdisplay size
* @vdisplay :vdisplay size
* @vrefresh :vrefresh rate.
* @interlaced :whether the interlace is supported
* @margins :desired margin size
* @GTF_[MCKJ] :extended GTF formula parameters
*
* LOCKING.
* none.
*
* return the modeline based on full GTF algorithm.
*
* GTF feature blocks specify C and J in multiples of 0.5, so we pass them
* in here multiplied by two. For a C of 40, pass in 80.
*/
struct drm_display_mode *
drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay,
int vrefresh, bool interlaced, int margins,
int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
{ /* 1) top/bottom margin size (% of height) - default: 1.8, */
#define GTF_MARGIN_PERCENTAGE 18
/* 2) character cell horizontal granularity (pixels) - default 8 */
#define GTF_CELL_GRAN 8
/* 3) Minimum vertical porch (lines) - default 3 */
#define GTF_MIN_V_PORCH 1
/* width of vsync in lines */
#define V_SYNC_RQD 3
/* width of hsync as % of total line */
#define H_SYNC_PERCENT 8
/* min time of vsync + back porch (microsec) */
#define MIN_VSYNC_PLUS_BP 550
/* C' and M' are part of the Blanking Duty Cycle computation */
#define GTF_C_PRIME ((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
#define GTF_M_PRIME (GTF_K * GTF_M / 256)
struct drm_display_mode *drm_mode;
unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
int top_margin, bottom_margin;
int interlace;
unsigned int hfreq_est;
int vsync_plus_bp, vback_porch;
unsigned int vtotal_lines, vfieldrate_est, hperiod;
unsigned int vfield_rate, vframe_rate;
int left_margin, right_margin;
unsigned int total_active_pixels, ideal_duty_cycle;
unsigned int hblank, total_pixels, pixel_freq;
int hsync, hfront_porch, vodd_front_porch_lines;
unsigned int tmp1, tmp2;
drm_mode = drm_mode_create(dev);
if (!drm_mode)
return NULL;
/* 1. In order to give correct results, the number of horizontal
* pixels requested is first processed to ensure that it is divisible
* by the character size, by rounding it to the nearest character
* cell boundary:
*/
hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
/* 2. If interlace is requested, the number of vertical lines assumed
* by the calculation must be halved, as the computation calculates
* the number of vertical lines per field.
*/
if (interlaced)
vdisplay_rnd = vdisplay / 2;
else
vdisplay_rnd = vdisplay;
/* 3. Find the frame rate required: */
if (interlaced)
vfieldrate_rqd = vrefresh * 2;
else
vfieldrate_rqd = vrefresh;
/* 4. Find number of lines in Top margin: */
top_margin = 0;
if (margins)
top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
1000;
/* 5. Find number of lines in bottom margin: */
bottom_margin = top_margin;
/* 6. If interlace is required, then set variable interlace: */
if (interlaced)
interlace = 1;
else
interlace = 0;
/* 7. Estimate the Horizontal frequency */
{
tmp1 = (1000000 - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
2 + interlace;
hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
}
/* 8. Find the number of lines in V sync + back porch */
/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
/* 9. Find the number of lines in V back porch alone: */
vback_porch = vsync_plus_bp - V_SYNC_RQD;
/* 10. Find the total number of lines in Vertical field period: */
vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
vsync_plus_bp + GTF_MIN_V_PORCH;
/* 11. Estimate the Vertical field frequency: */
vfieldrate_est = hfreq_est / vtotal_lines;
/* 12. Find the actual horizontal period: */
hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
/* 13. Find the actual Vertical field frequency: */
vfield_rate = hfreq_est / vtotal_lines;
/* 14. Find the Vertical frame frequency: */
if (interlaced)
vframe_rate = vfield_rate / 2;
else
vframe_rate = vfield_rate;
/* 15. Find number of pixels in left margin: */
if (margins)
left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
1000;
else
left_margin = 0;
/* 16.Find number of pixels in right margin: */
right_margin = left_margin;
/* 17.Find total number of active pixels in image and left and right */
total_active_pixels = hdisplay_rnd + left_margin + right_margin;
/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
ideal_duty_cycle = GTF_C_PRIME * 1000 -
(GTF_M_PRIME * 1000000 / hfreq_est);
/* 19.Find the number of pixels in the blanking time to the nearest
* double character cell: */
hblank = total_active_pixels * ideal_duty_cycle /
(100000 - ideal_duty_cycle);
hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
hblank = hblank * 2 * GTF_CELL_GRAN;
