WSL2-Linux-Kernel/drivers/acpi/bus.c

1260 строки
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* acpi_bus.c - ACPI Bus Driver ($Revision: 80 $)
*
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/sched.h>
#include <linux/pm.h>
#include <linux/device.h>
#include <linux/proc_fs.h>
#include <linux/acpi.h>
#include <linux/slab.h>
#include <linux/regulator/machine.h>
#include <linux/workqueue.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#ifdef CONFIG_X86
#include <asm/mpspec.h>
#include <linux/dmi.h>
#endif
#include <linux/acpi_iort.h>
#include <linux/pci.h>
#include <acpi/apei.h>
#include <linux/suspend.h>
#include "internal.h"
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME("bus");
struct acpi_device *acpi_root;
struct proc_dir_entry *acpi_root_dir;
EXPORT_SYMBOL(acpi_root_dir);
#ifdef CONFIG_X86
#ifdef CONFIG_ACPI_CUSTOM_DSDT
static inline int set_copy_dsdt(const struct dmi_system_id *id)
{
return 0;
}
#else
static int set_copy_dsdt(const struct dmi_system_id *id)
{
printk(KERN_NOTICE "%s detected - "
"force copy of DSDT to local memory\n", id->ident);
acpi_gbl_copy_dsdt_locally = 1;
return 0;
}
#endif
static const struct dmi_system_id dsdt_dmi_table[] __initconst = {
/*
* Invoke DSDT corruption work-around on all Toshiba Satellite.
* https://bugzilla.kernel.org/show_bug.cgi?id=14679
*/
{
.callback = set_copy_dsdt,
.ident = "TOSHIBA Satellite",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"),
},
},
{}
};
#endif
/* --------------------------------------------------------------------------
Device Management
-------------------------------------------------------------------------- */
acpi_status acpi_bus_get_status_handle(acpi_handle handle,
unsigned long long *sta)
{
acpi_status status;
status = acpi_evaluate_integer(handle, "_STA", NULL, sta);
if (ACPI_SUCCESS(status))
return AE_OK;
if (status == AE_NOT_FOUND) {
*sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING;
return AE_OK;
}
return status;
}
EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle);
int acpi_bus_get_status(struct acpi_device *device)
{
acpi_status status;
unsigned long long sta;
if (acpi_device_always_present(device)) {
acpi_set_device_status(device, ACPI_STA_DEFAULT);
return 0;
}
/* Battery devices must have their deps met before calling _STA */
if (acpi_device_is_battery(device) && device->dep_unmet) {
acpi_set_device_status(device, 0);
return 0;
}
status = acpi_bus_get_status_handle(device->handle, &sta);
if (ACPI_FAILURE(status))
return -ENODEV;
acpi_set_device_status(device, sta);
if (device->status.functional && !device->status.present) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] status [%08x]: "
"functional but not present;\n",
device->pnp.bus_id, (u32)sta));
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] status [%08x]\n",
device->pnp.bus_id, (u32)sta));
return 0;
}
EXPORT_SYMBOL(acpi_bus_get_status);
void acpi_bus_private_data_handler(acpi_handle handle,
void *context)
{
return;
}
EXPORT_SYMBOL(acpi_bus_private_data_handler);
int acpi_bus_attach_private_data(acpi_handle handle, void *data)
{
acpi_status status;
status = acpi_attach_data(handle,
acpi_bus_private_data_handler, data);
if (ACPI_FAILURE(status)) {
acpi_handle_debug(handle, "Error attaching device data\n");
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data);
int acpi_bus_get_private_data(acpi_handle handle, void **data)
{
acpi_status status;
if (!*data)
return -EINVAL;
status = acpi_get_data(handle, acpi_bus_private_data_handler, data);
if (ACPI_FAILURE(status)) {
acpi_handle_debug(handle, "No context for object\n");
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL_GPL(acpi_bus_get_private_data);
void acpi_bus_detach_private_data(acpi_handle handle)
{
acpi_detach_data(handle, acpi_bus_private_data_handler);
}
EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data);
static void acpi_print_osc_error(acpi_handle handle,
struct acpi_osc_context *context, char *error)
{
int i;
acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error);
pr_debug("_OSC request data:");
for (i = 0; i < context->cap.length; i += sizeof(u32))
pr_debug(" %x", *((u32 *)(context->cap.pointer + i)));
