WSL2-Linux-Kernel/drivers/macintosh/macserial.c

3037 строки
78 KiB
C

/*
* macserial.c: Serial port driver for Power Macintoshes.
*
* Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
*
* Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*
* Receive DMA code by Takashi Oe <toe@unlserve.unl.edu>.
*
* $Id: macserial.c,v 1.24.2.4 1999/10/19 04:36:42 paulus Exp $
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#ifdef CONFIG_SERIAL_CONSOLE
#include <linux/console.h>
#endif
#include <linux/slab.h>
#include <linux/bitops.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/prom.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include <linux/adb.h>
#include <linux/pmu.h>
#ifdef CONFIG_KGDB
#include <asm/kgdb.h>
#endif
#include <asm/dbdma.h>
#include "macserial.h"
#ifdef CONFIG_PMAC_PBOOK
static int serial_notify_sleep(struct pmu_sleep_notifier *self, int when);
static struct pmu_sleep_notifier serial_sleep_notifier = {
serial_notify_sleep,
SLEEP_LEVEL_MISC,
};
#endif
#define SUPPORT_SERIAL_DMA
#define MACSERIAL_VERSION "2.0"
/*
* It would be nice to dynamically allocate everything that
* depends on NUM_SERIAL, so we could support any number of
* Z8530s, but for now...
*/
#define NUM_SERIAL 2 /* Max number of ZS chips supported */
#define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */
/* On PowerMacs, the hardware takes care of the SCC recovery time,
but we need the eieio to make sure that the accesses occur
in the order we want. */
#define RECOVERY_DELAY eieio()
static struct tty_driver *serial_driver;
struct mac_zschannel zs_channels[NUM_CHANNELS];
struct mac_serial zs_soft[NUM_CHANNELS];
int zs_channels_found;
struct mac_serial *zs_chain; /* list of all channels */
struct tty_struct zs_ttys[NUM_CHANNELS];
static int is_powerbook;
#ifdef CONFIG_SERIAL_CONSOLE
static struct console sercons;
#endif
#ifdef CONFIG_KGDB
struct mac_zschannel *zs_kgdbchan;
static unsigned char scc_inittab[] = {
9, 0x80, /* reset A side (CHRA) */
13, 0, /* set baud rate divisor */
12, 1,
14, 1, /* baud rate gen enable, src=rtxc (BRENABL) */
11, 0x50, /* clocks = br gen (RCBR | TCBR) */
5, 0x6a, /* tx 8 bits, assert RTS (Tx8 | TxENAB | RTS) */
4, 0x44, /* x16 clock, 1 stop (SB1 | X16CLK)*/
3, 0xc1, /* rx enable, 8 bits (RxENABLE | Rx8)*/
};
#endif
#define ZS_CLOCK 3686400 /* Z8530 RTxC input clock rate */
/* serial subtype definitions */
#define SERIAL_TYPE_NORMAL 1
/* number of characters left in xmit buffer before we ask for more */
#define WAKEUP_CHARS 256
/*
* Debugging.
*/
#undef SERIAL_DEBUG_INTR
#undef SERIAL_DEBUG_OPEN
#undef SERIAL_DEBUG_FLOW
#undef SERIAL_DEBUG_POWER
#undef SERIAL_DEBUG_THROTTLE
#undef SERIAL_DEBUG_STOP
#undef SERIAL_DEBUG_BAUDS
#define RS_STROBE_TIME 10
#define RS_ISR_PASS_LIMIT 256
#define _INLINE_ inline
#ifdef SERIAL_DEBUG_OPEN
#define OPNDBG(fmt, arg...) printk(KERN_DEBUG fmt , ## arg)
#else
#define OPNDBG(fmt, arg...) do { } while (0)
#endif
#ifdef SERIAL_DEBUG_POWER
#define PWRDBG(fmt, arg...) printk(KERN_DEBUG fmt , ## arg)
#else
#define PWRDBG(fmt, arg...) do { } while (0)
#endif
#ifdef SERIAL_DEBUG_BAUDS
#define BAUDBG(fmt, arg...) printk(fmt , ## arg)
#else
#define BAUDBG(fmt, arg...) do { } while (0)
#endif
static void probe_sccs(void);
static void change_speed(struct mac_serial *info, struct termios *old);
static void rs_wait_until_sent(struct tty_struct *tty, int timeout);
static int set_scc_power(struct mac_serial * info, int state);
static int setup_scc(struct mac_serial * info);
static void dbdma_reset(volatile struct dbdma_regs *dma);
static void dbdma_flush(volatile struct dbdma_regs *dma);
static irqreturn_t rs_txdma_irq(int irq, void *dev_id, struct pt_regs *regs);
static irqreturn_t rs_rxdma_irq(int irq, void *dev_id, struct pt_regs *regs);
static void dma_init(struct mac_serial * info);
static void rxdma_start(struct mac_serial * info, int curr);
static void rxdma_to_tty(struct mac_serial * info);
/*
* tmp_buf is used as a temporary buffer by serial_write. We need to
* lock it in case the copy_from_user blocks while swapping in a page,
* and some other program tries to do a serial write at the same time.
* Since the lock will only come under contention when the system is
* swapping and available memory is low, it makes sense to share one
* buffer across all the serial ports, since it significantly saves
* memory if large numbers of serial ports are open.
*/
static unsigned char *tmp_buf;
static DECLARE_MUTEX(tmp_buf_sem);
static inline int __pmac
serial_paranoia_check(struct mac_serial *info,
char *name, const char *routine)
{
#ifdef SERIAL_PARANOIA_CHECK
static const char badmagic[] = KERN_WARNING
"Warning: bad magic number for serial struct %s in %s\n";
static const char badinfo[] = KERN_WARNING
"Warning: null mac_serial for %s in %s\n";
if (!info) {
printk(badinfo, name, routine);
return 1;
}
if (info->magic != SERIAL_MAGIC) {
printk(badmagic, name, routine);
return 1;
}
#endif
return 0;
}
/*
* Reading and writing Z8530 registers.
*/
static inline unsigned char __pmac read_zsreg(struct mac_zschannel *channel,
unsigned char reg)
{
unsigned char retval;
unsigned long flags;
/*
* We have to make this atomic.
*/
spin_lock_irqsave(&channel->lock, flags);
if (reg != 0) {
*channel->control = reg;
RECOVERY_DELAY;
}
retval = *channel->control;
RECOVERY_DELAY;
spin_unlock_irqrestore(&channel->lock, flags);
return retval;
}
static inline void __pmac write_zsreg(struct mac_zschannel *channel,
unsigned char reg, unsigned char value)
{
unsigned long flags;
spin_lock_irqsave(&channel->lock, flags);
if (reg != 0) {
*channel->control = reg;
RECOVERY_DELAY;
}
*channel->control = value;
RECOVERY_DELAY;
spin_unlock_irqrestore(&channel->lock, flags);
return;
}
static inline unsigned char __pmac read_zsdata(struct mac_zschannel *channel)
{
unsigned char retval;
retval = *channel->data;
RECOVERY_DELAY;
return retval;
}
static inline void write_zsdata(struct mac_zschannel *channel,
unsigned char value)
{
*channel->data = value;
RECOVERY_DELAY;
return;
}
static inline void load_zsregs(struct mac_zschannel *channel,
unsigned char *regs)
{
ZS_CLEARERR(channel);
ZS_CLEARFIFO(channel);
/* Load 'em up */
write_zsreg(channel, R4, regs[R4]);
write_zsreg(channel, R10, regs[R10]);
write_zsreg(channel, R3, regs[R3] & ~RxENABLE);
write_zsreg(channel, R5, regs[R5] & ~TxENAB);
write_zsreg(channel, R1, regs[R1]);
write_zsreg(channel, R9, regs[R9]);
write_zsreg(channel, R11, regs[R11]);
write_zsreg(channel, R12, regs[R12]);
write_zsreg(channel, R13, regs[R13]);
write_zsreg(channel, R14, regs[R14]);
write_zsreg(channel, R15, regs[R15]);
write_zsreg(channel, R3, regs[R3]);
write_zsreg(channel, R5, regs[R5]);
return;
}
/* Sets or clears DTR/RTS on the requested line */
static inline void zs_rtsdtr(struct mac_serial *ss, int set)
{
if (set)
ss->curregs[5] |= (RTS | DTR);
else
ss->curregs[5] &= ~(RTS | DTR);
write_zsreg(ss->zs_channel, 5, ss->curregs[5]);
return;
}
/* Utility routines for the Zilog */
static inline int get_zsbaud(struct mac_serial *ss)
{
struct mac_zschannel *channel = ss->zs_channel;
int brg;
if ((ss->curregs[R11] & TCBR) == 0) {
/* higher rates don't use the baud rate generator */
return (ss->curregs[R4] & X32CLK)? ZS_CLOCK/32: ZS_CLOCK/16;
}
/* The baud rate is split up between two 8-bit registers in
* what is termed 'BRG time constant' format in my docs for
* the chip, it is a function of the clk rate the chip is
* receiving which happens to be constant.
*/
brg = (read_zsreg(channel, 13) << 8);
brg |= read_zsreg(channel, 12);
return BRG_TO_BPS(brg, (ZS_CLOCK/(ss->clk_divisor)));
}
/* On receive, this clears errors and the receiver interrupts */
static inline void rs_recv_clear(struct mac_zschannel *zsc)
{
write_zsreg(zsc, 0, ERR_RES);
write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */
}
/*
* Reset a Descriptor-Based DMA channel.
*/
static void dbdma_reset(volatile struct dbdma_regs *dma)
{
int i;
out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
/*
* Yes this looks peculiar, but apparently it needs to be this
* way on some machines. (We need to make sure the DBDMA
* engine has actually got the write above and responded
* to it. - paulus)
*/
for (i = 200; i > 0; --i)
if (ld_le32(&dma->status) & RUN)
udelay(1);
}
/*
* Tells a DBDMA channel to stop and write any buffered data
* it might have to memory.
*/
static _INLINE_ void dbdma_flush(volatile struct dbdma_regs *dma)
{
int i = 0;
out_le32(&dma->control, (FLUSH << 16) | FLUSH);
while (((in_le32(&dma->status) & FLUSH) != 0) && (i++ < 100))
udelay(1);
}
/*
* ----------------------------------------------------------------------
*
* Here starts the interrupt handling routines. All of the following
* subroutines are declared as inline and are folded into
* rs_interrupt(). They were separated out for readability's sake.
*
* - Ted Ts'o (tytso@mit.edu), 7-Mar-93
* -----------------------------------------------------------------------
*/
/*
* This routine is used by the interrupt handler to schedule
* processing in the software interrupt portion of the driver.
