1192 строки
29 KiB
C
1192 строки
29 KiB
C
/*
|
|
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
|
|
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
|
|
* Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
|
|
* Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
|
|
* Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/module.h>
|
|
#include <crypto/aead.h>
|
|
|
|
#include <net/strparser.h>
|
|
#include <net/tls.h>
|
|
|
|
static int tls_do_decryption(struct sock *sk,
|
|
struct scatterlist *sgin,
|
|
struct scatterlist *sgout,
|
|
char *iv_recv,
|
|
size_t data_len,
|
|
struct sk_buff *skb,
|
|
gfp_t flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
struct aead_request *aead_req;
|
|
|
|
int ret;
|
|
unsigned int req_size = sizeof(struct aead_request) +
|
|
crypto_aead_reqsize(ctx->aead_recv);
|
|
|
|
aead_req = kzalloc(req_size, flags);
|
|
if (!aead_req)
|
|
return -ENOMEM;
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_recv);
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
aead_request_set_crypt(aead_req, sgin, sgout,
|
|
data_len + tls_ctx->rx.tag_size,
|
|
(u8 *)iv_recv);
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &ctx->async_wait);
|
|
|
|
ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
|
|
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
rxm->offset += tls_ctx->rx.prepend_size;
|
|
rxm->full_len -= tls_ctx->rx.overhead_size;
|
|
tls_advance_record_sn(sk, &tls_ctx->rx);
|
|
|
|
ctx->decrypted = true;
|
|
|
|
ctx->saved_data_ready(sk);
|
|
|
|
out:
|
|
kfree(aead_req);
|
|
return ret;
|
|
}
|
|
|
|
static void trim_sg(struct sock *sk, struct scatterlist *sg,
|
|
int *sg_num_elem, unsigned int *sg_size, int target_size)
|
|
{
|
|
int i = *sg_num_elem - 1;
|
|
int trim = *sg_size - target_size;
|
|
|
|
if (trim <= 0) {
|
|
WARN_ON(trim < 0);
|
|
return;
|
|
}
|
|
|
|
*sg_size = target_size;
|
|
while (trim >= sg[i].length) {
|
|
trim -= sg[i].length;
|
|
sk_mem_uncharge(sk, sg[i].length);
|
|
put_page(sg_page(&sg[i]));
|
|
i--;
|
|
|
|
if (i < 0)
|
|
goto out;
|
|
}
|
|
|
|
sg[i].length -= trim;
|
|
sk_mem_uncharge(sk, trim);
|
|
|
|
out:
|
|
*sg_num_elem = i + 1;
|
|
}
|
|
|
|
static void trim_both_sgl(struct sock *sk, int target_size)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
trim_sg(sk, ctx->sg_plaintext_data,
|
|
&ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size,
|
|
target_size);
|
|
|
|
if (target_size > 0)
|
|
target_size += tls_ctx->tx.overhead_size;
|
|
|
|
trim_sg(sk, ctx->sg_encrypted_data,
|
|
&ctx->sg_encrypted_num_elem,
|
|
&ctx->sg_encrypted_size,
|
|
target_size);
|
|
}
|
|
|
|
static int alloc_encrypted_sg(struct sock *sk, int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
int rc = 0;
|
|
|
|
rc = sk_alloc_sg(sk, len,
|
|
ctx->sg_encrypted_data, 0,
|
|
&ctx->sg_encrypted_num_elem,
|
|
&ctx->sg_encrypted_size, 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int alloc_plaintext_sg(struct sock *sk, int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
int rc = 0;
|
|
|
|
rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
|
|
&ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
|
|
tls_ctx->pending_open_record_frags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void free_sg(struct sock *sk, struct scatterlist *sg,
|
|
int *sg_num_elem, unsigned int *sg_size)
|
|
{
|
|