pr_debug("\n");
}
acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context)
{
acpi_status status;
struct acpi_object_list input;
union acpi_object in_params[4];
union acpi_object *out_obj;
guid_t guid;
u32 errors;
struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
if (!context)
return AE_ERROR;
if (guid_parse(context->uuid_str, &guid))
return AE_ERROR;
context->ret.length = ACPI_ALLOCATE_BUFFER;
context->ret.pointer = NULL;
/* Setting up input parameters */
input.count = 4;
input.pointer = in_params;
in_params[0].type = ACPI_TYPE_BUFFER;
in_params[0].buffer.length = 16;
in_params[0].buffer.pointer = (u8 *)&guid;
in_params[1].type = ACPI_TYPE_INTEGER;
in_params[1].integer.value = context->rev;
in_params[2].type = ACPI_TYPE_INTEGER;
in_params[2].integer.value = context->cap.length/sizeof(u32);
in_params[3].type = ACPI_TYPE_BUFFER;
in_params[3].buffer.length = context->cap.length;
in_params[3].buffer.pointer = context->cap.pointer;
status = acpi_evaluate_object(handle, "_OSC", &input, &output);
if (ACPI_FAILURE(status))
return status;
if (!output.length)
return AE_NULL_OBJECT;
out_obj = output.pointer;
if (out_obj->type != ACPI_TYPE_BUFFER
|| out_obj->buffer.length != context->cap.length) {
acpi_print_osc_error(handle, context,
"_OSC evaluation returned wrong type");
status = AE_TYPE;
goto out_kfree;
}
/* Need to ignore the bit0 in result code */
errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0);
if (errors) {
if (errors & OSC_REQUEST_ERROR)
acpi_print_osc_error(handle, context,
"_OSC request failed");
if (errors & OSC_INVALID_UUID_ERROR)
acpi_print_osc_error(handle, context,
"_OSC invalid UUID");
if (errors & OSC_INVALID_REVISION_ERROR)
acpi_print_osc_error(handle, context,
"_OSC invalid revision");
if (errors & OSC_CAPABILITIES_MASK_ERROR) {
if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD]
& OSC_QUERY_ENABLE)
goto out_success;
status = AE_SUPPORT;
goto out_kfree;
}
status = AE_ERROR;
goto out_kfree;
}
out_success:
context->ret.length = out_obj->buffer.length;
context->ret.pointer = kmemdup(out_obj->buffer.pointer,
context->ret.length, GFP_KERNEL);
if (!context->ret.pointer) {
status = AE_NO_MEMORY;
goto out_kfree;
}
status = AE_OK;
out_kfree:
kfree(output.pointer);
if (status != AE_OK)
context->ret.pointer = NULL;
return status;
}
EXPORT_SYMBOL(acpi_run_osc);
bool osc_sb_apei_support_acked;
/*
* ACPI 6.0 Section 8.4.4.2 Idle State Coordination
* OSPM supports platform coordinated low power idle(LPI) states
*/
bool osc_pc_lpi_support_confirmed;
EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed);
static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48";
static void acpi_bus_osc_support(void)
{
u32 capbuf[2];
struct acpi_osc_context context = {
.uuid_str = sb_uuid_str,
.rev = 1,
.cap.length = 8,
.cap.pointer = capbuf,
};
acpi_handle handle;
capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE;
capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */
if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT;
if (IS_ENABLED(CONFIG_ACPI_PROCESSOR))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT;
#ifdef CONFIG_X86
if (boot_cpu_has(X86_FEATURE_HWP)) {
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT;
}
#endif
if (IS_ENABLED(CONFIG_SCHED_MC_PRIO))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT;
if (!ghes_disable)
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT;
if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
return;
if (ACPI_SUCCESS(acpi_run_osc(handle, &context))) {
u32 *capbuf_ret = context.ret.pointer;
if (context.ret.length > OSC_SUPPORT_DWORD) {
osc_sb_apei_support_acked =
capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT;
osc_pc_lpi_support_confirmed =
capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT;
}
kfree(context.ret.pointer);
}
/* do we need to check other returned cap? Sounds no */
}
/* --------------------------------------------------------------------------
Notification Handling
-------------------------------------------------------------------------- */
/**
* acpi_bus_notify
* ---------------
* Callback for all 'system-level' device notifications (values 0x00-0x7F).