*/
static _INLINE_ void rs_sched_event(struct mac_serial *info,
int event)
{
info->event |= 1 << event;
schedule_work(&info->tqueue);
}
/* Work out the flag value for a z8530 status value. */
static _INLINE_ int stat_to_flag(int stat)
{
int flag;
if (stat & Rx_OVR) {
flag = TTY_OVERRUN;
} else if (stat & FRM_ERR) {
flag = TTY_FRAME;
} else if (stat & PAR_ERR) {
flag = TTY_PARITY;
} else
flag = 0;
return flag;
}
static _INLINE_ void receive_chars(struct mac_serial *info,
struct pt_regs *regs)
{
struct tty_struct *tty = info->tty;
unsigned char ch, stat, flag;
while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) != 0) {
stat = read_zsreg(info->zs_channel, R1);
ch = read_zsdata(info->zs_channel);
#ifdef CONFIG_KGDB
if (info->kgdb_channel) {
if (ch == 0x03 || ch == '$')
breakpoint();
if (stat & (Rx_OVR|FRM_ERR|PAR_ERR))
write_zsreg(info->zs_channel, 0, ERR_RES);
return;
}
#endif
if (!tty)
continue;
if (tty->flip.count >= TTY_FLIPBUF_SIZE)
tty_flip_buffer_push(tty);
if (tty->flip.count >= TTY_FLIPBUF_SIZE) {
static int flip_buf_ovf;
if (++flip_buf_ovf <= 1)
printk(KERN_WARNING "FB. overflow: %d\n",
flip_buf_ovf);
break;
}
tty->flip.count++;
{
static int flip_max_cnt;
if (flip_max_cnt < tty->flip.count)
flip_max_cnt = tty->flip.count;
}
flag = stat_to_flag(stat);
if (flag)
/* reset the error indication */
write_zsreg(info->zs_channel, 0, ERR_RES);
*tty->flip.flag_buf_ptr++ = flag;
*tty->flip.char_buf_ptr++ = ch;
}
if (tty)
tty_flip_buffer_push(tty);
}
static void transmit_chars(struct mac_serial *info)
{
if ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0)
return;
info->tx_active = 0;
if (info->x_char && !info->power_wait) {
/* Send next char */
write_zsdata(info->zs_channel, info->x_char);
info->x_char = 0;
info->tx_active = 1;
return;
}
if ((info->xmit_cnt <= 0) || info->tty->stopped || info->tx_stopped
|| info->power_wait) {
write_zsreg(info->zs_channel, 0, RES_Tx_P);
return;
}
/* Send char */
write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]);
info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
info->xmit_cnt--;
info->tx_active = 1;
if (info->xmit_cnt < WAKEUP_CHARS)
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
}
static void powerup_done(unsigned long data)
{
struct mac_serial *info = (struct mac_serial *) data;
unsigned long flags;
spin_lock_irqsave(&info->lock, flags);
info->power_wait = 0;
transmit_chars(info);
spin_unlock_irqrestore(&info->lock, flags);
}
static _INLINE_ void status_handle(struct mac_serial *info)
{
unsigned char status;
/* Get status from Read Register 0 */
status = read_zsreg(info->zs_channel, 0);
/* Check for DCD transitions */
if (((status ^ info->read_reg_zero) & DCD) != 0
&& info->tty && !C_CLOCAL(info->tty)) {
if (status & DCD) {
wake_up_interruptible(&info->open_wait);
} else {
if (info->tty)
tty_hangup(info->tty);
}
}
/* Check for CTS transitions */
if (info->tty && C_CRTSCTS(info->tty)) {
/*
* For some reason, on the Power Macintosh,
* it seems that the CTS bit is 1 when CTS is
* *negated* and 0 when it is asserted.
* The DCD bit doesn't seem to be inverted
* like this.
*/
if ((status & CTS) == 0) {
if (info->tx_stopped) {
#ifdef SERIAL_DEBUG_FLOW
printk(KERN_DEBUG "CTS up\n");
#endif
info->tx_stopped = 0;
if (!info->tx_active)
transmit_chars(info);
}
} else {
#ifdef SERIAL_DEBUG_FLOW
printk(KERN_DEBUG "CTS down\n");
#endif
info->tx_stopped = 1;
}
}
/* Clear status condition... */
write_zsreg(info->zs_channel, 0, RES_EXT_INT);
info->read_reg_zero = status;
}
static _INLINE_ void receive_special_dma(struct mac_serial *info)
{
unsigned char stat, flag;
volatile struct dbdma_regs *rd = &info->rx->dma;
int where = RX_BUF_SIZE;
spin_lock(&info->rx_dma_lock);
if ((ld_le32(&rd->status) & ACTIVE) != 0)
dbdma_flush(rd);
if (in_le32(&rd->cmdptr)
== virt_to_bus(info->rx_cmds[info->rx_cbuf] + 1))
where -= in_le16(&info->rx->res_count);
where--;
stat = read_zsreg(info->zs_channel, R1);
flag = stat_to_flag(stat);
if (flag) {
info->rx_flag_buf[info->rx_cbuf][where] = flag;
/* reset the error indication */
write_zsreg(info->zs_channel, 0, ERR_RES);
}
spin_unlock(&info->rx_dma_lock);
}
/*
* This is the serial driver's generic interrupt routine
*/
static irqreturn_t rs_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
struct mac_serial *info = (struct mac_serial *) dev_id;
unsigned char zs_intreg;
int shift;
unsigned long flags;
int handled = 0;
if (!(info->flags & ZILOG_INITIALIZED)) {
printk(KERN_WARNING "rs_interrupt: irq %d, port not "
"initialized\n", irq);
disable_irq(irq);
return IRQ_NONE;
}
/* NOTE: The read register 3, which holds the irq status,
* does so for both channels on each chip. Although
* the status value itself must be read from the A
* channel and is only valid when read from channel A.
* Yes... broken hardware...
*/
#define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT)
if (info->zs_chan_a == info->zs_channel)
shift = 3; /* Channel A */
else
shift = 0; /* Channel B */
spin_lock_irqsave(&info->lock, flags);
for (;;) {
zs_intreg = read_zsreg(info->zs_chan_a, 3) >> shift;
#ifdef SERIAL_DEBUG_INTR
printk(KERN_DEBUG "rs_interrupt: irq %d, zs_intreg 0x%x\n",
irq, (int)zs_intreg);
#endif
if ((zs_intreg & CHAN_IRQMASK) == 0)
break;
handled = 1;
if (zs_intreg & CHBRxIP) {
/* If we are doing DMA, we only ask for interrupts
on characters with errors or special conditions. */
if (info->dma_initted)
receive_special_dma(info);
else
receive_chars(info, regs);
}
if (zs_intreg & CHBTxIP)
transmit_chars(info);
if (zs_intreg & CHBEXT)
status_handle(info);
}
spin_unlock_irqrestore(&info->lock, flags);
return IRQ_RETVAL(handled);
}
/* Transmit DMA interrupt - not used at present */
static irqreturn_t rs_txdma_irq(int irq, void *dev_id, struct pt_regs *regs)
{
return IRQ_HANDLED;
}
/*
* Receive DMA interrupt.
*/
static irqreturn_t rs_rxdma_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct mac_serial *info = (struct mac_serial *) dev_id;
volatile struct dbdma_cmd *cd;
if (!info->dma_initted)
return IRQ_NONE;
spin_lock(&info->rx_dma_lock);
/* First, confirm that this interrupt is, indeed, coming */
/* from Rx DMA */
cd = info->rx_cmds[info->rx_cbuf] + 2;
if ((in_le16(&cd->xfer_status) & (RUN | ACTIVE)) != (RUN | ACTIVE)) {
spin_unlock(&info->rx_dma_lock);
return IRQ_NONE;
}
if (info->rx_fbuf != RX_NO_FBUF) {
info->rx_cbuf = info->rx_fbuf;
if (++info->rx_fbuf == info->rx_nbuf)
info->rx_fbuf = 0;
if (info->rx_fbuf == info->rx_ubuf)
info->rx_fbuf = RX_NO_FBUF;
}
spin_unlock(&info->rx_dma_lock);
return IRQ_HANDLED;
}
/*
* -------------------------------------------------------------------
* Here ends the serial interrupt routines.
* -------------------------------------------------------------------
*/
/*
* ------------------------------------------------------------
* rs_stop() and rs_start()
*
* This routines are called before setting or resetting tty->stopped.
* ------------------------------------------------------------
*/
static void rs_stop(struct tty_struct *tty)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
#ifdef SERIAL_DEBUG_STOP
printk(KERN_DEBUG "rs_stop %ld....\n",
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->name, "rs_stop"))
return;
#if 0
spin_lock_irqsave(&info->lock, flags);
if (info->curregs[5] & TxENAB) {
info->curregs[5] &= ~TxENAB;
info->pendregs[5] &= ~TxENAB;
write_zsreg(info->zs_channel, 5, info->curregs[5]);
}
spin_unlock_irqrestore(&info->lock, flags);
#endif
}
static void rs_start(struct tty_struct *tty)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
unsigned long flags;
#ifdef SERIAL_DEBUG_STOP
printk(KERN_DEBUG "rs_start %ld....\n",
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->name, "rs_start"))
return;
spin_lock_irqsave(&info->lock, flags);
#if 0
if (info->xmit_cnt && info->xmit_buf && !(info->curregs[5] & TxENAB)) {
info->curregs[5] |= TxENAB;
info->pendregs[5] = info->curregs[5];
write_zsreg(info->zs_channel, 5, info->curregs[5]);
}
#else
if (info->xmit_cnt && info->xmit_buf && !info->tx_active) {
transmit_chars(info);
}
#endif
spin_unlock_irqrestore(&info->lock, flags);
}
static void do_softint(void *private_)
{
struct mac_serial *info = (struct mac_serial *) private_;
struct tty_struct *tty;
tty = info->tty;
if (!tty)
return;
if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event))
tty_wakeup(tty);
}
static int startup(struct mac_serial * info)
{
int delay;
OPNDBG("startup() (ttyS%d, irq %d)\n", info->line, info->irq);
if (info->flags & ZILOG_INITIALIZED) {
OPNDBG(" -> already inited\n");
return 0;
}
if (!info->xmit_buf) {
info->xmit_buf = (unsigned char *) get_zeroed_page(GFP_KERNEL);
if (!info->xmit_buf)
return -ENOMEM;
}
OPNDBG("starting up ttyS%d (irq %d)...\n", info->line, info->irq);
delay = set_scc_power(info, 1);
setup_scc(info);
if (delay) {
unsigned long flags;
/* delay is in ms */
spin_lock_irqsave(&info->lock, flags);
info->power_wait = 1;
mod_timer(&info->powerup_timer,
jiffies + (delay * HZ + 999) / 1000);
spin_unlock_irqrestore(&info->lock, flags);
}
OPNDBG("enabling IRQ on ttyS%d (irq %d)...\n", info->line, info->irq);
info->flags |= ZILOG_INITIALIZED;
enable_irq(info->irq);
if (info->dma_initted) {
enable_irq(info->rx_dma_irq);
}
return 0;
}
static _INLINE_ void rxdma_start(struct mac_serial * info, int curr)
{
volatile struct dbdma_regs *rd = &info->rx->dma;
volatile struct dbdma_cmd *cd = info->rx_cmds[curr];
//printk(KERN_DEBUG "SCC: rxdma_start\n");
st_le32(&rd->cmdptr, virt_to_bus(cd));
out_le32(&rd->control, (RUN << 16) | RUN);