int i, n = *sg_num_elem;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
sk_mem_uncharge(sk, sg[i].length);
|
|
put_page(sg_page(&sg[i]));
|
|
}
|
|
*sg_num_elem = 0;
|
|
*sg_size = 0;
|
|
}
|
|
|
|
static void tls_free_both_sg(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
|
|
&ctx->sg_encrypted_size);
|
|
|
|
free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size);
|
|
}
|
|
|
|
static int tls_do_encryption(struct tls_context *tls_ctx,
|
|
struct tls_sw_context *ctx, size_t data_len,
|
|
gfp_t flags)
|
|
{
|
|
unsigned int req_size = sizeof(struct aead_request) +
|
|
crypto_aead_reqsize(ctx->aead_send);
|
|
struct aead_request *aead_req;
|
|
int rc;
|
|
|
|
aead_req = kzalloc(req_size, flags);
|
|
if (!aead_req)
|
|
return -ENOMEM;
|
|
|
|
ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
|
|
ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_send);
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
|
|
data_len, tls_ctx->tx.iv);
|
|
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &ctx->async_wait);
|
|
|
|
rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
|
|
|
|
ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
|
|
ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
|
|
|
|
kfree(aead_req);
|
|
return rc;
|
|
}
|
|
|
|
static int tls_push_record(struct sock *sk, int flags,
|
|
unsigned char record_type)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
int rc;
|
|
|
|
sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
|
|
sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
|
|
|
|
tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
|
|
tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
|
|
record_type);
|
|
|
|
tls_fill_prepend(tls_ctx,
|
|
page_address(sg_page(&ctx->sg_encrypted_data[0])) +
|
|
ctx->sg_encrypted_data[0].offset,
|
|
ctx->sg_plaintext_size, record_type);
|
|
|
|
tls_ctx->pending_open_record_frags = 0;
|
|
set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
|
|
|
|
rc = tls_do_encryption(tls_ctx, ctx, ctx->sg_plaintext_size,
|
|
sk->sk_allocation);
|
|
if (rc < 0) {
|
|
/* If we are called from write_space and
|
|
* we fail, we need to set this SOCK_NOSPACE
|
|
* to trigger another write_space in the future.
|
|
*/
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
return rc;
|
|
}
|
|
|
|
free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size);
|
|
|
|
ctx->sg_encrypted_num_elem = 0;
|
|
ctx->sg_encrypted_size = 0;
|
|
|
|
/* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
|
|
rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
|
|
if (rc < 0 && rc != -EAGAIN)
|
|
tls_err_abort(sk, EBADMSG);
|
|
|
|
tls_advance_record_sn(sk, &tls_ctx->tx);
|
|
return rc;
|
|
}
|
|
|
|
static int tls_sw_push_pending_record(struct sock *sk, int flags)
|
|
{
|
|
return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
|
|
}
|
|
|
|
static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
|
|
int length, int *pages_used,
|
|
unsigned int *size_used,
|
|
struct scatterlist *to, int to_max_pages,
|
|
bool charge)
|
|
{
|
|
struct page *pages[MAX_SKB_FRAGS];
|
|
|
|
size_t offset;
|
|
ssize_t copied, use;
|
|
int i = 0;
|
|
unsigned int size = *size_used;
|
|
int num_elem = *pages_used;
|
|
int rc = 0;
|
|
int maxpages;
|
|
|
|
while (length > 0) {
|
|
i = 0;
|
|
maxpages = to_max_pages - num_elem;
|
|
if (maxpages == 0) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