/* 20.Find total number of pixels: */
total_pixels = total_active_pixels + hblank;
/* 21.Find pixel clock frequency: */
pixel_freq = total_pixels * hfreq_est / 1000;
/* Stage 1 computations are now complete; I should really pass
* the results to another function and do the Stage 2 computations,
* but I only need a few more values so I'll just append the
* computations here for now */
/* 17. Find the number of pixels in the horizontal sync period: */
hsync = H_SYNC_PERCENT * total_pixels / 100;
hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
hsync = hsync * GTF_CELL_GRAN;
/* 18. Find the number of pixels in horizontal front porch period */
hfront_porch = hblank / 2 - hsync;
/* 36. Find the number of lines in the odd front porch period: */
vodd_front_porch_lines = GTF_MIN_V_PORCH ;
/* finally, pack the results in the mode struct */
drm_mode->hdisplay = hdisplay_rnd;
drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
drm_mode->hsync_end = drm_mode->hsync_start + hsync;
drm_mode->htotal = total_pixels;
drm_mode->vdisplay = vdisplay_rnd;
drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
drm_mode->vtotal = vtotal_lines;
drm_mode->clock = pixel_freq;
if (interlaced) {
drm_mode->vtotal *= 2;
drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
}
drm_mode_set_name(drm_mode);
if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
else
drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
return drm_mode;
}
EXPORT_SYMBOL(drm_gtf_mode_complex);
/**
* drm_gtf_mode - create the modeline based on GTF algorithm
*
* @dev :drm device
* @hdisplay :hdisplay size
* @vdisplay :vdisplay size
* @vrefresh :vrefresh rate.
* @interlaced :whether the interlace is supported
* @margins :whether the margin is supported
*
* LOCKING.
* none.
*
* return the modeline based on GTF algorithm
*
* This function is to create the modeline based on the GTF algorithm.
* Generalized Timing Formula is derived from:
* GTF Spreadsheet by Andy Morrish (1/5/97)
* available at http://www.vesa.org
*
* And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
* What I have done is to translate it by using integer calculation.
* I also refer to the function of fb_get_mode in the file of
* drivers/video/fbmon.c
*
* Standard GTF parameters:
* M = 600
* C = 40
* K = 128
* J = 20
*/
struct drm_display_mode *
drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh,
bool lace, int margins)
{
return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, lace,
margins, 600, 40 * 2, 128, 20 * 2);
}
EXPORT_SYMBOL(drm_gtf_mode);
/**
* drm_mode_set_name - set the name on a mode
* @mode: name will be set in this mode
*
* LOCKING:
* None.
*
* Set the name of @mode to a standard format.
*/
void drm_mode_set_name(struct drm_display_mode *mode)
{
bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s",
mode->hdisplay, mode->vdisplay,
interlaced ? "i" : "");
}
EXPORT_SYMBOL(drm_mode_set_name);
/**
* drm_mode_list_concat - move modes from one list to another
* @head: source list
* @new: dst list
*
* LOCKING:
* Caller must ensure both lists are locked.
*
* Move all the modes from @head to @new.
*/
void drm_mode_list_concat(struct list_head *head, struct list_head *new)
{
struct list_head *entry, *tmp;
list_for_each_safe(entry, tmp, head) {
list_move_tail(entry, new);
}
}
EXPORT_SYMBOL(drm_mode_list_concat);
/**
* drm_mode_width - get the width of a mode
* @mode: mode
*
* LOCKING:
* None.
*
* Return @mode's width (hdisplay) value.
*
* FIXME: is this needed?
*
* RETURNS:
* @mode->hdisplay
*/
int drm_mode_width(struct drm_display_mode *mode)
{
return mode->hdisplay;
}
EXPORT_SYMBOL(drm_mode_width);
/**
* drm_mode_height - get the height of a mode
* @mode: mode
*
* LOCKING:
* None.
*
* Return @mode's height (vdisplay) value.
*
* FIXME: is this needed?
*
* RETURNS:
* @mode->vdisplay
*/
int drm_mode_height(struct drm_display_mode *mode)
{
return mode->vdisplay;
}
EXPORT_SYMBOL(drm_mode_height);
/** drm_mode_hsync - get the hsync of a mode
* @mode: mode
*
* LOCKING:
* None.
*
* Return @modes's hsync rate in kHz, rounded to the nearest int.
*/
int drm_mode_hsync(const struct drm_display_mode *mode)
{
unsigned int calc_val;
if (mode->hsync)
return mode->hsync;
if (mode->htotal < 0)
return 0;
calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
calc_val += 500; /* round to 1000Hz */
calc_val /= 1000; /* truncate to kHz */
return calc_val;
}
EXPORT_SYMBOL(drm_mode_hsync);
/**
* drm_mode_vrefresh - get the vrefresh of a mode
* @mode: mode
*
* LOCKING:
* None.