}
static void rxdma_to_tty(struct mac_serial *info)
{
struct tty_struct *tty = info->tty;
volatile struct dbdma_regs *rd = &info->rx->dma;
unsigned long flags;
int residue, available, space, do_queue;
if (!tty)
return;
do_queue = 0;
spin_lock_irqsave(&info->rx_dma_lock, flags);
more:
space = TTY_FLIPBUF_SIZE - tty->flip.count;
if (!space) {
do_queue++;
goto out;
}
residue = 0;
if (info->rx_ubuf == info->rx_cbuf) {
if ((ld_le32(&rd->status) & ACTIVE) != 0) {
dbdma_flush(rd);
if (in_le32(&rd->cmdptr)
== virt_to_bus(info->rx_cmds[info->rx_cbuf]+1))
residue = in_le16(&info->rx->res_count);
}
}
available = RX_BUF_SIZE - residue - info->rx_done_bytes;
if (available > space)
available = space;
if (available) {
memcpy(tty->flip.char_buf_ptr,
info->rx_char_buf[info->rx_ubuf] + info->rx_done_bytes,
available);
memcpy(tty->flip.flag_buf_ptr,
info->rx_flag_buf[info->rx_ubuf] + info->rx_done_bytes,
available);
tty->flip.char_buf_ptr += available;
tty->flip.count += available;
tty->flip.flag_buf_ptr += available;
memset(info->rx_flag_buf[info->rx_ubuf] + info->rx_done_bytes,
0, available);
info->rx_done_bytes += available;
do_queue++;
}
if (info->rx_done_bytes == RX_BUF_SIZE) {
volatile struct dbdma_cmd *cd = info->rx_cmds[info->rx_ubuf];
if (info->rx_ubuf == info->rx_cbuf)
goto out;
/* mark rx_char_buf[rx_ubuf] free */
st_le16(&cd->command, DBDMA_NOP);
cd++;
st_le32(&cd->cmd_dep, 0);
st_le32((unsigned int *)&cd->res_count, 0);
cd++;
st_le16(&cd->xfer_status, 0);
if (info->rx_fbuf == RX_NO_FBUF) {
info->rx_fbuf = info->rx_ubuf;
if (!(ld_le32(&rd->status) & ACTIVE)) {
dbdma_reset(&info->rx->dma);
rxdma_start(info, info->rx_ubuf);
info->rx_cbuf = info->rx_ubuf;
}
}
info->rx_done_bytes = 0;
if (++info->rx_ubuf == info->rx_nbuf)
info->rx_ubuf = 0;
if (info->rx_fbuf == info->rx_ubuf)
info->rx_fbuf = RX_NO_FBUF;
goto more;
}
out:
spin_unlock_irqrestore(&info->rx_dma_lock, flags);
if (do_queue)
tty_flip_buffer_push(tty);
}
static void poll_rxdma(unsigned long private_)
{
struct mac_serial *info = (struct mac_serial *) private_;
unsigned long flags;
rxdma_to_tty(info);
spin_lock_irqsave(&info->rx_dma_lock, flags);
mod_timer(&info->poll_dma_timer, RX_DMA_TIMER);
spin_unlock_irqrestore(&info->rx_dma_lock, flags);
}
static void dma_init(struct mac_serial * info)
{
int i, size;
volatile struct dbdma_cmd *cd;
unsigned char *p;
info->rx_nbuf = 8;
/* various mem set up */
size = sizeof(struct dbdma_cmd) * (3 * info->rx_nbuf + 2)
+ (RX_BUF_SIZE * 2 + sizeof(*info->rx_cmds)
+ sizeof(*info->rx_char_buf) + sizeof(*info->rx_flag_buf))
* info->rx_nbuf;
info->dma_priv = kmalloc(size, GFP_KERNEL | GFP_DMA);
if (info->dma_priv == NULL)
return;
memset(info->dma_priv, 0, size);
info->rx_cmds = (volatile struct dbdma_cmd **)info->dma_priv;
info->rx_char_buf = (unsigned char **) (info->rx_cmds + info->rx_nbuf);
info->rx_flag_buf = info->rx_char_buf + info->rx_nbuf;
p = (unsigned char *) (info->rx_flag_buf + info->rx_nbuf);
for (i = 0; i < info->rx_nbuf; i++, p += RX_BUF_SIZE)
info->rx_char_buf[i] = p;
for (i = 0; i < info->rx_nbuf; i++, p += RX_BUF_SIZE)
info->rx_flag_buf[i] = p;
/* a bit of DMA programming */
cd = info->rx_cmds[0] = (volatile struct dbdma_cmd *) DBDMA_ALIGN(p);
st_le16(&cd->command, DBDMA_NOP);
cd++;
st_le16(&cd->req_count, RX_BUF_SIZE);
st_le16(&cd->command, INPUT_MORE);
st_le32(&cd->phy_addr, virt_to_bus(info->rx_char_buf[0]));
cd++;
st_le16(&cd->req_count, 4);
st_le16(&cd->command, STORE_WORD | INTR_ALWAYS);
st_le32(&cd->phy_addr, virt_to_bus(cd-2));
st_le32(&cd->cmd_dep, DBDMA_STOP);
for (i = 1; i < info->rx_nbuf; i++) {
info->rx_cmds[i] = ++cd;
st_le16(&cd->command, DBDMA_NOP);
cd++;
st_le16(&cd->req_count, RX_BUF_SIZE);
st_le16(&cd->command, INPUT_MORE);
st_le32(&cd->phy_addr, virt_to_bus(info->rx_char_buf[i]));
cd++;
st_le16(&cd->req_count, 4);
st_le16(&cd->command, STORE_WORD | INTR_ALWAYS);
st_le32(&cd->phy_addr, virt_to_bus(cd-2));
st_le32(&cd->cmd_dep, DBDMA_STOP);
}
cd++;
st_le16(&cd->command, DBDMA_NOP | BR_ALWAYS);
st_le32(&cd->cmd_dep, virt_to_bus(info->rx_cmds[0]));
/* setup DMA to our liking */
dbdma_reset(&info->rx->dma);
st_le32(&info->rx->dma.intr_sel, 0x10001);
st_le32(&info->rx->dma.br_sel, 0x10001);
out_le32(&info->rx->dma.wait_sel, 0x10001);
/* set various flags */
info->rx_ubuf = 0;
info->rx_cbuf = 0;
info->rx_fbuf = info->rx_ubuf + 1;
if (info->rx_fbuf == info->rx_nbuf)
info->rx_fbuf = RX_NO_FBUF;
info->rx_done_bytes = 0;
/* setup polling */
init_timer(&info->poll_dma_timer);
info->poll_dma_timer.function = (void *)&poll_rxdma;
info->poll_dma_timer.data = (unsigned long)info;
info->dma_initted = 1;
}
/*
* FixZeroBug....Works around a bug in the SCC receving channel.
* Taken from Darwin code, 15 Sept. 2000 -DanM
*
* The following sequence prevents a problem that is seen with O'Hare ASICs
* (most versions -- also with some Heathrow and Hydra ASICs) where a zero
* at the input to the receiver becomes 'stuck' and locks up the receiver.
* This problem can occur as a result of a zero bit at the receiver input
* coincident with any of the following events:
*
* The SCC is initialized (hardware or software).
* A framing error is detected.
* The clocking option changes from synchronous or X1 asynchronous
* clocking to X16, X32, or X64 asynchronous clocking.
* The decoding mode is changed among NRZ, NRZI, FM0, or FM1.
*
* This workaround attempts to recover from the lockup condition by placing
* the SCC in synchronous loopback mode with a fast clock before programming
* any of the asynchronous modes.
*/
static void fix_zero_bug_scc(struct mac_serial * info)
{
write_zsreg(info->zs_channel, 9,
(info->zs_channel == info->zs_chan_a? CHRA: CHRB));
udelay(10);
write_zsreg(info->zs_channel, 9,
((info->zs_channel == info->zs_chan_a? CHRA: CHRB) | NV));
write_zsreg(info->zs_channel, 4, (X1CLK | EXTSYNC));
/* I think this is wrong....but, I just copying code....
*/
write_zsreg(info->zs_channel, 3, (8 & ~RxENABLE));
write_zsreg(info->zs_channel, 5, (8 & ~TxENAB));
write_zsreg(info->zs_channel, 9, NV); /* Didn't we already do this? */
write_zsreg(info->zs_channel, 11, (RCBR | TCBR));
write_zsreg(info->zs_channel, 12, 0);
write_zsreg(info->zs_channel, 13, 0);
write_zsreg(info->zs_channel, 14, (LOOPBAK | SSBR));
write_zsreg(info->zs_channel, 14, (LOOPBAK | SSBR | BRENABL));
write_zsreg(info->zs_channel, 3, (8 | RxENABLE));
write_zsreg(info->zs_channel, 0, RES_EXT_INT);
write_zsreg(info->zs_channel, 0, RES_EXT_INT); /* to kill some time */
/* The channel should be OK now, but it is probably receiving
* loopback garbage.
* Switch to asynchronous mode, disable the receiver,
* and discard everything in the receive buffer.
*/
write_zsreg(info->zs_channel, 9, NV);
write_zsreg(info->zs_channel, 4, PAR_ENA);
write_zsreg(info->zs_channel, 3, (8 & ~RxENABLE));
while (read_zsreg(info->zs_channel, 0) & Rx_CH_AV) {
(void)read_zsreg(info->zs_channel, 8);
write_zsreg(info->zs_channel, 0, RES_EXT_INT);
write_zsreg(info->zs_channel, 0, ERR_RES);
}
}
static int setup_scc(struct mac_serial * info)
{
unsigned long flags;
OPNDBG("setting up ttyS%d SCC...\n", info->line);
spin_lock_irqsave(&info->lock, flags);
/* Nice buggy HW ... */
fix_zero_bug_scc(info);
/*
* Reset the chip.
*/
write_zsreg(info->zs_channel, 9,
(info->zs_channel == info->zs_chan_a? CHRA: CHRB));
udelay(10);
write_zsreg(info->zs_channel, 9, 0);
/*
* Clear the receive FIFO.
*/
ZS_CLEARFIFO(info->zs_channel);
info->xmit_fifo_size = 1;
/*
* Reset DMAs
*/
if (info->has_dma)
dma_init(info);
/*
* Clear the interrupt registers.
*/
write_zsreg(info->zs_channel, 0, ERR_RES);
write_zsreg(info->zs_channel, 0, RES_H_IUS);
/*
* Turn on RTS and DTR.
*/
if (!info->is_irda)
zs_rtsdtr(info, 1);
/*
* Finally, enable sequencing and interrupts
*/
if (!info->dma_initted) {
/* interrupt on ext/status changes, all received chars,
transmit ready */
info->curregs[1] = (info->curregs[1] & ~0x18)
| (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB);
} else {
/* interrupt on ext/status changes, W/Req pin is
receive DMA request */
info->curregs[1] = (info->curregs[1] & ~(0x18 | TxINT_ENAB))
| (EXT_INT_ENAB | WT_RDY_RT | WT_FN_RDYFN);
write_zsreg(info->zs_channel, 1, info->curregs[1]);
/* enable W/Req pin */
info->curregs[1] |= WT_RDY_ENAB;
write_zsreg(info->zs_channel, 1, info->curregs[1]);
/* enable interrupts on transmit ready and receive errors */
info->curregs[1] |= INT_ERR_Rx | TxINT_ENAB;
}
info->pendregs[1] = info->curregs[1];
info->curregs[3] |= (RxENABLE | Rx8);
info->pendregs[3] = info->curregs[3];
info->curregs[5] |= (TxENAB | Tx8);
info->pendregs[5] = info->curregs[5];
info->curregs[9] |= (NV | MIE);
info->pendregs[9] = info->curregs[9];
write_zsreg(info->zs_channel, 3, info->curregs[3]);
write_zsreg(info->zs_channel, 5, info->curregs[5]);
write_zsreg(info->zs_channel, 9, info->curregs[9]);
if (info->tty)
clear_bit(TTY_IO_ERROR, &info->tty->flags);
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
spin_unlock_irqrestore(&info->lock, flags);
/*
* Set the speed of the serial port
*/
change_speed(info, 0);
/* Save the current value of RR0 */
info->read_reg_zero = read_zsreg(info->zs_channel, 0);
if (info->dma_initted) {
spin_lock_irqsave(&info->rx_dma_lock, flags);
rxdma_start(info, 0);
info->poll_dma_timer.expires = RX_DMA_TIMER;
add_timer(&info->poll_dma_timer);
spin_unlock_irqrestore(&info->rx_dma_lock, flags);
}
return 0;
}
/*
* This routine will shutdown a serial port; interrupts are disabled, and
* DTR is dropped if the hangup on close termio flag is on.