copied = iov_iter_get_pages(from, pages,
|
|
length,
|
|
maxpages, &offset);
|
|
if (copied <= 0) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
iov_iter_advance(from, copied);
|
|
|
|
length -= copied;
|
|
size += copied;
|
|
while (copied) {
|
|
use = min_t(int, copied, PAGE_SIZE - offset);
|
|
|
|
sg_set_page(&to[num_elem],
|
|
pages[i], use, offset);
|
|
sg_unmark_end(&to[num_elem]);
|
|
if (charge)
|
|
sk_mem_charge(sk, use);
|
|
|
|
offset = 0;
|
|
copied -= use;
|
|
|
|
++i;
|
|
++num_elem;
|
|
}
|
|
}
|
|
|
|
out:
|
|
*size_used = size;
|
|
*pages_used = num_elem;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
|
|
int bytes)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
struct scatterlist *sg = ctx->sg_plaintext_data;
|
|
int copy, i, rc = 0;
|
|
|
|
for (i = tls_ctx->pending_open_record_frags;
|
|
i < ctx->sg_plaintext_num_elem; ++i) {
|
|
copy = sg[i].length;
|
|
if (copy_from_iter(
|
|
page_address(sg_page(&sg[i])) + sg[i].offset,
|
|
copy, from) != copy) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
bytes -= copy;
|
|
|
|
++tls_ctx->pending_open_record_frags;
|
|
|
|
if (!bytes)
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
int ret = 0;
|
|
int required_size;
|
|
long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
|
bool eor = !(msg->msg_flags & MSG_MORE);
|
|
size_t try_to_copy, copied = 0;
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
int record_room;
|
|
bool full_record;
|
|
int orig_size;
|
|
|
|
if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
|
|
return -ENOTSUPP;
|
|
|
|
lock_sock(sk);
|
|
|
|
if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
|
|
goto send_end;
|
|
|
|
if (unlikely(msg->msg_controllen)) {
|
|
ret = tls_proccess_cmsg(sk, msg, &record_type);
|
|
if (ret)
|
|
goto send_end;
|
|
}
|
|
|
|
while (msg_data_left(msg)) {
|
|
if (sk->sk_err) {
|
|
ret = -sk->sk_err;
|
|
goto send_end;
|
|
}
|
|
|
|
orig_size = ctx->sg_plaintext_size;
|
|
full_record = false;
|
|
try_to_copy = msg_data_left(msg);
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
|
|
if (try_to_copy >= record_room) {
|
|
try_to_copy = record_room;
|
|
full_record = true;
|
|
}
|
|
|
|
required_size = ctx->sg_plaintext_size + try_to_copy +
|
|
tls_ctx->tx.overhead_size;
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_sndbuf;
|
|
alloc_encrypted:
|
|
ret = alloc_encrypted_sg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
try_to_copy -= required_size - ctx->sg_encrypted_size;
|
|
full_record = true;
|
|
}
|
|
|
|
if (full_record || eor) {
|
|
ret = zerocopy_from_iter(sk, &msg->msg_iter,
|
|
try_to_copy, &ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size,
|
|
ctx->sg_plaintext_data,
|
|
ARRAY_SIZE(ctx->sg_plaintext_data),
|
|
true);
|
|
if (ret)
|
|
goto fallback_to_reg_send;
|
|
|
|
copied += try_to_copy;
|
|
ret = tls_push_record(sk, msg->msg_flags, record_type);
|
|
if (!ret)
|
|
continue;
|
|
if (ret == -EAGAIN)
|
|
goto send_end;
|
|
|
|
copied -= try_to_copy;
|
|
fallback_to_reg_send:
|
|
iov_iter_revert(&msg->msg_iter,
|
|
ctx->sg_plaintext_size - orig_size);
|
|
trim_sg(sk, ctx->sg_plaintext_data,
|
|
&ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size,
|
|
orig_size);
|
|
}
|
|
|
|
required_size = ctx->sg_plaintext_size + try_to_copy;
|
|
alloc_plaintext:
|
|
ret = alloc_plaintext_sg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