*/
static void acpi_bus_notify(acpi_handle handle, u32 type, void *data)
{
struct acpi_device *adev;
struct acpi_driver *driver;
u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
bool hotplug_event = false;
switch (type) {
case ACPI_NOTIFY_BUS_CHECK:
acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n");
hotplug_event = true;
break;
case ACPI_NOTIFY_DEVICE_CHECK:
acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n");
hotplug_event = true;
break;
case ACPI_NOTIFY_DEVICE_WAKE:
acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n");
break;
case ACPI_NOTIFY_EJECT_REQUEST:
acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n");
hotplug_event = true;
break;
case ACPI_NOTIFY_DEVICE_CHECK_LIGHT:
acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n");
/* TBD: Exactly what does 'light' mean? */
break;
case ACPI_NOTIFY_FREQUENCY_MISMATCH:
acpi_handle_err(handle, "Device cannot be configured due "
"to a frequency mismatch\n");
break;
case ACPI_NOTIFY_BUS_MODE_MISMATCH:
acpi_handle_err(handle, "Device cannot be configured due "
"to a bus mode mismatch\n");
break;
case ACPI_NOTIFY_POWER_FAULT:
acpi_handle_err(handle, "Device has suffered a power fault\n");
break;
default:
acpi_handle_debug(handle, "Unknown event type 0x%x\n", type);
break;
}
adev = acpi_bus_get_acpi_device(handle);
if (!adev)
goto err;
driver = adev->driver;
if (driver && driver->ops.notify &&
(driver->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS))
driver->ops.notify(adev, type);
if (!hotplug_event) {
acpi_bus_put_acpi_device(adev);
return;
}
if (ACPI_SUCCESS(acpi_hotplug_schedule(adev, type)))
return;
acpi_bus_put_acpi_device(adev);
err:
acpi_evaluate_ost(handle, type, ost_code, NULL);
}
static void acpi_device_notify(acpi_handle handle, u32 event, void *data)
{
struct acpi_device *device = data;
device->driver->ops.notify(device, event);
}
static void acpi_device_notify_fixed(void *data)
{
struct acpi_device *device = data;
/* Fixed hardware devices have no handles */
acpi_device_notify(NULL, ACPI_FIXED_HARDWARE_EVENT, device);
}
static u32 acpi_device_fixed_event(void *data)
{
acpi_os_execute(OSL_NOTIFY_HANDLER, acpi_device_notify_fixed, data);
return ACPI_INTERRUPT_HANDLED;
}
static int acpi_device_install_notify_handler(struct acpi_device *device)
{
acpi_status status;
if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON)
status =
acpi_install_fixed_event_handler(ACPI_EVENT_POWER_BUTTON,
acpi_device_fixed_event,
device);
else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON)
status =
acpi_install_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON,
acpi_device_fixed_event,
device);
else
status = acpi_install_notify_handler(device->handle,
ACPI_DEVICE_NOTIFY,
acpi_device_notify,
device);
if (ACPI_FAILURE(status))
return -EINVAL;
return 0;
}
static void acpi_device_remove_notify_handler(struct acpi_device *device)
{
if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON)
acpi_remove_fixed_event_handler(ACPI_EVENT_POWER_BUTTON,
acpi_device_fixed_event);
else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON)
acpi_remove_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON,
acpi_device_fixed_event);
else
acpi_remove_notify_handler(device->handle, ACPI_DEVICE_NOTIFY,
acpi_device_notify);
}
/* Handle events targeting \_SB device (at present only graceful shutdown) */
#define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81
#define ACPI_SB_INDICATE_INTERVAL 10000
static void sb_notify_work(struct work_struct *dummy)
{
acpi_handle sb_handle;
orderly_poweroff(true);
/*
* After initiating graceful shutdown, the ACPI spec requires OSPM
* to evaluate _OST method once every 10seconds to indicate that
* the shutdown is in progress
*/
acpi_get_handle(NULL, "\\_SB", &sb_handle);