*/
static void shutdown(struct mac_serial * info)
{
OPNDBG("Shutting down serial port %d (irq %d)....\n", info->line,
info->irq);
if (!(info->flags & ZILOG_INITIALIZED)) {
OPNDBG("(already shutdown)\n");
return;
}
if (info->has_dma) {
del_timer(&info->poll_dma_timer);
dbdma_reset(info->tx_dma);
dbdma_reset(&info->rx->dma);
disable_irq(info->tx_dma_irq);
disable_irq(info->rx_dma_irq);
}
disable_irq(info->irq);
info->pendregs[1] = info->curregs[1] = 0;
write_zsreg(info->zs_channel, 1, 0); /* no interrupts */
info->curregs[3] &= ~RxENABLE;
info->pendregs[3] = info->curregs[3];
write_zsreg(info->zs_channel, 3, info->curregs[3]);
info->curregs[5] &= ~TxENAB;
if (!info->tty || C_HUPCL(info->tty))
info->curregs[5] &= ~DTR;
info->pendregs[5] = info->curregs[5];
write_zsreg(info->zs_channel, 5, info->curregs[5]);
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
set_scc_power(info, 0);
if (info->xmit_buf) {
free_page((unsigned long) info->xmit_buf);
info->xmit_buf = 0;
}
if (info->has_dma && info->dma_priv) {
kfree(info->dma_priv);
info->dma_priv = NULL;
info->dma_initted = 0;
}
memset(info->curregs, 0, sizeof(info->curregs));
memset(info->pendregs, 0, sizeof(info->pendregs));
info->flags &= ~ZILOG_INITIALIZED;
}
/*
* Turn power on or off to the SCC and associated stuff
* (port drivers, modem, IR port, etc.)
* Returns the number of milliseconds we should wait before
* trying to use the port.
*/
static int set_scc_power(struct mac_serial * info, int state)
{
int delay = 0;
if (state) {
PWRDBG("ttyS%d: powering up hardware\n", info->line);
pmac_call_feature(
PMAC_FTR_SCC_ENABLE,
info->dev_node, info->port_type, 1);
if (info->is_internal_modem) {
pmac_call_feature(
PMAC_FTR_MODEM_ENABLE,
info->dev_node, 0, 1);
delay = 2500; /* wait for 2.5s before using */
} else if (info->is_irda)
mdelay(50); /* Do better here once the problems
* with blocking have been ironed out
*/
} else {
/* TODO: Make that depend on a timer, don't power down
* immediately
*/
PWRDBG("ttyS%d: shutting down hardware\n", info->line);
if (info->is_internal_modem) {
PWRDBG("ttyS%d: shutting down modem\n", info->line);
pmac_call_feature(
PMAC_FTR_MODEM_ENABLE,
info->dev_node, 0, 0);
}
pmac_call_feature(
PMAC_FTR_SCC_ENABLE,
info->dev_node, info->port_type, 0);
}
return delay;
}
static void irda_rts_pulses(struct mac_serial *info, int w)
{
udelay(w);
write_zsreg(info->zs_channel, 5, Tx8 | TxENAB);
udelay(2);
write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS);
udelay(8);
write_zsreg(info->zs_channel, 5, Tx8 | TxENAB);
udelay(4);
write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS);
}
/*
* Set the irda codec on the imac to the specified baud rate.
*/
static void irda_setup(struct mac_serial *info)
{
int code, speed, t;
speed = info->tty->termios->c_cflag & CBAUD;
if (speed < B2400 || speed > B115200)
return;
code = 0x4d + B115200 - speed;
/* disable serial interrupts and receive DMA */
write_zsreg(info->zs_channel, 1, info->curregs[1] & ~0x9f);
/* wait for transmitter to drain */
t = 10000;
while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0
|| (read_zsreg(info->zs_channel, 1) & ALL_SNT) == 0) {
if (--t <= 0) {
printk(KERN_ERR "transmitter didn't drain\n");
return;
}
udelay(10);
}
udelay(100);
/* set to 8 bits, no parity, 19200 baud, RTS on, DTR off */
write_zsreg(info->zs_channel, 4, X16CLK | SB1);
write_zsreg(info->zs_channel, 11, TCBR | RCBR);
t = BPS_TO_BRG(19200, ZS_CLOCK/16);
write_zsreg(info->zs_channel, 12, t);
write_zsreg(info->zs_channel, 13, t >> 8);
write_zsreg(info->zs_channel, 14, BRENABL);
write_zsreg(info->zs_channel, 3, Rx8 | RxENABLE);
write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS);
/* set TxD low for ~104us and pulse RTS */
udelay(1000);
write_zsdata(info->zs_channel, 0xfe);
irda_rts_pulses(info, 150);
irda_rts_pulses(info, 180);
irda_rts_pulses(info, 50);
udelay(100);
/* assert DTR, wait 30ms, talk to the chip */
write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS | DTR);
mdelay(30);
while (read_zsreg(info->zs_channel, 0) & Rx_CH_AV)
read_zsdata(info->zs_channel);
write_zsdata(info->zs_channel, 1);
t = 1000;
while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) == 0) {
if (--t <= 0) {
printk(KERN_ERR "irda_setup timed out on 1st byte\n");
goto out;
}
udelay(10);
}
t = read_zsdata(info->zs_channel);
if (t != 4)
printk(KERN_ERR "irda_setup 1st byte = %x\n", t);
write_zsdata(info->zs_channel, code);
t = 1000;
while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) == 0) {
if (--t <= 0) {
printk(KERN_ERR "irda_setup timed out on 2nd byte\n");
goto out;
}
udelay(10);
}
t = read_zsdata(info->zs_channel);
if (t != code)
printk(KERN_ERR "irda_setup 2nd byte = %x (%x)\n", t, code);
/* Drop DTR again and do some more RTS pulses */
out:
udelay(100);
write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS);
irda_rts_pulses(info, 80);
/* We should be right to go now. We assume that load_zsregs
will get called soon to load up the correct baud rate etc. */
info->curregs[5] = (info->curregs[5] | RTS) & ~DTR;
info->pendregs[5] = info->curregs[5];
}
/*
* This routine is called to set the UART divisor registers to match
* the specified baud rate for a serial port.
*/
static void change_speed(struct mac_serial *info, struct termios *old_termios)
{
unsigned cflag;
int bits;
int brg, baud;
unsigned long flags;
if (!info->tty || !info->tty->termios)
return;
cflag = info->tty->termios->c_cflag;
baud = tty_get_baud_rate(info->tty);
if (baud == 0) {
if (old_termios) {
info->tty->termios->c_cflag &= ~CBAUD;
info->tty->termios->c_cflag |= (old_termios->c_cflag & CBAUD);
cflag = info->tty->termios->c_cflag;
baud = tty_get_baud_rate(info->tty);
}
else
baud = info->zs_baud;
}
if (baud > 230400)
baud = 230400;
else if (baud == 0)
baud = 38400;
spin_lock_irqsave(&info->lock, flags);
info->zs_baud = baud;
info->clk_divisor = 16;
BAUDBG(KERN_DEBUG "set speed to %d bds, ", baud);
switch (baud) {
case ZS_CLOCK/16: /* 230400 */
info->curregs[4] = X16CLK;
info->curregs[11] = 0;
break;
case ZS_CLOCK/32: /* 115200 */
info->curregs[4] = X32CLK;
info->curregs[11] = 0;
break;
default:
info->curregs[4] = X16CLK;
info->curregs[11] = TCBR | RCBR;
brg = BPS_TO_BRG(baud, ZS_CLOCK/info->clk_divisor);
info->curregs[12] = (brg & 255);
info->curregs[13] = ((brg >> 8) & 255);
info->curregs[14] = BRENABL;
}
/* byte size and parity */
info->curregs[3] &= ~RxNBITS_MASK;
info->curregs[5] &= ~TxNBITS_MASK;
switch (cflag & CSIZE) {
case CS5:
info->curregs[3] |= Rx5;
info->curregs[5] |= Tx5;
BAUDBG("5 bits, ");
bits = 7;
break;
case CS6:
info->curregs[3] |= Rx6;
info->curregs[5] |= Tx6;
BAUDBG("6 bits, ");
bits = 8;
break;
case CS7:
info->curregs[3] |= Rx7;
info->curregs[5] |= Tx7;
BAUDBG("7 bits, ");
bits = 9;
break;
case CS8:
default: /* defaults to 8 bits */
info->curregs[3] |= Rx8;
info->curregs[5] |= Tx8;
BAUDBG("8 bits, ");
bits = 10;
break;
}
info->pendregs[3] = info->curregs[3];
info->pendregs[5] = info->curregs[5];
info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN);
if (cflag & CSTOPB) {
info->curregs[4] |= SB2;
bits++;
BAUDBG("2 stop, ");
} else {
info->curregs[4] |= SB1;
BAUDBG("1 stop, ");
}
if (cflag & PARENB) {
bits++;
info->curregs[4] |= PAR_ENA;
BAUDBG("parity, ");
}
if (!(cflag & PARODD)) {
info->curregs[4] |= PAR_EVEN;
}
info->pendregs[4] = info->curregs[4];
if (!(cflag & CLOCAL)) {
if (!(info->curregs[15] & DCDIE))
info->read_reg_zero = read_zsreg(info->zs_channel, 0);
info->curregs[15] |= DCDIE;
} else
info->curregs[15] &= ~DCDIE;
if (cflag & CRTSCTS) {
info->curregs[15] |= CTSIE;
if ((read_zsreg(info->zs_channel, 0) & CTS) != 0)
info->tx_stopped = 1;
} else {
info->curregs[15] &= ~CTSIE;
info->tx_stopped = 0;
}
info->pendregs[15] = info->curregs[15];
/* Calc timeout value. This is pretty broken with high baud rates with HZ=100.