try_to_copy -= required_size - ctx->sg_plaintext_size;
|
|
full_record = true;
|
|
|
|
trim_sg(sk, ctx->sg_encrypted_data,
|
|
&ctx->sg_encrypted_num_elem,
|
|
&ctx->sg_encrypted_size,
|
|
ctx->sg_plaintext_size +
|
|
tls_ctx->tx.overhead_size);
|
|
}
|
|
|
|
ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
|
|
if (ret)
|
|
goto trim_sgl;
|
|
|
|
copied += try_to_copy;
|
|
if (full_record || eor) {
|
|
push_record:
|
|
ret = tls_push_record(sk, msg->msg_flags, record_type);
|
|
if (ret) {
|
|
if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
|
|
goto send_end;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
|
|
wait_for_sndbuf:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
wait_for_memory:
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret) {
|
|
trim_sgl:
|
|
trim_both_sgl(sk, orig_size);
|
|
goto send_end;
|
|
}
|
|
|
|
if (tls_is_pending_closed_record(tls_ctx))
|
|
goto push_record;
|
|
|
|
if (ctx->sg_encrypted_size < required_size)
|
|
goto alloc_encrypted;
|
|
|
|
goto alloc_plaintext;
|
|
}
|
|
|
|
send_end:
|
|
ret = sk_stream_error(sk, msg->msg_flags, ret);
|
|
|
|
release_sock(sk);
|
|
return copied ? copied : ret;
|
|
}
|
|
|
|
int tls_sw_sendpage(struct sock *sk, struct page *page,
|
|
int offset, size_t size, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
int ret = 0;
|
|
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
|
|
bool eor;
|
|
size_t orig_size = size;
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
struct scatterlist *sg;
|
|
bool full_record;
|
|
int record_room;
|
|
|
|
if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_SENDPAGE_NOTLAST))
|
|
return -ENOTSUPP;
|
|
|
|
/* No MSG_EOR from splice, only look at MSG_MORE */
|
|
eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
|
|
|
|
lock_sock(sk);
|
|
|
|
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
|
|
|
|
if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
|
|
goto sendpage_end;
|
|
|
|
/* Call the sk_stream functions to manage the sndbuf mem. */
|
|
while (size > 0) {
|
|
size_t copy, required_size;
|
|
|
|
if (sk->sk_err) {
|
|
ret = -sk->sk_err;
|
|
goto sendpage_end;
|
|
}
|
|
|
|
full_record = false;
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
|
|
copy = size;
|
|
if (copy >= record_room) {
|
|
copy = record_room;
|
|
full_record = true;
|
|
}
|
|
required_size = ctx->sg_plaintext_size + copy +
|
|
tls_ctx->tx.overhead_size;
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_sndbuf;
|
|
alloc_payload:
|
|
ret = alloc_encrypted_sg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
copy -= required_size - ctx->sg_plaintext_size;
|
|
full_record = true;
|
|
}
|
|
|
|
get_page(page);
|
|
sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
|
|
sg_set_page(sg, page, copy, offset);
|
|
sg_unmark_end(sg);
|
|
|
|
ctx->sg_plaintext_num_elem++;
|
|
|
|
sk_mem_charge(sk, copy);
|
|
offset += copy;
|
|
size -= copy;
|
|
ctx->sg_plaintext_size += copy;
|
|
tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
|
|
|
|
if (full_record || eor ||
|
|
ctx->sg_plaintext_num_elem ==
|
|
ARRAY_SIZE(ctx->sg_plaintext_data)) {
|
|
push_record:
|
|
ret = tls_push_record(sk, flags, record_type);
|
|
if (ret) {
|
|
if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
|
|
goto sendpage_end;
|
|
}
|
|
}
|
|
continue;
|
|
wait_for_sndbuf:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