while (1) {
pr_info("Graceful shutdown in progress.\n");
acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN,
ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL);
msleep(ACPI_SB_INDICATE_INTERVAL);
}
}
static void acpi_sb_notify(acpi_handle handle, u32 event, void *data)
{
static DECLARE_WORK(acpi_sb_work, sb_notify_work);
if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) {
if (!work_busy(&acpi_sb_work))
schedule_work(&acpi_sb_work);
} else
pr_warn("event %x is not supported by \\_SB device\n", event);
}
static int __init acpi_setup_sb_notify_handler(void)
{
acpi_handle sb_handle;
if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle)))
return -ENXIO;
if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY,
acpi_sb_notify, NULL)))
return -EINVAL;
return 0;
}
/* --------------------------------------------------------------------------
Device Matching
-------------------------------------------------------------------------- */
/**
* acpi_get_first_physical_node - Get first physical node of an ACPI device
* @adev: ACPI device in question
*
* Return: First physical node of ACPI device @adev
*/
struct device *acpi_get_first_physical_node(struct acpi_device *adev)
{
struct mutex *physical_node_lock = &adev->physical_node_lock;
struct device *phys_dev;
mutex_lock(physical_node_lock);
if (list_empty(&adev->physical_node_list)) {
phys_dev = NULL;
} else {
const struct acpi_device_physical_node *node;
node = list_first_entry(&adev->physical_node_list,
struct acpi_device_physical_node, node);
phys_dev = node->dev;
}
mutex_unlock(physical_node_lock);
return phys_dev;
}
static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev,
const struct device *dev)
{
const struct device *phys_dev = acpi_get_first_physical_node(adev);
return phys_dev && phys_dev == dev ? adev : NULL;
}
/**
* acpi_device_is_first_physical_node - Is given dev first physical node
* @adev: ACPI companion device
* @dev: Physical device to check
*
* Function checks if given @dev is the first physical devices attached to
* the ACPI companion device. This distinction is needed in some cases
* where the same companion device is shared between many physical devices.
*
* Note that the caller have to provide valid @adev pointer.
*/
bool acpi_device_is_first_physical_node(struct acpi_device *adev,
const struct device *dev)
{
return !!acpi_primary_dev_companion(adev, dev);
}
/*
* acpi_companion_match() - Can we match via ACPI companion device
* @dev: Device in question
*
* Check if the given device has an ACPI companion and if that companion has
* a valid list of PNP IDs, and if the device is the first (primary) physical
* device associated with it. Return the companion pointer if that's the case
* or NULL otherwise.
*
* If multiple physical devices are attached to a single ACPI companion, we need
* to be careful. The usage scenario for this kind of relationship is that all
* of the physical devices in question use resources provided by the ACPI
* companion. A typical case is an MFD device where all the sub-devices share
* the parent's ACPI companion. In such cases we can only allow the primary
* (first) physical device to be matched with the help of the companion's PNP
* IDs.
*
* Additional physical devices sharing the ACPI companion can still use
* resources available from it but they will be matched normally using functions
* provided by their bus types (and analogously for their modalias).
*/
struct acpi_device *acpi_companion_match(const struct device *dev)
{
struct acpi_device *adev;
adev = ACPI_COMPANION(dev);
if (!adev)
return NULL;
if (list_empty(&adev->pnp.ids))
return NULL;
return acpi_primary_dev_companion(adev, dev);
}
/**
* acpi_of_match_device - Match device object using the "compatible" property.