This code would love a larger HZ and a >1 fifo size, but this is not
a priority. The resulting value must be >HZ/2
*/
info->timeout = ((info->xmit_fifo_size*HZ*bits) / baud);
info->timeout += HZ/50+1; /* Add .02 seconds of slop */
BAUDBG("timeout=%d/%ds, base:%d\n", (int)info->timeout, (int)HZ,
(int)info->baud_base);
/* set the irda codec to the right rate */
if (info->is_irda)
irda_setup(info);
/* Load up the new values */
load_zsregs(info->zs_channel, info->curregs);
spin_unlock_irqrestore(&info->lock, flags);
}
static void rs_flush_chars(struct tty_struct *tty)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->name, "rs_flush_chars"))
return;
spin_lock_irqsave(&info->lock, flags);
if (!(info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped ||
!info->xmit_buf))
/* Enable transmitter */
transmit_chars(info);
spin_unlock_irqrestore(&info->lock, flags);
}
static int rs_write(struct tty_struct * tty,
const unsigned char *buf, int count)
{
int c, ret = 0;
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->name, "rs_write"))
return 0;
if (!tty || !info->xmit_buf || !tmp_buf)
return 0;
while (1) {
spin_lock_irqsave(&info->lock, flags);
c = min_t(int, count, min(SERIAL_XMIT_SIZE - info->xmit_cnt - 1,
SERIAL_XMIT_SIZE - info->xmit_head));
if (c <= 0) {
spin_unlock_irqrestore(&info->lock, flags);
break;
}
memcpy(info->xmit_buf + info->xmit_head, buf, c);
info->xmit_head = ((info->xmit_head + c) &
(SERIAL_XMIT_SIZE-1));
info->xmit_cnt += c;
spin_unlock_irqrestore(&info->lock, flags);
buf += c;
count -= c;
ret += c;
}
spin_lock_irqsave(&info->lock, flags);
if (info->xmit_cnt && !tty->stopped && !info->tx_stopped
&& !info->tx_active)
transmit_chars(info);
spin_unlock_irqrestore(&info->lock, flags);
return ret;
}
static int rs_write_room(struct tty_struct *tty)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
int ret;
if (serial_paranoia_check(info, tty->name, "rs_write_room"))
return 0;
ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1;
if (ret < 0)
ret = 0;
return ret;
}
static int rs_chars_in_buffer(struct tty_struct *tty)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer"))
return 0;
return info->xmit_cnt;
}
static void rs_flush_buffer(struct tty_struct *tty)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->name, "rs_flush_buffer"))
return;
spin_lock_irqsave(&info->lock, flags);
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
spin_unlock_irqrestore(&info->lock, flags);
tty_wakeup(tty);
}
/*
* ------------------------------------------------------------
* rs_throttle()
*
* This routine is called by the upper-layer tty layer to signal that
* incoming characters should be throttled.
* ------------------------------------------------------------
*/
static void rs_throttle(struct tty_struct * tty)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
unsigned long flags;
#ifdef SERIAL_DEBUG_THROTTLE
printk(KERN_DEBUG "throttle %ld....\n",tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->name, "rs_throttle"))
return;
if (I_IXOFF(tty)) {
spin_lock_irqsave(&info->lock, flags);
info->x_char = STOP_CHAR(tty);
if (!info->tx_active)
transmit_chars(info);
spin_unlock_irqrestore(&info->lock, flags);
}
if (C_CRTSCTS(tty)) {
/*
* Here we want to turn off the RTS line. On Macintoshes,
* the external serial ports using a DIN-8 or DIN-9
* connector only have the DTR line (which is usually
* wired to both RTS and DTR on an external modem in
* the cable). RTS doesn't go out to the serial port
* socket, it acts as an output enable for the transmit
* data line. So in this case we don't drop RTS.
*
* Macs with internal modems generally do have both RTS
* and DTR wired to the modem, so in that case we do
* drop RTS.
*/
if (info->is_internal_modem) {
spin_lock_irqsave(&info->lock, flags);
info->curregs[5] &= ~RTS;
info->pendregs[5] &= ~RTS;
write_zsreg(info->zs_channel, 5, info->curregs[5]);
spin_unlock_irqrestore(&info->lock, flags);
}
}
#ifdef CDTRCTS
if (tty->termios->c_cflag & CDTRCTS) {
spin_lock_irqsave(&info->lock, flags);
info->curregs[5] &= ~DTR;
info->pendregs[5] &= ~DTR;
write_zsreg(info->zs_channel, 5, info->curregs[5]);
spin_unlock_irqrestore(&info->lock, flags);
}
#endif /* CDTRCTS */
}
static void rs_unthrottle(struct tty_struct * tty)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
unsigned long flags;
#ifdef SERIAL_DEBUG_THROTTLE
printk(KERN_DEBUG "unthrottle %s: %d....\n",
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->name, "rs_unthrottle"))
return;
if (I_IXOFF(tty)) {
spin_lock_irqsave(&info->lock, flags);
if (info->x_char)
info->x_char = 0;
else {
info->x_char = START_CHAR(tty);
if (!info->tx_active)
transmit_chars(info);
}
spin_unlock_irqrestore(&info->lock, flags);
}
if (C_CRTSCTS(tty) && info->is_internal_modem) {
/* Assert RTS line */
spin_lock_irqsave(&info->lock, flags);
info->curregs[5] |= RTS;
info->pendregs[5] |= RTS;
write_zsreg(info->zs_channel, 5, info->curregs[5]);
spin_unlock_irqrestore(&info->lock, flags);
}
#ifdef CDTRCTS
if (tty->termios->c_cflag & CDTRCTS) {
/* Assert DTR line */
spin_lock_irqsave(&info->lock, flags);
info->curregs[5] |= DTR;
info->pendregs[5] |= DTR;
write_zsreg(info->zs_channel, 5, info->curregs[5]);
spin_unlock_irqrestore(&info->lock, flags);
}
#endif
}
/*
* ------------------------------------------------------------
* rs_ioctl() and friends
* ------------------------------------------------------------
*/
static int get_serial_info(struct mac_serial * info,
struct serial_struct __user * retinfo)
{
struct serial_struct tmp;
if (!retinfo)
return -EFAULT;
memset(&tmp, 0, sizeof(tmp));
tmp.type = info->type;
tmp.line = info->line;
tmp.port = info->port;
tmp.irq = info->irq;
tmp.flags = info->flags;
tmp.baud_base = info->baud_base;
tmp.close_delay = info->close_delay;
tmp.closing_wait = info->closing_wait;
tmp.custom_divisor = info->custom_divisor;
if (copy_to_user(retinfo,&tmp,sizeof(*retinfo)))
return -EFAULT;
return 0;
}
static int set_serial_info(struct mac_serial * info,
struct serial_struct __user * new_info)
{
struct serial_struct new_serial;
struct mac_serial old_info;
int retval = 0;
if (copy_from_user(&new_serial,new_info,sizeof(new_serial)))
return -EFAULT;
old_info = *info;
if (!capable(CAP_SYS_ADMIN)) {
if ((new_serial.baud_base != info->baud_base) ||
(new_serial.type != info->type) ||
(new_serial.close_delay != info->close_delay) ||
((new_serial.flags & ~ZILOG_USR_MASK) !=
(info->flags & ~ZILOG_USR_MASK)))
return -EPERM;
info->flags = ((info->flags & ~ZILOG_USR_MASK) |
(new_serial.flags & ZILOG_USR_MASK));
info->custom_divisor = new_serial.custom_divisor;
goto check_and_exit;
}
if (info->count > 1)
return -EBUSY;
/*
* OK, past this point, all the error checking has been done.
* At this point, we start making changes.....
*/
info->baud_base = new_serial.baud_base;
info->flags = ((info->flags & ~ZILOG_FLAGS) |
(new_serial.flags & ZILOG_FLAGS));
info->type = new_serial.type;
info->close_delay = new_serial.close_delay;
info->closing_wait = new_serial.closing_wait;
check_and_exit:
if (info->flags & ZILOG_INITIALIZED)
retval = setup_scc(info);
return retval;
}
/*
* get_lsr_info - get line status register info
*
* Purpose: Let user call ioctl() to get info when the UART physically
* is emptied. On bus types like RS485, the transmitter must
* release the bus after transmitting. This must be done when
* the transmit shift register is empty, not be done when the
* transmit holding register is empty. This functionality
* allows an RS485 driver to be written in user space.
*/
static int get_lsr_info(struct mac_serial * info, unsigned int *value)
{
unsigned char status;
unsigned long flags;
spin_lock_irqsave(&info->lock, flags);
status = read_zsreg(info->zs_channel, 0);
spin_unlock_irqrestore(&info->lock, flags);
status = (status & Tx_BUF_EMP)? TIOCSER_TEMT: 0;
return put_user(status,value);
}
static int rs_tiocmget(struct tty_struct *tty, struct file *file)
{
struct mac_serial * info = (struct mac_serial *)tty->driver_data;
unsigned char control, status;
unsigned long flags;
#ifdef CONFIG_KGDB
if (info->kgdb_channel)
return -ENODEV;
#endif
if (serial_paranoia_check(info, tty->name, __FUNCTION__))
return -ENODEV;
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
spin_lock_irqsave(&info->lock, flags);
control = info->curregs[5];
status = read_zsreg(info->zs_channel, 0);
spin_unlock_irqrestore(&info->lock, flags);
return ((control & RTS) ? TIOCM_RTS: 0)
| ((control & DTR) ? TIOCM_DTR: 0)
| ((status & DCD) ? TIOCM_CAR: 0)
| ((status & CTS) ? 0: TIOCM_CTS);
}
static int rs_tiocmset(struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear)
{
struct mac_serial * info = (struct mac_serial *)tty->driver_data;
unsigned int arg, bits;
unsigned long flags;
#ifdef CONFIG_KGDB
if (info->kgdb_channel)
return -ENODEV;
#endif
if (serial_paranoia_check(info, tty->name, __FUNCTION__))
return -ENODEV;
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
spin_lock_irqsave(&info->lock, flags);
if (set & TIOCM_RTS)
info->curregs[5] |= RTS;
if (set & TIOCM_DTR)
info->curregs[5] |= DTR;
if (clear & TIOCM_RTS)
info->curregs[5] &= ~RTS;
if (clear & TIOCM_DTR)
info->curregs[5] &= ~DTR;
info->pendregs[5] = info->curregs[5];
write_zsreg(info->zs_channel, 5, info->curregs[5]);
spin_unlock_irqrestore(&info->lock, flags);
return 0;
}
/*
* rs_break - turn transmit break condition on/off
*/
static void rs_break(struct tty_struct *tty, int break_state)
{
struct mac_serial *info = (struct mac_serial *) tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->name, "rs_break"))
return;
spin_lock_irqsave(&info->lock, flags);
if (break_state == -1)
info->curregs[5] |= SND_BRK;
else
info->curregs[5] &= ~SND_BRK;
write_zsreg(info->zs_channel, 5, info->curregs[5]);
spin_unlock_irqrestore(&info->lock, flags);
}
static int rs_ioctl(struct tty_struct *tty, struct file * file,
unsigned int cmd, unsigned long arg)
{
struct mac_serial * info = (struct mac_serial *)tty->driver_data;
#ifdef CONFIG_KGDB
if (info->kgdb_channel)
return -ENODEV;
#endif
if (serial_paranoia_check(info, tty->name, "rs_ioctl"))
return -ENODEV;
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
switch (cmd) {
case TIOCGSERIAL:
return get_serial_info(info,
(struct serial_struct __user *) arg);
case TIOCSSERIAL:
return set_serial_info(info,
(struct serial_struct __user *) arg);
case TIOCSERGETLSR: /* Get line status register */
return get_lsr_info(info, (unsigned int *) arg);
case TIOCSERGSTRUCT:
if (copy_to_user((struct mac_serial __user *) arg,
info, sizeof(struct mac_serial)))
return -EFAULT;
return 0;
default:
return -ENOIOCTLCMD;
}
return 0;
}
static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios)
{
struct mac_serial *info = (struct mac_serial *)tty->driver_data;
int was_stopped;
if (tty->termios->c_cflag == old_termios->c_cflag)
return;
was_stopped = info->tx_stopped;
change_speed(info, old_termios);
if (was_stopped && !info->tx_stopped) {
tty->hw_stopped = 0;
rs_start(tty);
}
}
/*
* ------------------------------------------------------------
* rs_close()
*
* This routine is called when the serial port gets closed.