wait_for_memory:
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret) {
|
|
trim_both_sgl(sk, ctx->sg_plaintext_size);
|
|
goto sendpage_end;
|
|
}
|
|
|
|
if (tls_is_pending_closed_record(tls_ctx))
|
|
goto push_record;
|
|
|
|
goto alloc_payload;
|
|
}
|
|
|
|
sendpage_end:
|
|
if (orig_size > size)
|
|
ret = orig_size - size;
|
|
else
|
|
ret = sk_stream_error(sk, flags, ret);
|
|
|
|
release_sock(sk);
|
|
return ret;
|
|
}
|
|
|
|
static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
|
|
long timeo, int *err)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
struct sk_buff *skb;
|
|
DEFINE_WAIT_FUNC(wait, woken_wake_function);
|
|
|
|
while (!(skb = ctx->recv_pkt)) {
|
|
if (sk->sk_err) {
|
|
*err = sock_error(sk);
|
|
return NULL;
|
|
}
|
|
|
|
if (sock_flag(sk, SOCK_DONE))
|
|
return NULL;
|
|
|
|
if ((flags & MSG_DONTWAIT) || !timeo) {
|
|
*err = -EAGAIN;
|
|
return NULL;
|
|
}
|
|
|
|
add_wait_queue(sk_sleep(sk), &wait);
|
|
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
|
|
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
|
|
/* Handle signals */
|
|
if (signal_pending(current)) {
|
|
*err = sock_intr_errno(timeo);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
static int decrypt_skb(struct sock *sk, struct sk_buff *skb,
|
|
struct scatterlist *sgout)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + tls_ctx->rx.iv_size];
|
|
struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2];
|
|
struct scatterlist *sgin = &sgin_arr[0];
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
int ret, nsg = ARRAY_SIZE(sgin_arr);
|
|
char aad_recv[TLS_AAD_SPACE_SIZE];
|
|
struct sk_buff *unused;
|
|
|
|
ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
|
|
iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
|
|
tls_ctx->rx.iv_size);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
if (!sgout) {
|
|
nsg = skb_cow_data(skb, 0, &unused) + 1;
|
|
sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation);
|
|
if (!sgout)
|
|
sgout = sgin;
|
|
}
|
|
|
|
sg_init_table(sgin, nsg);
|
|
sg_set_buf(&sgin[0], aad_recv, sizeof(aad_recv));
|
|
|
|
nsg = skb_to_sgvec(skb, &sgin[1],
|
|
rxm->offset + tls_ctx->rx.prepend_size,
|
|
rxm->full_len - tls_ctx->rx.prepend_size);
|
|
|
|
tls_make_aad(aad_recv,
|
|
rxm->full_len - tls_ctx->rx.overhead_size,
|
|
tls_ctx->rx.rec_seq,
|
|
tls_ctx->rx.rec_seq_size,
|
|
ctx->control);
|
|
|
|
ret = tls_do_decryption(sk, sgin, sgout, iv,
|
|
rxm->full_len - tls_ctx->rx.overhead_size,
|
|
skb, sk->sk_allocation);
|
|
|
|
if (sgin != &sgin_arr[0])
|
|
kfree(sgin);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
|
|
unsigned int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
|
|
if (len < rxm->full_len) {
|
|
rxm->offset += len;
|
|
rxm->full_len -= len;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Finished with message */
|
|
ctx->recv_pkt = NULL;
|
|
kfree_skb(skb);
|
|
strp_unpause(&ctx->strp);
|
|
|
|
return true;
|
|
}
|
|
|
|
int tls_sw_recvmsg(struct sock *sk,
|
|
struct msghdr *msg,
|
|
size_t len,
|
|
int nonblock,
|
|
int flags,
|
|
int *addr_len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
unsigned char control;
|
|
struct strp_msg *rxm;
|
|
struct sk_buff *skb;
|
|
ssize_t copied = 0;
|
|
bool cmsg = false;
|
|
int err = 0;
|
|
long timeo;
|
|
|
|
flags |= nonblock;
|
|
|
|
if (unlikely(flags & MSG_ERRQUEUE))