* @adev: ACPI device object to match.
* @of_match_table: List of device IDs to match against.
* @of_id: OF ID if matched
*
* If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of
* identifiers and a _DSD object with the "compatible" property, use that
* property to match against the given list of identifiers.
*/
static bool acpi_of_match_device(struct acpi_device *adev,
const struct of_device_id *of_match_table,
const struct of_device_id **of_id)
{
const union acpi_object *of_compatible, *obj;
int i, nval;
if (!adev)
return false;
of_compatible = adev->data.of_compatible;
if (!of_match_table || !of_compatible)
return false;
if (of_compatible->type == ACPI_TYPE_PACKAGE) {
nval = of_compatible->package.count;
obj = of_compatible->package.elements;
} else { /* Must be ACPI_TYPE_STRING. */
nval = 1;
obj = of_compatible;
}
/* Now we can look for the driver DT compatible strings */
for (i = 0; i < nval; i++, obj++) {
const struct of_device_id *id;
for (id = of_match_table; id->compatible[0]; id++)
if (!strcasecmp(obj->string.pointer, id->compatible)) {
if (of_id)
*of_id = id;
return true;
}
}
return false;
}
static bool acpi_of_modalias(struct acpi_device *adev,
char *modalias, size_t len)
{
const union acpi_object *of_compatible;
const union acpi_object *obj;
const char *str, *chr;
of_compatible = adev->data.of_compatible;
if (!of_compatible)
return false;
if (of_compatible->type == ACPI_TYPE_PACKAGE)
obj = of_compatible->package.elements;
else /* Must be ACPI_TYPE_STRING. */
obj = of_compatible;
str = obj->string.pointer;
chr = strchr(str, ',');
strlcpy(modalias, chr ? chr + 1 : str, len);
return true;
}
/**
* acpi_set_modalias - Set modalias using "compatible" property or supplied ID
* @adev: ACPI device object to match
* @default_id: ID string to use as default if no compatible string found
* @modalias: Pointer to buffer that modalias value will be copied into
* @len: Length of modalias buffer
*
* This is a counterpart of of_modalias_node() for struct acpi_device objects.
* If there is a compatible string for @adev, it will be copied to @modalias
* with the vendor prefix stripped; otherwise, @default_id will be used.
*/
void acpi_set_modalias(struct acpi_device *adev, const char *default_id,
char *modalias, size_t len)
{
if (!acpi_of_modalias(adev, modalias, len))
strlcpy(modalias, default_id, len);
}
EXPORT_SYMBOL_GPL(acpi_set_modalias);
static bool __acpi_match_device_cls(const struct acpi_device_id *id,
struct acpi_hardware_id *hwid)
{
int i, msk, byte_shift;
char buf[3];
if (!id->cls)
return false;
/* Apply class-code bitmask, before checking each class-code byte */
for (i = 1; i <= 3; i++) {
byte_shift = 8 * (3 - i);
msk = (id->cls_msk >> byte_shift) & 0xFF;
if (!msk)
continue;
sprintf(buf, "%02x", (id->cls >> byte_shift) & msk);
if (strncmp(buf, &hwid->id[(i - 1) * 2], 2))
return false;
}
return true;
}
static bool __acpi_match_device(struct acpi_device *device,
const struct acpi_device_id *acpi_ids,
const struct of_device_id *of_ids,
const struct acpi_device_id **acpi_id,
const struct of_device_id **of_id)
{
const struct acpi_device_id *id;
struct acpi_hardware_id *hwid;
/*
* If the device is not present, it is unnecessary to load device
* driver for it.
*/
if (!device || !device->status.present)
return false;
list_for_each_entry(hwid, &device->pnp.ids, list) {
/* First, check the ACPI/PNP IDs provided by the caller. */
if (acpi_ids) {
for (id = acpi_ids; id->id[0] || id->cls; id++) {
if (id->id[0] && !strcmp((char *)id->id, hwid->id))
goto out_acpi_match;
if (id->cls && __acpi_match_device_cls(id, hwid))
goto out_acpi_match;
}
}
/*
* Next, check ACPI_DT_NAMESPACE_HID and try to match the
* "compatible" property if found.