* Wait for the last remaining data to be sent.
* ------------------------------------------------------------
*/
static void rs_close(struct tty_struct *tty, struct file * filp)
{
struct mac_serial * info = (struct mac_serial *)tty->driver_data;
unsigned long flags;
if (!info || serial_paranoia_check(info, tty->name, "rs_close"))
return;
spin_lock_irqsave(&info->lock, flags);
if (tty_hung_up_p(filp)) {
spin_unlock_irqrestore(&info->lock, flags);
return;
}
OPNDBG("rs_close ttyS%d, count = %d\n", info->line, info->count);
if ((tty->count == 1) && (info->count != 1)) {
/*
* Uh, oh. tty->count is 1, which means that the tty
* structure will be freed. Info->count should always
* be one in these conditions. If it's greater than
* one, we've got real problems, since it means the
* serial port won't be shutdown.
*/
printk(KERN_ERR "rs_close: bad serial port count; tty->count "
"is 1, info->count is %d\n", info->count);
info->count = 1;
}
if (--info->count < 0) {
printk(KERN_ERR "rs_close: bad serial port count for "
"ttyS%d: %d\n", info->line, info->count);
info->count = 0;
}
if (info->count) {
spin_unlock_irqrestore(&info->lock, flags);
return;
}
info->flags |= ZILOG_CLOSING;
/*
* Now we wait for the transmit buffer to clear; and we notify
* the line discipline to only process XON/XOFF characters.
*/
OPNDBG("waiting end of Tx... (timeout:%d)\n", info->closing_wait);
tty->closing = 1;
if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) {
spin_unlock_irqrestore(&info->lock, flags);
tty_wait_until_sent(tty, info->closing_wait);
spin_lock_irqsave(&info->lock, flags);
}
/*
* At this point we stop accepting input. To do this, we
* disable the receiver and receive interrupts.
*/
info->curregs[3] &= ~RxENABLE;
info->pendregs[3] = info->curregs[3];
write_zsreg(info->zs_channel, 3, info->curregs[3]);
info->curregs[1] &= ~(0x18); /* disable any rx ints */
info->pendregs[1] = info->curregs[1];
write_zsreg(info->zs_channel, 1, info->curregs[1]);
ZS_CLEARFIFO(info->zs_channel);
if (info->flags & ZILOG_INITIALIZED) {
/*
* Before we drop DTR, make sure the SCC transmitter
* has completely drained.
*/
OPNDBG("waiting end of Rx...\n");
spin_unlock_irqrestore(&info->lock, flags);
rs_wait_until_sent(tty, info->timeout);
spin_lock_irqsave(&info->lock, flags);
}
shutdown(info);
/* restore flags now since shutdown() will have disabled this port's
specific irqs */
spin_unlock_irqrestore(&info->lock, flags);
if (tty->driver->flush_buffer)
tty->driver->flush_buffer(tty);
tty_ldisc_flush(tty);
tty->closing = 0;
info->event = 0;
info->tty = 0;
if (info->blocked_open) {
if (info->close_delay) {
msleep_interruptible(jiffies_to_msecs(info->close_delay));
}
wake_up_interruptible(&info->open_wait);
}
info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CLOSING);
wake_up_interruptible(&info->close_wait);
}
/*
* rs_wait_until_sent() --- wait until the transmitter is empty
*/
static void rs_wait_until_sent(struct tty_struct *tty, int timeout)
{
struct mac_serial *info = (struct mac_serial *) tty->driver_data;
unsigned long orig_jiffies, char_time;
if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent"))
return;
/* printk("rs_wait_until_sent, timeout:%d, tty_stopped:%d, tx_stopped:%d\n",
timeout, tty->stopped, info->tx_stopped);
*/
orig_jiffies = jiffies;
/*
* Set the check interval to be 1/5 of the estimated time to
* send a single character, and make it at least 1. The check
* interval should also be less than the timeout.
*/
if (info->timeout <= HZ/50) {
printk(KERN_INFO "macserial: invalid info->timeout=%d\n",
info->timeout);
info->timeout = HZ/50+1;
}
char_time = (info->timeout - HZ/50) / info->xmit_fifo_size;
char_time = char_time / 5;
if (char_time > HZ) {
printk(KERN_WARNING "macserial: char_time %ld >HZ !!!\n",
char_time);
char_time = 1;
} else if (char_time == 0)
char_time = 1;
if (timeout)
char_time = min_t(unsigned long, char_time, timeout);
while ((read_zsreg(info->zs_channel, 1) & ALL_SNT) == 0) {
msleep_interruptible(jiffies_to_msecs(char_time));
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
}
current->state = TASK_RUNNING;
}
/*
* rs_hangup() --- called by tty_hangup() when a hangup is signaled.
*/
static void rs_hangup(struct tty_struct *tty)
{
struct mac_serial * info = (struct mac_serial *)tty->driver_data;
if (serial_paranoia_check(info, tty->name, "rs_hangup"))
return;
rs_flush_buffer(tty);
shutdown(info);
info->event = 0;
info->count = 0;
info->flags &= ~ZILOG_NORMAL_ACTIVE;
info->tty = 0;
wake_up_interruptible(&info->open_wait);
}
/*
* ------------------------------------------------------------
* rs_open() and friends
* ------------------------------------------------------------
*/
static int block_til_ready(struct tty_struct *tty, struct file * filp,
struct mac_serial *info)
{
DECLARE_WAITQUEUE(wait,current);
int retval;
int do_clocal = 0;
/*
* If the device is in the middle of being closed, then block
* until it's done, and then try again.
*/
if (info->flags & ZILOG_CLOSING) {
interruptible_sleep_on(&info->close_wait);
return -EAGAIN;
}
/*
* If non-blocking mode is set, or the port is not enabled,
* then make the check up front and then exit.
*/
if ((filp->f_flags & O_NONBLOCK) ||
(tty->flags & (1 << TTY_IO_ERROR))) {
info->flags |= ZILOG_NORMAL_ACTIVE;
return 0;
}
if (tty->termios->c_cflag & CLOCAL)
do_clocal = 1;
/*
* Block waiting for the carrier detect and the line to become
* free (i.e., not in use by the callout). While we are in
* this loop, info->count is dropped by one, so that
* rs_close() knows when to free things. We restore it upon
* exit, either normal or abnormal.
*/
retval = 0;
add_wait_queue(&info->open_wait, &wait);
OPNDBG("block_til_ready before block: ttyS%d, count = %d\n",
info->line, info->count);
spin_lock_irq(&info->lock);
if (!tty_hung_up_p(filp))
info->count--;
spin_unlock_irq(&info->lock);
info->blocked_open++;
while (1) {
spin_lock_irq(&info->lock);
if ((tty->termios->c_cflag & CBAUD) &&
!info->is_irda)
zs_rtsdtr(info, 1);
spin_unlock_irq(&info->lock);
set_current_state(TASK_INTERRUPTIBLE);
if (tty_hung_up_p(filp) ||
!(info->flags & ZILOG_INITIALIZED)) {
retval = -EAGAIN;
break;
}
if (!(info->flags & ZILOG_CLOSING) &&
(do_clocal || (read_zsreg(info->zs_channel, 0) & DCD)))
break;
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
OPNDBG("block_til_ready blocking: ttyS%d, count = %d\n",
info->line, info->count);
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&info->open_wait, &wait);
if (!tty_hung_up_p(filp))
info->count++;
info->blocked_open--;
OPNDBG("block_til_ready after blocking: ttyS%d, count = %d\n",
info->line, info->count);
if (retval)
return retval;
info->flags |= ZILOG_NORMAL_ACTIVE;
return 0;
}
/*
* This routine is called whenever a serial port is opened. It
* enables interrupts for a serial port, linking in its ZILOG structure into
* the IRQ chain. It also performs the serial-specific
* initialization for the tty structure.
*/
static int rs_open(struct tty_struct *tty, struct file * filp)
{
struct mac_serial *info;
int retval, line;
unsigned long page;
line = tty->index;
if ((line < 0) || (line >= zs_channels_found)) {
return -ENODEV;
}
info = zs_soft + line;
#ifdef CONFIG_KGDB
if (info->kgdb_channel) {
return -ENODEV;
}
#endif
if (serial_paranoia_check(info, tty->name, "rs_open"))
return -ENODEV;
OPNDBG("rs_open %s, count = %d, tty=%p\n", tty->name,
info->count, tty);
info->count++;
tty->driver_data = info;
info->tty = tty;
if (!tmp_buf) {
page = get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
if (tmp_buf)
free_page(page);
else
tmp_buf = (unsigned char *) page;
}
/*
* If the port is the middle of closing, bail out now
*/
if (tty_hung_up_p(filp) ||
(info->flags & ZILOG_CLOSING)) {
if (info->flags & ZILOG_CLOSING)
interruptible_sleep_on(&info->close_wait);
return -EAGAIN;
}
/*
* Start up serial port
*/
retval = startup(info);
if (retval)
return retval;
retval = block_til_ready(tty, filp, info);
if (retval) {
OPNDBG("rs_open returning after block_til_ready with %d\n",
retval);
return retval;
}
#ifdef CONFIG_SERIAL_CONSOLE
if (sercons.cflag && sercons.index == line) {
tty->termios->c_cflag = sercons.cflag;
sercons.cflag = 0;
change_speed(info, 0);
}
#endif
OPNDBG("rs_open %s successful...\n", tty->name);
return 0;
}
/* Finally, routines used to initialize the serial driver. */
static void show_serial_version(void)
{
printk(KERN_INFO "PowerMac Z8530 serial driver version " MACSERIAL_VERSION "\n");
}
/*
* Initialize one channel, both the mac_serial and mac_zschannel
* structs. We use the dev_node field of the mac_serial struct.