|
|
return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
|
|
|
|
lock_sock(sk);
|
|
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
do {
|
|
bool zc = false;
|
|
int chunk = 0;
|
|
|
|
skb = tls_wait_data(sk, flags, timeo, &err);
|
|
if (!skb)
|
|
goto recv_end;
|
|
|
|
rxm = strp_msg(skb);
|
|
if (!cmsg) {
|
|
int cerr;
|
|
|
|
cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
|
|
sizeof(ctx->control), &ctx->control);
|
|
cmsg = true;
|
|
control = ctx->control;
|
|
if (ctx->control != TLS_RECORD_TYPE_DATA) {
|
|
if (cerr || msg->msg_flags & MSG_CTRUNC) {
|
|
err = -EIO;
|
|
goto recv_end;
|
|
}
|
|
}
|
|
} else if (control != ctx->control) {
|
|
goto recv_end;
|
|
}
|
|
|
|
if (!ctx->decrypted) {
|
|
int page_count;
|
|
int to_copy;
|
|
|
|
page_count = iov_iter_npages(&msg->msg_iter,
|
|
MAX_SKB_FRAGS);
|
|
to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
|
|
if (to_copy <= len && page_count < MAX_SKB_FRAGS &&
|
|
likely(!(flags & MSG_PEEK))) {
|
|
struct scatterlist sgin[MAX_SKB_FRAGS + 1];
|
|
char unused[21];
|
|
int pages = 0;
|
|
|
|
zc = true;
|
|
sg_init_table(sgin, MAX_SKB_FRAGS + 1);
|
|
sg_set_buf(&sgin[0], unused, 13);
|
|
|
|
err = zerocopy_from_iter(sk, &msg->msg_iter,
|
|
to_copy, &pages,
|
|
&chunk, &sgin[1],
|
|
MAX_SKB_FRAGS, false);
|
|
if (err < 0)
|
|
goto fallback_to_reg_recv;
|
|
|
|
err = decrypt_skb(sk, skb, sgin);
|
|
for (; pages > 0; pages--)
|
|
put_page(sg_page(&sgin[pages]));
|
|
if (err < 0) {
|
|
tls_err_abort(sk, EBADMSG);
|
|
goto recv_end;
|
|
}
|
|
} else {
|
|
fallback_to_reg_recv:
|
|
err = decrypt_skb(sk, skb, NULL);
|
|
if (err < 0) {
|
|
tls_err_abort(sk, EBADMSG);
|
|
goto recv_end;
|
|
}
|
|
}
|
|
ctx->decrypted = true;
|
|
}
|
|
|
|
if (!zc) {
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
err = skb_copy_datagram_msg(skb, rxm->offset, msg,
|
|
chunk);
|
|
if (err < 0)
|
|
goto recv_end;
|
|
}
|
|
|
|
copied += chunk;
|
|
len -= chunk;
|
|
if (likely(!(flags & MSG_PEEK))) {
|
|
u8 control = ctx->control;
|
|
|
|
if (tls_sw_advance_skb(sk, skb, chunk)) {
|
|
/* Return full control message to
|
|
* userspace before trying to parse
|
|
* another message type
|
|
*/
|
|
msg->msg_flags |= MSG_EOR;
|
|
if (control != TLS_RECORD_TYPE_DATA)
|
|
goto recv_end;
|
|
}
|
|
}
|
|
} while (len);
|
|
|
|
recv_end:
|
|
release_sock(sk);
|
|
return copied ? : err;
|
|
}
|
|
|
|
ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
|
|
struct pipe_inode_info *pipe,
|
|
size_t len, unsigned int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
struct strp_msg *rxm = NULL;
|
|
struct sock *sk = sock->sk;
|
|
struct sk_buff *skb;
|
|
ssize_t copied = 0;
|
|
int err = 0;
|
|
long timeo;
|
|
int chunk;
|
|
|
|
lock_sock(sk);
|
|
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
skb = tls_wait_data(sk, flags, timeo, &err);
|
|
if (!skb)
|
|
goto splice_read_end;
|
|
|
|
/* splice does not support reading control messages */
|
|
if (ctx->control != TLS_RECORD_TYPE_DATA) {
|
|
err = -ENOTSUPP;
|
|
goto splice_read_end;
|
|
}
|
|
|
|
if (!ctx->decrypted) {
|
|
err = decrypt_skb(sk, skb, NULL);
|
|
|
|
if (err < 0) {
|
|
tls_err_abort(sk, EBADMSG);
|
|
goto splice_read_end;
|
|
}
|
|
ctx->decrypted = true;
|
|
}
|
|
rxm = strp_msg(skb);
|
|
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
|
|
if (copied < 0)
|
|
goto splice_read_end;
|
|
|
|
if (likely(!(flags & MSG_PEEK)))