*
* Return @mode's vrefresh rate in Hz or calculate it if necessary.
*
* FIXME: why is this needed? shouldn't vrefresh be set already?
*
* RETURNS:
* Vertical refresh rate. It will be the result of actual value plus 0.5.
* If it is 70.288, it will return 70Hz.
* If it is 59.6, it will return 60Hz.
*/
int drm_mode_vrefresh(const struct drm_display_mode *mode)
{
int refresh = 0;
unsigned int calc_val;
if (mode->vrefresh > 0)
refresh = mode->vrefresh;
else if (mode->htotal > 0 && mode->vtotal > 0) {
int vtotal;
vtotal = mode->vtotal;
/* work out vrefresh the value will be x1000 */
calc_val = (mode->clock * 1000);
calc_val /= mode->htotal;
refresh = (calc_val + vtotal / 2) / vtotal;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
refresh *= 2;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
refresh /= 2;
if (mode->vscan > 1)
refresh /= mode->vscan;
}
return refresh;
}
EXPORT_SYMBOL(drm_mode_vrefresh);
/**
* drm_mode_set_crtcinfo - set CRTC modesetting parameters
* @p: mode
* @adjust_flags: unused? (FIXME)
*
* LOCKING:
* None.
*
* Setup the CRTC modesetting parameters for @p, adjusting if necessary.
*/
void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
{
if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
return;
p->crtc_hdisplay = p->hdisplay;
p->crtc_hsync_start = p->hsync_start;
p->crtc_hsync_end = p->hsync_end;
p->crtc_htotal = p->htotal;
p->crtc_hskew = p->hskew;
p->crtc_vdisplay = p->vdisplay;
p->crtc_vsync_start = p->vsync_start;
p->crtc_vsync_end = p->vsync_end;
p->crtc_vtotal = p->vtotal;
if (p->flags & DRM_MODE_FLAG_INTERLACE) {
if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
p->crtc_vdisplay /= 2;
p->crtc_vsync_start /= 2;
p->crtc_vsync_end /= 2;
p->crtc_vtotal /= 2;
}
p->crtc_vtotal |= 1;
}
if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
p->crtc_vdisplay *= 2;
p->crtc_vsync_start *= 2;
p->crtc_vsync_end *= 2;
p->crtc_vtotal *= 2;
}
if (p->vscan > 1) {
p->crtc_vdisplay *= p->vscan;
p->crtc_vsync_start *= p->vscan;
p->crtc_vsync_end *= p->vscan;
p->crtc_vtotal *= p->vscan;
}
p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
p->crtc_hadjusted = false;
p->crtc_vadjusted = false;
}
EXPORT_SYMBOL(drm_mode_set_crtcinfo);
/**
* drm_mode_duplicate - allocate and duplicate an existing mode
* @m: mode to duplicate
*
* LOCKING:
* None.
*
* Just allocate a new mode, copy the existing mode into it, and return
* a pointer to it. Used to create new instances of established modes.
*/
struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
const struct drm_display_mode *mode)
{
struct drm_display_mode *nmode;
int new_id;
nmode = drm_mode_create(dev);
if (!nmode)
return NULL;
new_id = nmode->base.id;
*nmode = *mode;
nmode->base.id = new_id;
INIT_LIST_HEAD(&nmode->head);
return nmode;
}
EXPORT_SYMBOL(drm_mode_duplicate);
/**
* drm_mode_equal - test modes for equality
* @mode1: first mode
* @mode2: second mode
*
* LOCKING:
* None.
*
* Check to see if @mode1 and @mode2 are equivalent.
*
* RETURNS:
* True if the modes are equal, false otherwise.
*/
bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
{
/* do clock check convert to PICOS so fb modes get matched
* the same */
if (mode1->clock && mode2->clock) {
if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
return false;
} else if (mode1->clock != mode2->clock)
return false;
if (mode1->hdisplay == mode2->hdisplay &&
mode1->hsync_start == mode2->hsync_start &&
mode1->hsync_end == mode2->hsync_end &&
mode1->htotal == mode2->htotal &&
mode1->hskew == mode2->hskew &&
mode1->vdisplay == mode2->vdisplay &&
mode1->vsync_start == mode2->vsync_start &&
mode1->vsync_end == mode2->vsync_end &&
mode1->vtotal == mode2->vtotal &&
mode1->vscan == mode2->vscan &&
mode1->flags == mode2->flags)
return true;
return false;
}
EXPORT_SYMBOL(drm_mode_equal);
/**
* drm_mode_validate_size - make sure modes adhere to size constraints
* @dev: DRM device
* @mode_list: list of modes to check
* @maxX: maximum width
* @maxY: maximum height
* @maxPitch: max pitch
*
* LOCKING:
* Caller must hold a lock protecting @mode_list.
