498 строки
13 KiB
C
498 строки
13 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* TILE Huge TLB Page Support for Kernel.
|
|
* Taken from i386 hugetlb implementation:
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/mman.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/setup.h>
|
|
|
|
#ifdef CONFIG_HUGETLB_SUPER_PAGES
|
|
|
|
/*
|
|
* Provide an additional huge page size (in addition to the regular default
|
|
* huge page size) if no "hugepagesz" arguments are specified.
|
|
* Note that it must be smaller than the default huge page size so
|
|
* that it's possible to allocate them on demand from the buddy allocator.
|
|
* You can change this to 64K (on a 16K build), 256K, 1M, or 4M,
|
|
* or not define it at all.
|
|
*/
|
|
#define ADDITIONAL_HUGE_SIZE (1024 * 1024UL)
|
|
|
|
/* "Extra" page-size multipliers, one per level of the page table. */
|
|
int huge_shift[HUGE_SHIFT_ENTRIES] = {
|
|
#ifdef ADDITIONAL_HUGE_SIZE
|
|
#define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE)
|
|
[HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* This routine is a hybrid of pte_alloc_map() and pte_alloc_kernel().
|
|
* It assumes that L2 PTEs are never in HIGHMEM (we don't support that).
|
|
* It locks the user pagetable, and bumps up the mm->nr_ptes field,
|
|
* but otherwise allocate the page table using the kernel versions.
|
|
*/
|
|
static pte_t *pte_alloc_hugetlb(struct mm_struct *mm, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
pte_t *new;
|
|
|
|
if (pmd_none(*pmd)) {
|
|
new = pte_alloc_one_kernel(mm, address);
|
|
if (!new)
|
|
return NULL;
|
|
|
|
smp_wmb(); /* See comment in __pte_alloc */
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
|
|
mm->nr_ptes++;
|
|
pmd_populate_kernel(mm, pmd, new);
|
|
new = NULL;
|
|
} else
|
|
VM_BUG_ON(pmd_trans_splitting(*pmd));
|
|
spin_unlock(&mm->page_table_lock);
|
|
if (new)
|
|
pte_free_kernel(mm, new);
|
|
}
|
|
|
|
return pte_offset_kernel(pmd, address);
|
|
}
|
|
#endif
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
|
|
addr &= -sz; /* Mask off any low bits in the address. */
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
pud = pud_alloc(mm, pgd, addr);
|
|
|
|
#ifdef CONFIG_HUGETLB_SUPER_PAGES
|
|
if (sz >= PGDIR_SIZE) {
|
|
BUG_ON(sz != PGDIR_SIZE &&
|
|
sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]);
|
|
return (pte_t *)pud;
|
|
} else {
|
|
pmd_t *pmd = pmd_alloc(mm, pud, addr);
|
|
if (sz >= PMD_SIZE) {
|
|
BUG_ON(sz != PMD_SIZE &&
|
|
sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD]));
|
|
return (pte_t *)pmd;
|
|
}
|
|
else {
|
|
if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE])
|
|
panic("Unexpected page size %#lx\n", sz);
|
|
return pte_alloc_hugetlb(mm, pmd, addr);
|
|
}
|
|
}
|
|
#else
|
|
BUG_ON(sz != PMD_SIZE);
|
|
return (pte_t *) pmd_alloc(mm, pud, addr);
|
|
#endif
|
|
}
|
|
|
|
static pte_t *get_pte(pte_t *base, int index, int level)
|
|
{
|
|
pte_t *ptep = base + index;
|
|
#ifdef CONFIG_HUGETLB_SUPER_PAGES
|
|
if (!pte_present(*ptep) && huge_shift[level] != 0) {
|
|
unsigned long mask = -1UL << huge_shift[level];
|
|
pte_t *super_ptep = base + (index & mask);
|
|
pte_t pte = *super_ptep;
|
|
if (pte_present(pte) && pte_super(pte))
|
|
ptep = super_ptep;
|
|
}
|
|
#endif
|
|
return ptep;
|
|
}
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
#ifdef CONFIG_HUGETLB_SUPER_PAGES
|
|
pte_t *pte;
|
|
#endif
|
|
|
|
/* Get the top-level page table entry. */
|
|
pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0);
|
|
if (!pgd_present(*pgd))
|
|
return NULL;
|
|
|
|
/* We don't have four levels. */
|
|
pud = pud_offset(pgd, addr);
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
# error support fourth page table level
|
|
#endif
|
|
|
|
/* Check for an L0 huge PTE, if we have three levels. */
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
if (pud_huge(*pud))
|
|
return (pte_t *)pud;
|
|
|
|
pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud),
|
|
pmd_index(addr), 1);
|
|
if (!pmd_present(*pmd))
|
|
return NULL;
|
|
#else
|
|
pmd = pmd_offset(pud, addr);
|
|
#endif
|
|
|
|
/* Check for an L1 huge PTE. */
|
|
if (pmd_huge(*pmd))
|
|
return (pte_t *)pmd;
|