|
|
tls_sw_advance_skb(sk, skb, copied);
|
|
|
|
splice_read_end:
|
|
release_sock(sk);
|
|
return copied ? : err;
|
|
}
|
|
|
|
unsigned int tls_sw_poll(struct file *file, struct socket *sock,
|
|
struct poll_table_struct *wait)
|
|
{
|
|
unsigned int ret;
|
|
struct sock *sk = sock->sk;
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
/* Grab POLLOUT and POLLHUP from the underlying socket */
|
|
ret = ctx->sk_poll(file, sock, wait);
|
|
|
|
/* Clear POLLIN bits, and set based on recv_pkt */
|
|
ret &= ~(POLLIN | POLLRDNORM);
|
|
if (ctx->recv_pkt)
|
|
ret |= POLLIN | POLLRDNORM;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
char header[tls_ctx->rx.prepend_size];
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
size_t cipher_overhead;
|
|
size_t data_len = 0;
|
|
int ret;
|
|
|
|
/* Verify that we have a full TLS header, or wait for more data */
|
|
if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
|
|
return 0;
|
|
|
|
/* Linearize header to local buffer */
|
|
ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
|
|
|
|
if (ret < 0)
|
|
goto read_failure;
|
|
|
|
ctx->control = header[0];
|
|
|
|
data_len = ((header[4] & 0xFF) | (header[3] << 8));
|
|
|
|
cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
|
|
|
|
if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
|
|
ret = -EMSGSIZE;
|
|
goto read_failure;
|
|
}
|
|
if (data_len < cipher_overhead) {
|
|
ret = -EBADMSG;
|
|
goto read_failure;
|
|
}
|
|
|
|
if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) ||
|
|
header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) {
|
|
ret = -EINVAL;
|
|
goto read_failure;
|
|
}
|
|
|
|
return data_len + TLS_HEADER_SIZE;
|
|
|
|
read_failure:
|
|
tls_err_abort(strp->sk, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void tls_queue(struct strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
struct strp_msg *rxm;
|
|
|
|
rxm = strp_msg(skb);
|
|
|
|
ctx->decrypted = false;
|
|
|
|
ctx->recv_pkt = skb;
|
|
strp_pause(strp);
|
|
|
|
strp->sk->sk_state_change(strp->sk);
|
|
}
|
|
|
|
static void tls_data_ready(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
strp_data_ready(&ctx->strp);
|
|
}
|
|
|
|
void tls_sw_free_resources(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
if (ctx->aead_send)
|
|
crypto_free_aead(ctx->aead_send);
|
|
if (ctx->aead_recv) {
|
|
if (ctx->recv_pkt) {
|
|
kfree_skb(ctx->recv_pkt);
|
|
ctx->recv_pkt = NULL;
|
|
}
|
|
crypto_free_aead(ctx->aead_recv);
|
|
strp_stop(&ctx->strp);
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sk->sk_data_ready = ctx->saved_data_ready;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
release_sock(sk);
|
|
strp_done(&ctx->strp);
|
|
lock_sock(sk);
|
|
}
|
|
|
|
tls_free_both_sg(sk);
|
|
|
|
kfree(ctx);
|
|
kfree(tls_ctx);
|
|
}
|
|
|
|
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
|
|
{
|
|
char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
|
|
struct tls_crypto_info *crypto_info;
|
|
struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
|
|
struct tls_sw_context *sw_ctx;
|
|
struct cipher_context *cctx;
|
|
struct crypto_aead **aead;
|
|
struct strp_callbacks cb;
|
|
u16 nonce_size, tag_size, iv_size, rec_seq_size;
|
|
char *iv, *rec_seq;
|
|
int rc = 0;
|
|
|
|
if (!ctx) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!ctx->priv_ctx) {
|
|
sw_ctx = kzalloc(sizeof(*sw_ctx), GFP_KERNEL);