*
* The DRM device (@dev) has size and pitch limits. Here we validate the
* modes we probed for @dev against those limits and set their status as
* necessary.
*/
void drm_mode_validate_size(struct drm_device *dev,
struct list_head *mode_list,
int maxX, int maxY, int maxPitch)
{
struct drm_display_mode *mode;
list_for_each_entry(mode, mode_list, head) {
if (maxPitch > 0 && mode->hdisplay > maxPitch)
mode->status = MODE_BAD_WIDTH;
if (maxX > 0 && mode->hdisplay > maxX)
mode->status = MODE_VIRTUAL_X;
if (maxY > 0 && mode->vdisplay > maxY)
mode->status = MODE_VIRTUAL_Y;
}
}
EXPORT_SYMBOL(drm_mode_validate_size);
/**
* drm_mode_validate_clocks - validate modes against clock limits
* @dev: DRM device
* @mode_list: list of modes to check
* @min: minimum clock rate array
* @max: maximum clock rate array
* @n_ranges: number of clock ranges (size of arrays)
*
* LOCKING:
* Caller must hold a lock protecting @mode_list.
*
* Some code may need to check a mode list against the clock limits of the
* device in question. This function walks the mode list, testing to make
* sure each mode falls within a given range (defined by @min and @max
* arrays) and sets @mode->status as needed.
*/
void drm_mode_validate_clocks(struct drm_device *dev,
struct list_head *mode_list,
int *min, int *max, int n_ranges)
{
struct drm_display_mode *mode;
int i;
list_for_each_entry(mode, mode_list, head) {
bool good = false;
for (i = 0; i < n_ranges; i++) {
if (mode->clock >= min[i] && mode->clock <= max[i]) {
good = true;
break;
}
}
if (!good)
mode->status = MODE_CLOCK_RANGE;
}
}
EXPORT_SYMBOL(drm_mode_validate_clocks);
/**
* drm_mode_prune_invalid - remove invalid modes from mode list
* @dev: DRM device
* @mode_list: list of modes to check
* @verbose: be verbose about it
*
* LOCKING:
* Caller must hold a lock protecting @mode_list.
*
* Once mode list generation is complete, a caller can use this routine to
* remove invalid modes from a mode list. If any of the modes have a
* status other than %MODE_OK, they are removed from @mode_list and freed.
*/
void drm_mode_prune_invalid(struct drm_device *dev,
struct list_head *mode_list, bool verbose)
{
struct drm_display_mode *mode, *t;
list_for_each_entry_safe(mode, t, mode_list, head) {
if (mode->status != MODE_OK) {
list_del(&mode->head);
if (verbose) {
drm_mode_debug_printmodeline(mode);
DRM_DEBUG_KMS("Not using %s mode %d\n",
mode->name, mode->status);
}
drm_mode_destroy(dev, mode);
}
}
}
EXPORT_SYMBOL(drm_mode_prune_invalid);
/**
* drm_mode_compare - compare modes for favorability
* @priv: unused
* @lh_a: list_head for first mode
* @lh_b: list_head for second mode
*
* LOCKING:
* None.
*
* Compare two modes, given by @lh_a and @lh_b, returning a value indicating
* which is better.
*
* RETURNS:
* Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
* positive if @lh_b is better than @lh_a.
*/
static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
{
struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
int diff;
diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
if (diff)
return diff;
diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
if (diff)
return diff;
diff = b->clock - a->clock;
return diff;
}
/**
* drm_mode_sort - sort mode list
* @mode_list: list to sort
*
* LOCKING:
* Caller must hold a lock protecting @mode_list.
*
* Sort @mode_list by favorability, putting good modes first.
*/
void drm_mode_sort(struct list_head *mode_list)
{
list_sort(NULL, mode_list, drm_mode_compare);
}
EXPORT_SYMBOL(drm_mode_sort);
/**
* drm_mode_connector_list_update - update the mode list for the connector
* @connector: the connector to update
*
* LOCKING:
* Caller must hold a lock protecting @mode_list.
*
* This moves the modes from the @connector probed_modes list
* to the actual mode list. It compares the probed mode against the current
* list and only adds different modes. All modes unverified after this point
* will be removed by the prune invalid modes.