|
|
|
#ifdef CONFIG_HUGETLB_SUPER_PAGES
|
|
/* Check for an L2 huge PTE. */
|
|
pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2);
|
|
if (!pte_present(*pte))
|
|
return NULL;
|
|
if (pte_super(*pte))
|
|
return pte;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
|
|
int write)
|
|
{
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
int pmd_huge(pmd_t pmd)
|
|
{
|
|
return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE);
|
|
}
|
|
|
|
int pud_huge(pud_t pud)
|
|
{
|
|
return !!(pud_val(pud) & _PAGE_HUGE_PAGE);
|
|
}
|
|
|
|
struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
pmd_t *pmd, int write)
|
|
{
|
|
struct page *page;
|
|
|
|
page = pte_page(*(pte_t *)pmd);
|
|
if (page)
|
|
page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
|
|
return page;
|
|
}
|
|
|
|
struct page *follow_huge_pud(struct mm_struct *mm, unsigned long address,
|
|
pud_t *pud, int write)
|
|
{
|
|
struct page *page;
|
|
|
|
page = pte_page(*(pte_t *)pud);
|
|
if (page)
|
|
page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
|
|
return page;
|
|
}
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
|
|
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long start_addr;
|
|
|
|
if (len > mm->cached_hole_size) {
|
|
start_addr = mm->free_area_cache;
|
|
} else {
|
|
start_addr = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = 0;
|
|
}
|
|
|
|
full_search:
|
|
addr = ALIGN(start_addr, huge_page_size(h));
|
|
|
|
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
|
|
/* At this point: (!vma || addr < vma->vm_end). */
|
|
if (TASK_SIZE - len < addr) {
|
|
/*
|
|
* Start a new search - just in case we missed
|
|
* some holes.
|
|
*/
|
|
if (start_addr != TASK_UNMAPPED_BASE) {
|
|
start_addr = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = 0;
|
|
goto full_search;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
if (!vma || addr + len <= vma->vm_start) {
|
|
mm->free_area_cache = addr + len;
|
|
return addr;
|
|
}
|
|
if (addr + mm->cached_hole_size < vma->vm_start)
|
|
mm->cached_hole_size = vma->vm_start - addr;
|
|
addr = ALIGN(vma->vm_end, huge_page_size(h));
|
|
}
|
|
}
|
|
|
|
static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
|
|
unsigned long addr0, unsigned long len,
|
|
unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma, *prev_vma;
|
|
unsigned long base = mm->mmap_base, addr = addr0;
|
|
unsigned long largest_hole = mm->cached_hole_size;
|
|
int first_time = 1;
|
|
|
|
/* don't allow allocations above current base */
|
|
if (mm->free_area_cache > base)
|
|
mm->free_area_cache = base;
|
|
|
|
if (len <= largest_hole) {
|
|
largest_hole = 0;
|
|
mm->free_area_cache = base;
|
|
}
|
|
try_again:
|
|
/* make sure it can fit in the remaining address space */
|
|
if (mm->free_area_cache < len)
|
|
goto fail;
|
|
|
|
/* either no address requested or can't fit in requested address hole */
|
|
addr = (mm->free_area_cache - len) & huge_page_mask(h);
|
|
do {
|
|
/*
|
|
* Lookup failure means no vma is above this address,
|
|
* i.e. return with success:
|
|
*/
|
|
vma = find_vma_prev(mm, addr, &prev_vma);
|
|
if (!vma) {
|
|
return addr;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* new region fits between prev_vma->vm_end and
|
|
* vma->vm_start, use it:
|
|
*/
|
|
if (addr + len <= vma->vm_start &&
|
|
(!prev_vma || (addr >= prev_vma->vm_end))) {
|
|
/* remember the address as a hint for next time */
|
|
mm->cached_hole_size = largest_hole;
|
|
mm->free_area_cache = addr;
|
|
return addr;
|
|
} else {
|
|
/* pull free_area_cache down to the first hole */
|
|
if (mm->free_area_cache == vma->vm_end) {
|
|
mm->free_area_cache = vma->vm_start;
|
|
mm->cached_hole_size = largest_hole;
|
|
}
|
|
}
|
|
|
|
/* remember the largest hole we saw so far */
|
|
if (addr + largest_hole < vma->vm_start)
|
|
largest_hole = vma->vm_start - addr;
|
|
|
|
/* try just below the current vma->vm_start */
|
|
addr = (vma->vm_start - len) & huge_page_mask(h);
|
|
|
|
} while (len <= vma->vm_start);
|
|
|
|
fail:
|
|
/*
|
|
* if hint left us with no space for the requested
|
|
* mapping then try again:
|
|
*/
|
|
if (first_time) {
|
|
mm->free_area_cache = base;
|
|
largest_hole = 0;