*/
static int
chan_init(struct mac_serial *zss, struct mac_zschannel *zs_chan,
struct mac_zschannel *zs_chan_a)
{
struct device_node *ch = zss->dev_node;
char *conn;
int len;
struct slot_names_prop {
int count;
char name[1];
} *slots;
zss->irq = ch->intrs[0].line;
zss->has_dma = 0;
#if !defined(CONFIG_KGDB) && defined(SUPPORT_SERIAL_DMA)
if (ch->n_addrs >= 3 && ch->n_intrs == 3)
zss->has_dma = 1;
#endif
zss->dma_initted = 0;
zs_chan->control = (volatile unsigned char *)
ioremap(ch->addrs[0].address, 0x1000);
zs_chan->data = zs_chan->control + 0x10;
spin_lock_init(&zs_chan->lock);
zs_chan->parent = zss;
zss->zs_channel = zs_chan;
zss->zs_chan_a = zs_chan_a;
/* setup misc varariables */
zss->kgdb_channel = 0;
/* For now, we assume you either have a slot-names property
* with "Modem" in it, or your channel is compatible with
* "cobalt". Might need additional fixups
*/
zss->is_internal_modem = device_is_compatible(ch, "cobalt");
conn = get_property(ch, "AAPL,connector", &len);
zss->is_irda = conn && (strcmp(conn, "infrared") == 0);
zss->port_type = PMAC_SCC_ASYNC;
/* 1999 Powerbook G3 has slot-names property instead */
slots = (struct slot_names_prop *)get_property(ch, "slot-names", &len);
if (slots && slots->count > 0) {
if (strcmp(slots->name, "IrDA") == 0)
zss->is_irda = 1;
else if (strcmp(slots->name, "Modem") == 0)
zss->is_internal_modem = 1;
}
if (zss->is_irda)
zss->port_type = PMAC_SCC_IRDA;
if (zss->is_internal_modem) {
struct device_node* i2c_modem = find_devices("i2c-modem");
if (i2c_modem) {
char* mid = get_property(i2c_modem, "modem-id", NULL);
if (mid) switch(*mid) {
case 0x04 :
case 0x05 :
case 0x07 :
case 0x08 :
case 0x0b :
case 0x0c :
zss->port_type = PMAC_SCC_I2S1;
}
printk(KERN_INFO "macserial: i2c-modem detected, id: %d\n",
mid ? (*mid) : 0);
} else {
printk(KERN_INFO "macserial: serial modem detected\n");
}
}
while (zss->has_dma) {
zss->dma_priv = NULL;
/* it seems that the last two addresses are the
DMA controllers */
zss->tx_dma = (volatile struct dbdma_regs *)
ioremap(ch->addrs[ch->n_addrs - 2].address, 0x100);
zss->rx = (volatile struct mac_dma *)
ioremap(ch->addrs[ch->n_addrs - 1].address, 0x100);
zss->tx_dma_irq = ch->intrs[1].line;
zss->rx_dma_irq = ch->intrs[2].line;
spin_lock_init(&zss->rx_dma_lock);
break;
}
init_timer(&zss->powerup_timer);
zss->powerup_timer.function = powerup_done;
zss->powerup_timer.data = (unsigned long) zss;
return 0;
}
/*
* /proc fs routines. TODO: Add status lines & error stats
*/
static inline int
line_info(char *buf, struct mac_serial *info)
{
int ret=0;
unsigned char* connector;
int lenp;
ret += sprintf(buf, "%d: port:0x%X irq:%d", info->line, info->port, info->irq);
connector = get_property(info->dev_node, "AAPL,connector", &lenp);
if (connector)
ret+=sprintf(buf+ret," con:%s ", connector);
if (info->is_internal_modem) {
if (!connector)
ret+=sprintf(buf+ret," con:");
ret+=sprintf(buf+ret,"%s", " (internal modem)");
}
if (info->is_irda) {
if (!connector)
ret+=sprintf(buf+ret," con:");
ret+=sprintf(buf+ret,"%s", " (IrDA)");
}
ret+=sprintf(buf+ret,"\n");
return ret;
}
int macserial_read_proc(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int l, len = 0;
off_t begin = 0;
struct mac_serial *info;
len += sprintf(page, "serinfo:1.0 driver:" MACSERIAL_VERSION "\n");
for (info = zs_chain; info && len < 4000; info = info->zs_next) {
l = line_info(page + len, info);
len += l;
if (len+begin > off+count)
goto done;
if (len+begin < off) {
begin += len;
len = 0;
}
}
*eof = 1;
done:
if (off >= len+begin)
return 0;
*start = page + (off-begin);
return ((count < begin+len-off) ? count : begin+len-off);
}
/* Ask the PROM how many Z8530s we have and initialize their zs_channels */
static void
probe_sccs(void)
{
struct device_node *dev, *ch;
struct mac_serial **pp;
int n, chip, nchan;
struct mac_zschannel *zs_chan;
int chan_a_index;
n = 0;
pp = &zs_chain;
zs_chan = zs_channels;
for (dev = find_devices("escc"); dev != 0; dev = dev->next) {
nchan = 0;
chip = n;
if (n >= NUM_CHANNELS) {
printk(KERN_WARNING "Sorry, can't use %s: no more "
"channels\n", dev->full_name);
continue;
}
chan_a_index = 0;
for (ch = dev->child; ch != 0; ch = ch->sibling) {
if (nchan >= 2) {
printk(KERN_WARNING "SCC: Only 2 channels per "
"chip are supported\n");
break;
}
if (ch->n_addrs < 1 || (ch ->n_intrs < 1)) {
printk("Can't use %s: %d addrs %d intrs\n",
ch->full_name, ch->n_addrs, ch->n_intrs);
continue;
}
/* The channel with the higher address
will be the A side. */
if (nchan > 0 &&
ch->addrs[0].address
> zs_soft[n-1].dev_node->addrs[0].address)
chan_a_index = 1;
/* minimal initialization for now */
zs_soft[n].dev_node = ch;
*pp = &zs_soft[n];
pp = &zs_soft[n].zs_next;
++nchan;
++n;
}
if (nchan == 0)
continue;
/* set up A side */
if (chan_init(&zs_soft[chip + chan_a_index], zs_chan, zs_chan))
continue;
++zs_chan;
/* set up B side, if it exists */
if (nchan > 1)
if (chan_init(&zs_soft[chip + 1 - chan_a_index],
zs_chan, zs_chan - 1))
continue;
++zs_chan;
}
*pp = 0;
zs_channels_found = n;
#ifdef CONFIG_PMAC_PBOOK
if (n)
pmu_register_sleep_notifier(&serial_sleep_notifier);
#endif /* CONFIG_PMAC_PBOOK */
}
static struct tty_operations serial_ops = {
.open = rs_open,
.close = rs_close,
.write = rs_write,
.flush_chars = rs_flush_chars,
.write_room = rs_write_room,
.chars_in_buffer = rs_chars_in_buffer,
.flush_buffer = rs_flush_buffer,
.ioctl = rs_ioctl,
.throttle = rs_throttle,
.unthrottle = rs_unthrottle,
.set_termios = rs_set_termios,
.stop = rs_stop,
.start = rs_start,
.hangup = rs_hangup,
.break_ctl = rs_break,
.wait_until_sent = rs_wait_until_sent,
.read_proc = macserial_read_proc,
.tiocmget = rs_tiocmget,
.tiocmset = rs_tiocmset,
};
static int macserial_init(void)
{
int channel, i;
struct mac_serial *info;
/* Find out how many Z8530 SCCs we have */
if (zs_chain == 0)
probe_sccs();
serial_driver = alloc_tty_driver(zs_channels_found);
if (!serial_driver)
return -ENOMEM;
/* XXX assume it's a powerbook if we have a via-pmu
*
* This is OK for core99 machines as well.
*/
is_powerbook = find_devices("via-pmu") != 0;
/* Register the interrupt handler for each one
* We also request the OF resources here as probe_sccs()
* might be called too early for that
*/
for (i = 0; i < zs_channels_found; ++i) {
struct device_node* ch = zs_soft[i].dev_node;
if (!request_OF_resource(ch, 0, NULL)) {
printk(KERN_ERR "macserial: can't request IO resource !\n");
put_tty_driver(serial_driver);
return -ENODEV;
}
if (zs_soft[i].has_dma) {
if (!request_OF_resource(ch, ch->n_addrs - 2, " (tx dma)")) {
printk(KERN_ERR "macserial: can't request TX DMA resource !\n");
zs_soft[i].has_dma = 0;
goto no_dma;
}
if (!request_OF_resource(ch, ch->n_addrs - 1, " (rx dma)")) {
release_OF_resource(ch, ch->n_addrs - 2);
printk(KERN_ERR "macserial: can't request RX DMA resource !\n");
zs_soft[i].has_dma = 0;
goto no_dma;
}
if (request_irq(zs_soft[i].tx_dma_irq, rs_txdma_irq, 0,
"SCC-txdma", &zs_soft[i]))
printk(KERN_ERR "macserial: can't get irq %d\n",
zs_soft[i].tx_dma_irq);
disable_irq(zs_soft[i].tx_dma_irq);
if (request_irq(zs_soft[i].rx_dma_irq, rs_rxdma_irq, 0,
"SCC-rxdma", &zs_soft[i]))
printk(KERN_ERR "macserial: can't get irq %d\n",
zs_soft[i].rx_dma_irq);
disable_irq(zs_soft[i].rx_dma_irq);
}
no_dma:
if (request_irq(zs_soft[i].irq, rs_interrupt, 0,
"SCC", &zs_soft[i]))
printk(KERN_ERR "macserial: can't get irq %d\n",
zs_soft[i].irq);
disable_irq(zs_soft[i].irq);
}
show_serial_version();
/* Initialize the tty_driver structure */
/* Not all of this is exactly right for us. */
serial_driver->owner = THIS_MODULE;
serial_driver->driver_name = "macserial";
serial_driver->devfs_name = "tts/";
serial_driver->name = "ttyS";
serial_driver->major = TTY_MAJOR;
serial_driver->minor_start = 64;
serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
serial_driver->subtype = SERIAL_TYPE_NORMAL;
serial_driver->init_termios = tty_std_termios;
serial_driver->init_termios.c_cflag =
B38400 | CS8 | CREAD | HUPCL | CLOCAL;
serial_driver->flags = TTY_DRIVER_REAL_RAW;
tty_set_operations(serial_driver, &serial_ops);
if (tty_register_driver(serial_driver))
printk(KERN_ERR "Error: couldn't register serial driver\n");
for (channel = 0; channel < zs_channels_found; ++channel) {
#ifdef CONFIG_KGDB
if (zs_soft[channel].kgdb_channel) {
kgdb_interruptible(1);
continue;
}
#endif
zs_soft[channel].clk_divisor = 16;
/* -- we are not sure the SCC is powered ON at this point
zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]);
*/
zs_soft[channel].zs_baud = 38400;
/* If console serial line, then enable interrupts. */
if (zs_soft[channel].is_cons) {
printk(KERN_INFO "macserial: console line, enabling "
"interrupt %d\n", zs_soft[channel].irq);
panic("macserial: console not supported yet !");
write_zsreg(zs_soft[channel].zs_channel, R1,
(EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB));
write_zsreg(zs_soft[channel].zs_channel, R9,
(NV | MIE));
}
}
for (info = zs_chain, i = 0; info; info = info->zs_next, i++)
{
unsigned char* connector;
int lenp;
#ifdef CONFIG_KGDB
if (info->kgdb_channel) {
continue;
}
#endif
info->magic = SERIAL_MAGIC;
info->port = (int) info->zs_channel->control;
info->line = i;
info->tty = 0;
info->custom_divisor = 16;
info->timeout = 0;
info->close_delay = 50;
info->closing_wait = 3000;
info->x_char = 0;
info->event = 0;
info->count = 0;
info->blocked_open = 0;
INIT_WORK(&info->tqueue, do_softint, info);
spin_lock_init(&info->lock);
init_waitqueue_head(&info->open_wait);
init_waitqueue_head(&info->close_wait);
info->timeout = HZ;
printk(KERN_INFO "tty%02d at 0x%08x (irq = %d)", info->line,
info->port, info->irq);
printk(" is a Z8530 ESCC");
connector = get_property(info->dev_node, "AAPL,connector", &lenp);
if (connector)
printk(", port = %s", connector);
if (info->is_internal_modem)
printk(" (internal modem)");
if (info->is_irda)
printk(" (IrDA)");
printk("\n");
}
tmp_buf = 0;
return 0;
}
void macserial_cleanup(void)
{
int i;
unsigned long flags;
struct mac_serial *info;
for (info = zs_chain, i = 0; info; info = info->zs_next, i++)
set_scc_power(info, 0);
spin_lock_irqsave(&info->lock, flags);
for (i = 0; i < zs_channels_found; ++i) {
free_irq(zs_soft[i].irq, &zs_soft[i]);
if (zs_soft[i].has_dma) {
free_irq(zs_soft[i].tx_dma_irq, &zs_soft[i]);
free_irq(zs_soft[i].rx_dma_irq, &zs_soft[i]);
}
release_OF_resource(zs_soft[i].dev_node, 0);
if (zs_soft[i].has_dma) {
struct device_node* ch = zs_soft[i].dev_node;
release_OF_resource(ch, ch->n_addrs - 2);
release_OF_resource(ch, ch->n_addrs - 1);
}
}
spin_unlock_irqrestore(&info->lock, flags);
tty_unregister_driver(serial_driver);
put_tty_driver(serial_driver);
if (tmp_buf) {
free_page((unsigned long) tmp_buf);
tmp_buf = 0;
}
#ifdef CONFIG_PMAC_PBOOK
if (zs_channels_found)
pmu_unregister_sleep_notifier(&serial_sleep_notifier);
#endif /* CONFIG_PMAC_PBOOK */
}
module_init(macserial_init);
module_exit(macserial_cleanup);
MODULE_LICENSE("GPL");
#if 0
/*
* register_serial and unregister_serial allows for serial ports to be
* configured at run-time, to support PCMCIA modems.