|
|
if (!sw_ctx) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
crypto_init_wait(&sw_ctx->async_wait);
|
|
} else {
|
|
sw_ctx = ctx->priv_ctx;
|
|
}
|
|
|
|
ctx->priv_ctx = (struct tls_offload_context *)sw_ctx;
|
|
|
|
if (tx) {
|
|
crypto_info = &ctx->crypto_send;
|
|
cctx = &ctx->tx;
|
|
aead = &sw_ctx->aead_send;
|
|
} else {
|
|
crypto_info = &ctx->crypto_recv;
|
|
cctx = &ctx->rx;
|
|
aead = &sw_ctx->aead_recv;
|
|
}
|
|
|
|
switch (crypto_info->cipher_type) {
|
|
case TLS_CIPHER_AES_GCM_128: {
|
|
nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
|
|
rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
|
|
rec_seq =
|
|
((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
|
|
gcm_128_info =
|
|
(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
|
|
break;
|
|
}
|
|
default:
|
|
rc = -EINVAL;
|
|
goto free_priv;
|
|
}
|
|
|
|
cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
|
|
cctx->tag_size = tag_size;
|
|
cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
|
|
cctx->iv_size = iv_size;
|
|
cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
|
|
GFP_KERNEL);
|
|
if (!cctx->iv) {
|
|
rc = -ENOMEM;
|
|
goto free_priv;
|
|
}
|
|
memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
|
|
cctx->rec_seq_size = rec_seq_size;
|
|
cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL);
|
|
if (!cctx->rec_seq) {
|
|
rc = -ENOMEM;
|
|
goto free_iv;
|
|
}
|
|
memcpy(cctx->rec_seq, rec_seq, rec_seq_size);
|
|
|
|
if (tx) {
|
|
sg_init_table(sw_ctx->sg_encrypted_data,
|
|
ARRAY_SIZE(sw_ctx->sg_encrypted_data));
|
|
sg_init_table(sw_ctx->sg_plaintext_data,
|
|
ARRAY_SIZE(sw_ctx->sg_plaintext_data));
|
|
|
|
sg_init_table(sw_ctx->sg_aead_in, 2);
|
|
sg_set_buf(&sw_ctx->sg_aead_in[0], sw_ctx->aad_space,
|
|
sizeof(sw_ctx->aad_space));
|
|
sg_unmark_end(&sw_ctx->sg_aead_in[1]);
|
|
sg_chain(sw_ctx->sg_aead_in, 2, sw_ctx->sg_plaintext_data);
|
|
sg_init_table(sw_ctx->sg_aead_out, 2);
|
|
sg_set_buf(&sw_ctx->sg_aead_out[0], sw_ctx->aad_space,
|
|
sizeof(sw_ctx->aad_space));
|
|
sg_unmark_end(&sw_ctx->sg_aead_out[1]);
|
|
sg_chain(sw_ctx->sg_aead_out, 2, sw_ctx->sg_encrypted_data);
|
|
}
|
|
|
|
if (!*aead) {
|
|
*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
|
|
if (IS_ERR(*aead)) {
|
|
rc = PTR_ERR(*aead);
|
|
*aead = NULL;
|
|
goto free_rec_seq;
|
|
}
|
|
}
|
|
|
|
ctx->push_pending_record = tls_sw_push_pending_record;
|
|
|
|
memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
|
|
|
|
rc = crypto_aead_setkey(*aead, keyval,
|
|
TLS_CIPHER_AES_GCM_128_KEY_SIZE);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
if (!tx) {
|
|
/* Set up strparser */
|
|
memset(&cb, 0, sizeof(cb));
|
|
cb.rcv_msg = tls_queue;
|
|
cb.parse_msg = tls_read_size;
|
|
|
|
strp_init(&sw_ctx->strp, sk, &cb);
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sw_ctx->saved_data_ready = sk->sk_data_ready;
|
|
sk->sk_data_ready = tls_data_ready;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
|
|
sw_ctx->sk_poll = sk->sk_socket->ops->poll;
|
|
|
|
strp_check_rcv(&sw_ctx->strp);
|
|
}
|
|
|
|
goto out;
|
|
|
|
free_aead:
|
|
crypto_free_aead(*aead);
|
|
*aead = NULL;
|
|
free_rec_seq:
|
|
kfree(cctx->rec_seq);
|
|
cctx->rec_seq = NULL;
|
|
free_iv:
|
|
kfree(ctx->tx.iv);
|
|
ctx->tx.iv = NULL;
|
|
free_priv:
|
|
kfree(ctx->priv_ctx);
|
|
ctx->priv_ctx = NULL;
|
|
out:
|
|
return rc;
|
|
}
|