|
|
first_time = 0;
|
|
goto try_again;
|
|
}
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
mm->free_area_cache = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = ~0UL;
|
|
addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
|
|
len, pgoff, flags);
|
|
|
|
/*
|
|
* Restore the topdown base:
|
|
*/
|
|
mm->free_area_cache = base;
|
|
mm->cached_hole_size = ~0UL;
|
|
|
|
return addr;
|
|
}
|
|
|
|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
if (len & ~huge_page_mask(h))
|
|
return -EINVAL;
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
if (flags & MAP_FIXED) {
|
|
if (prepare_hugepage_range(file, addr, len))
|
|
return -EINVAL;
|
|
return addr;
|
|
}
|
|
|
|
if (addr) {
|
|
addr = ALIGN(addr, huge_page_size(h));
|
|
vma = find_vma(mm, addr);
|
|
if (TASK_SIZE - len >= addr &&
|
|
(!vma || addr + len <= vma->vm_start))
|
|
return addr;
|
|
}
|
|
if (current->mm->get_unmapped_area == arch_get_unmapped_area)
|
|
return hugetlb_get_unmapped_area_bottomup(file, addr, len,
|
|
pgoff, flags);
|
|
else
|
|
return hugetlb_get_unmapped_area_topdown(file, addr, len,
|
|
pgoff, flags);
|
|
}
|
|
#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
|
|
|
|
#ifdef CONFIG_HUGETLB_SUPER_PAGES
|
|
static __init int __setup_hugepagesz(unsigned long ps)
|
|
{
|
|
int log_ps = __builtin_ctzl(ps);
|
|
int level, base_shift;
|
|
|
|
if ((1UL << log_ps) != ps || (log_ps & 1) != 0) {
|
|
pr_warn("Not enabling %ld byte huge pages;"
|
|
" must be a power of four.\n", ps);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ps > 64*1024*1024*1024UL) {
|
|
pr_warn("Not enabling %ld MB huge pages;"
|
|
" largest legal value is 64 GB .\n", ps >> 20);
|
|
return -EINVAL;
|
|
} else if (ps >= PUD_SIZE) {
|
|
static long hv_jpage_size;
|
|
if (hv_jpage_size == 0)
|
|
hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO);
|
|
if (hv_jpage_size != PUD_SIZE) {
|
|
pr_warn("Not enabling >= %ld MB huge pages:"
|
|
" hypervisor reports size %ld\n",
|
|
PUD_SIZE >> 20, hv_jpage_size);
|
|
return -EINVAL;
|
|
}
|
|
level = 0;
|
|
base_shift = PUD_SHIFT;
|
|
} else if (ps >= PMD_SIZE) {
|
|
level = 1;
|
|
base_shift = PMD_SHIFT;
|
|
} else if (ps > PAGE_SIZE) {
|
|
level = 2;
|
|
base_shift = PAGE_SHIFT;
|
|
} else {
|
|
pr_err("hugepagesz: huge page size %ld too small\n", ps);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (log_ps != base_shift) {
|
|
int shift_val = log_ps - base_shift;
|
|
if (huge_shift[level] != 0) {
|
|
int old_shift = base_shift + huge_shift[level];
|
|
pr_warn("Not enabling %ld MB huge pages;"
|
|
" already have size %ld MB.\n",
|
|
ps >> 20, (1UL << old_shift) >> 20);
|
|
return -EINVAL;
|
|
}
|
|
if (hv_set_pte_super_shift(level, shift_val) != 0) {
|
|
pr_warn("Not enabling %ld MB huge pages;"
|
|
" no hypervisor support.\n", ps >> 20);
|
|
return -EINVAL;
|
|
}
|
|
printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20);
|
|
huge_shift[level] = shift_val;
|
|
}
|
|
|
|
hugetlb_add_hstate(log_ps - PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool saw_hugepagesz;
|
|
|
|
static __init int setup_hugepagesz(char *opt)
|
|
{
|
|
if (!saw_hugepagesz) {
|
|
saw_hugepagesz = true;
|
|
memset(huge_shift, 0, sizeof(huge_shift));
|
|
}
|
|
return __setup_hugepagesz(memparse(opt, NULL));
|
|
}
|
|
__setup("hugepagesz=", setup_hugepagesz);
|
|
|
|
#ifdef ADDITIONAL_HUGE_SIZE
|
|
/*
|
|
* Provide an additional huge page size if no "hugepagesz" args are given.
|
|
* In that case, all the cores have properly set up their hv super_shift
|
|
* already, but we need to notify the hugetlb code to enable the
|
|
* new huge page size from the Linux point of view.
|
|
*/
|
|
static __init int add_default_hugepagesz(void)
|
|
{
|
|
if (!saw_hugepagesz) {
|
|
BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE ||
|
|
ADDITIONAL_HUGE_SIZE <= PAGE_SIZE);
|
|
BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) !=
|
|
ADDITIONAL_HUGE_SIZE);
|
|
BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1);
|
|
hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT);
|
|
}
|
|
return 0;
|
|
}
|
|
arch_initcall(add_default_hugepagesz);
|
|
#endif
|
|
|
|
#endif /* CONFIG_HUGETLB_SUPER_PAGES */
|