*/
/* PowerMac: Unused at this time, just here to make things link. */
int register_serial(struct serial_struct *req)
{
return -1;
}
void unregister_serial(int line)
{
return;
}
#endif
/*
* ------------------------------------------------------------
* Serial console driver
* ------------------------------------------------------------
*/
#ifdef CONFIG_SERIAL_CONSOLE
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*/
static void serial_console_write(struct console *co, const char *s,
unsigned count)
{
struct mac_serial *info = zs_soft + co->index;
int i;
/* Turn of interrupts and enable the transmitter. */
write_zsreg(info->zs_channel, R1, info->curregs[1] & ~TxINT_ENAB);
write_zsreg(info->zs_channel, R5, info->curregs[5] | TxENAB | RTS | DTR);
for (i=0; i<count; i++) {
/* Wait for the transmit buffer to empty. */
while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0) {
eieio();
}
write_zsdata(info->zs_channel, s[i]);
if (s[i] == 10) {
while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP)
== 0)
eieio();
write_zsdata(info->zs_channel, 13);
}
}
/* Restore the values in the registers. */
write_zsreg(info->zs_channel, R1, info->curregs[1]);
/* Don't disable the transmitter. */
}
static struct tty_driver *serial_driver;
static struct tty_driver *serial_console_device(struct console *c, int *index)
{
*index = c->index;
return serial_driver;
}
/*
* Setup initial baud/bits/parity. We do two things here:
* - construct a cflag setting for the first rs_open()
* - initialize the serial port
* Return non-zero if we didn't find a serial port.
*/
static int __init serial_console_setup(struct console *co, char *options)
{
struct mac_serial *info;
int baud = 38400;
int bits = 8;
int parity = 'n';
int cflag = CREAD | HUPCL | CLOCAL;
int brg;
char *s;
long flags;
/* Find out how many Z8530 SCCs we have */
if (zs_chain == 0)
probe_sccs();
if (zs_chain == 0)
return -1;
/* Do we have the device asked for? */
if (co->index >= zs_channels_found)
return -1;
info = zs_soft + co->index;
set_scc_power(info, 1);
/* Reset the channel */
write_zsreg(info->zs_channel, R9, CHRA);
if (options) {
baud = simple_strtoul(options, NULL, 10);
s = options;
while(*s >= '0' && *s <= '9')
s++;
if (*s)
parity = *s++;
if (*s)
bits = *s - '0';
}
/*
* Now construct a cflag setting.
*/
switch(baud) {
case 1200:
cflag |= B1200;
break;
case 2400:
cflag |= B2400;
break;
case 4800:
cflag |= B4800;
break;
case 9600:
cflag |= B9600;
break;
case 19200:
cflag |= B19200;
break;
case 57600:
cflag |= B57600;
break;
case 115200:
cflag |= B115200;
break;
case 38400:
default:
cflag |= B38400;
break;
}
switch(bits) {
case 7:
cflag |= CS7;
break;
default:
case 8:
cflag |= CS8;
break;
}
switch(parity) {
case 'o': case 'O':
cflag |= PARENB | PARODD;
break;
case 'e': case 'E':
cflag |= PARENB;
break;
}
co->cflag = cflag;
spin_lock_irqsave(&info->lock, flags);
memset(info->curregs, 0, sizeof(info->curregs));
info->zs_baud = baud;
info->clk_divisor = 16;
switch (info->zs_baud) {
case ZS_CLOCK/16: /* 230400 */
info->curregs[4] = X16CLK;
info->curregs[11] = 0;
break;
case ZS_CLOCK/32: /* 115200 */
info->curregs[4] = X32CLK;
info->curregs[11] = 0;
break;
default:
info->curregs[4] = X16CLK;
info->curregs[11] = TCBR | RCBR;
brg = BPS_TO_BRG(info->zs_baud, ZS_CLOCK/info->clk_divisor);
info->curregs[12] = (brg & 255);
info->curregs[13] = ((brg >> 8) & 255);
info->curregs[14] = BRENABL;
}
/* byte size and parity */
info->curregs[3] &= ~RxNBITS_MASK;
info->curregs[5] &= ~TxNBITS_MASK;
switch (cflag & CSIZE) {
case CS5:
info->curregs[3] |= Rx5;
info->curregs[5] |= Tx5;
break;
case CS6:
info->curregs[3] |= Rx6;
info->curregs[5] |= Tx6;
break;
case CS7:
info->curregs[3] |= Rx7;
info->curregs[5] |= Tx7;
break;
case CS8:
default: /* defaults to 8 bits */
info->curregs[3] |= Rx8;
info->curregs[5] |= Tx8;
break;
}
info->curregs[5] |= TxENAB | RTS | DTR;
info->pendregs[3] = info->curregs[3];
info->pendregs[5] = info->curregs[5];
info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN);
if (cflag & CSTOPB) {
info->curregs[4] |= SB2;
} else {
info->curregs[4] |= SB1;
}
if (cflag & PARENB) {
info->curregs[4] |= PAR_ENA;
if (!(cflag & PARODD)) {
info->curregs[4] |= PAR_EVEN;
}
}
info->pendregs[4] = info->curregs[4];
if (!(cflag & CLOCAL)) {
if (!(info->curregs[15] & DCDIE))
info->read_reg_zero = read_zsreg(info->zs_channel, 0);
info->curregs[15] |= DCDIE;
} else
info->curregs[15] &= ~DCDIE;
if (cflag & CRTSCTS) {
info->curregs[15] |= CTSIE;
if ((read_zsreg(info->zs_channel, 0) & CTS) != 0)
info->tx_stopped = 1;
} else {
info->curregs[15] &= ~CTSIE;
info->tx_stopped = 0;
}
info->pendregs[15] = info->curregs[15];
/* Load up the new values */
load_zsregs(info->zs_channel, info->curregs);
spin_unlock_irqrestore(&info->lock, flags);
return 0;
}
static struct console sercons = {
.name = "ttyS",
.write = serial_console_write,
.device = serial_console_device,
.setup = serial_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
};
/*
* Register console.
*/
static void __init mac_scc_console_init(void)
{
register_console(&sercons);
}
console_initcall(mac_scc_console_init);
#endif /* ifdef CONFIG_SERIAL_CONSOLE */
#ifdef CONFIG_KGDB
/* These are for receiving and sending characters under the kgdb
* source level kernel debugger.
*/
void putDebugChar(char kgdb_char)
{
struct mac_zschannel *chan = zs_kgdbchan;
while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0)
udelay(5);
write_zsdata(chan, kgdb_char);
}
char getDebugChar(void)
{
struct mac_zschannel *chan = zs_kgdbchan;
while((read_zsreg(chan, 0) & Rx_CH_AV) == 0)
eieio(); /*barrier();*/
return read_zsdata(chan);
}
void kgdb_interruptible(int yes)
{
struct mac_zschannel *chan = zs_kgdbchan;
int one, nine;
nine = read_zsreg(chan, 9);
if (yes == 1) {
one = EXT_INT_ENAB|INT_ALL_Rx;
nine |= MIE;
printk("turning serial ints on\n");
} else {
one = RxINT_DISAB;
nine &= ~MIE;
printk("turning serial ints off\n");
}
write_zsreg(chan, 1, one);
write_zsreg(chan, 9, nine);
}
/* This sets up the serial port we're using, and turns on
* interrupts for that channel, so kgdb is usable once we're done.
*/
static inline void kgdb_chaninit(struct mac_zschannel *ms, int intson, int bps)
{
int brg;
int i, x;
volatile char *sccc = ms->control;
brg = BPS_TO_BRG(bps, ZS_CLOCK/16);
printk("setting bps on kgdb line to %d [brg=%x]\n", bps, brg);
for (i = 20000; i != 0; --i) {
x = *sccc; eieio();
}
for (i = 0; i < sizeof(scc_inittab); ++i) {
write_zsreg(ms, scc_inittab[i], scc_inittab[i+1]);
i++;
}
}
/* This is called at boot time to prime the kgdb serial debugging
* serial line. The 'tty_num' argument is 0 for /dev/ttya and 1
* for /dev/ttyb which is determined in setup_arch() from the
* boot command line flags.
* XXX at the moment probably only channel A will work
*/
void __init zs_kgdb_hook(int tty_num)
{
/* Find out how many Z8530 SCCs we have */
if (zs_chain == 0)
probe_sccs();
set_scc_power(&zs_soft[tty_num], 1);
zs_kgdbchan = zs_soft[tty_num].zs_channel;
zs_soft[tty_num].change_needed = 0;
zs_soft[tty_num].clk_divisor = 16;
zs_soft[tty_num].zs_baud = 38400;
zs_soft[tty_num].kgdb_channel = 1; /* This runs kgdb */
/* Turn on transmitter/receiver at 8-bits/char */
kgdb_chaninit(zs_soft[tty_num].zs_channel, 1, 38400);
printk("KGDB: on channel %d initialized\n", tty_num);
set_debug_traps(); /* init stub */
}
#endif /* ifdef CONFIG_KGDB */
#ifdef CONFIG_PMAC_PBOOK
/*
* notify clients before sleep and reset bus afterwards
*/
int
serial_notify_sleep(struct pmu_sleep_notifier *self, int when)
{
int i;
switch (when) {
case PBOOK_SLEEP_REQUEST:
case PBOOK_SLEEP_REJECT:
break;
case PBOOK_SLEEP_NOW:
for (i=0; i<zs_channels_found; i++) {
struct mac_serial *info = &zs_soft[i];
if (info->flags & ZILOG_INITIALIZED) {
shutdown(info);
info->flags |= ZILOG_SLEEPING;
}
}
break;
case PBOOK_WAKE:
for (i=0; i<zs_channels_found; i++) {
struct mac_serial *info = &zs_soft[i];
if (info->flags & ZILOG_SLEEPING) {
info->flags &= ~ZILOG_SLEEPING;
startup(info);
}
}
break;
}
return PBOOK_SLEEP_OK;
}
#endif /* CONFIG_PMAC_PBOOK */