*/
void drm_mode_connector_list_update(struct drm_connector *connector)
{
struct drm_display_mode *mode;
struct drm_display_mode *pmode, *pt;
int found_it;
list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
head) {
found_it = 0;
/* go through current modes checking for the new probed mode */
list_for_each_entry(mode, &connector->modes, head) {
if (drm_mode_equal(pmode, mode)) {
found_it = 1;
/* if equal delete the probed mode */
mode->status = pmode->status;
/* Merge type bits together */
mode->type |= pmode->type;
list_del(&pmode->head);
drm_mode_destroy(connector->dev, pmode);
break;
}
}
if (!found_it) {
list_move_tail(&pmode->head, &connector->modes);
}
}
}
EXPORT_SYMBOL(drm_mode_connector_list_update);
/**
* drm_mode_parse_command_line_for_connector - parse command line for connector
* @mode_option - per connector mode option
* @connector - connector to parse line for
*
* This parses the connector specific then generic command lines for
* modes and options to configure the connector.
*
* This uses the same parameters as the fb modedb.c, except for extra
* <xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]
*
* enable/enable Digital/disable bit at the end
*/
bool drm_mode_parse_command_line_for_connector(const char *mode_option,
struct drm_connector *connector,
struct drm_cmdline_mode *mode)
{
const char *name;
unsigned int namelen;
int res_specified = 0, bpp_specified = 0, refresh_specified = 0;
unsigned int xres = 0, yres = 0, bpp = 32, refresh = 0;
int yres_specified = 0, cvt = 0, rb = 0, interlace = 0, margins = 0;
int i;
enum drm_connector_force force = DRM_FORCE_UNSPECIFIED;
if (!mode_option)
mode_option = fb_mode_option;
if (!mode_option) {
mode->specified = false;
return false;
}
name = mode_option;
namelen = strlen(name);
for (i = namelen-1; i >= 0; i--) {
switch (name[i]) {
case '@':
namelen = i;
if (!refresh_specified && !bpp_specified &&
!yres_specified) {
refresh = simple_strtol(&name[i+1], NULL, 10);
refresh_specified = 1;
if (cvt || rb)
cvt = 0;
} else
goto done;
break;
case '-':
namelen = i;
if (!bpp_specified && !yres_specified) {
bpp = simple_strtol(&name[i+1], NULL, 10);
bpp_specified = 1;
if (cvt || rb)
cvt = 0;
} else
goto done;
break;
case 'x':
if (!yres_specified) {
yres = simple_strtol(&name[i+1], NULL, 10);
yres_specified = 1;
} else
goto done;
case '0' ... '9':
break;
case 'M':
if (!yres_specified)
cvt = 1;
break;
case 'R':
if (cvt)
rb = 1;
break;
case 'm':
if (!cvt)
margins = 1;
break;
case 'i':
if (!cvt)
interlace = 1;
break;
case 'e':
force = DRM_FORCE_ON;
break;
case 'D':
if ((connector->connector_type != DRM_MODE_CONNECTOR_DVII) &&
(connector->connector_type != DRM_MODE_CONNECTOR_HDMIB))
force = DRM_FORCE_ON;
else
force = DRM_FORCE_ON_DIGITAL;
break;
case 'd':
force = DRM_FORCE_OFF;
break;
default:
goto done;
}
}
if (i < 0 && yres_specified) {
xres = simple_strtol(name, NULL, 10);
res_specified = 1;
}
done:
if (res_specified) {
mode->specified = true;
mode->xres = xres;
mode->yres = yres;
}
if (refresh_specified) {
mode->refresh_specified = true;
mode->refresh = refresh;
}
if (bpp_specified) {
mode->bpp_specified = true;
mode->bpp = bpp;
}
mode->rb = rb ? true : false;
mode->cvt = cvt ? true : false;
mode->interlace = interlace ? true : false;
mode->force = force;
return true;
}
EXPORT_SYMBOL(drm_mode_parse_command_line_for_connector);
struct drm_display_mode *
drm_mode_create_from_cmdline_mode(struct drm_device *dev,
struct drm_cmdline_mode *cmd)
{
struct drm_display_mode *mode;
if (cmd->cvt)
mode = drm_cvt_mode(dev,
cmd->xres, cmd->yres,
cmd->refresh_specified ? cmd->refresh : 60,
cmd->rb, cmd->interlace,
cmd->margins);
else
mode = drm_gtf_mode(dev,
cmd->xres, cmd->yres,
cmd->refresh_specified ? cmd->refresh : 60,
cmd->interlace,
cmd->margins);
if (!mode)
return NULL;
drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V);
return mode;
}
EXPORT_SYMBOL(drm_mode_create_from_cmdline_mode);