*/
if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id))
return acpi_of_match_device(device, of_ids, of_id);
}
return false;
out_acpi_match:
if (acpi_id)
*acpi_id = id;
return true;
}
/**
* acpi_match_device - Match a struct device against a given list of ACPI IDs
* @ids: Array of struct acpi_device_id object to match against.
* @dev: The device structure to match.
*
* Check if @dev has a valid ACPI handle and if there is a struct acpi_device
* object for that handle and use that object to match against a given list of
* device IDs.
*
* Return a pointer to the first matching ID on success or %NULL on failure.
*/
const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids,
const struct device *dev)
{
const struct acpi_device_id *id = NULL;
__acpi_match_device(acpi_companion_match(dev), ids, NULL, &id, NULL);
return id;
}
EXPORT_SYMBOL_GPL(acpi_match_device);
static const void *acpi_of_device_get_match_data(const struct device *dev)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
const struct of_device_id *match = NULL;
if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match))
return NULL;
return match->data;
}
const void *acpi_device_get_match_data(const struct device *dev)
{
const struct acpi_device_id *match;
if (!dev->driver->acpi_match_table)
return acpi_of_device_get_match_data(dev);
match = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!match)
return NULL;
return (const void *)match->driver_data;
}
EXPORT_SYMBOL_GPL(acpi_device_get_match_data);
int acpi_match_device_ids(struct acpi_device *device,
const struct acpi_device_id *ids)
{
return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT;
}
EXPORT_SYMBOL(acpi_match_device_ids);
bool acpi_driver_match_device(struct device *dev,
const struct device_driver *drv)
{
if (!drv->acpi_match_table)
return acpi_of_match_device(ACPI_COMPANION(dev),
drv->of_match_table,
NULL);
return __acpi_match_device(acpi_companion_match(dev),
drv->acpi_match_table, drv->of_match_table,
NULL, NULL);
}
EXPORT_SYMBOL_GPL(acpi_driver_match_device);
/* --------------------------------------------------------------------------
ACPI Driver Management
-------------------------------------------------------------------------- */
/**
* acpi_bus_register_driver - register a driver with the ACPI bus
* @driver: driver being registered
*
* Registers a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and binds. Returns zero for
* success or a negative error status for failure.
*/
int acpi_bus_register_driver(struct acpi_driver *driver)
{
int ret;
if (acpi_disabled)
return -ENODEV;
driver->drv.name = driver->name;
driver->drv.bus = &acpi_bus_type;
driver->drv.owner = driver->owner;
ret = driver_register(&driver->drv);
return ret;
}
EXPORT_SYMBOL(acpi_bus_register_driver);
/**
* acpi_bus_unregister_driver - unregisters a driver with the ACPI bus
* @driver: driver to unregister
*
* Unregisters a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and unbinds.
*/
void acpi_bus_unregister_driver(struct acpi_driver *driver)
{
driver_unregister(&driver->drv);
}
EXPORT_SYMBOL(acpi_bus_unregister_driver);
/* --------------------------------------------------------------------------
ACPI Bus operations
-------------------------------------------------------------------------- */
static int acpi_bus_match(struct device *dev, struct device_driver *drv)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = to_acpi_driver(drv);
return acpi_dev->flags.match_driver
&& !acpi_match_device_ids(acpi_dev, acpi_drv->ids);
}
static int acpi_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
return __acpi_device_uevent_modalias(to_acpi_device(dev), env);
}
static int acpi_device_probe(struct device *dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
int ret;
if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev))
return -EINVAL;
if (!acpi_drv->ops.add)
return -ENOSYS;
ret = acpi_drv->ops.add(acpi_dev);
if (ret)
return ret;
acpi_dev->driver = acpi_drv;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Driver [%s] successfully bound to device [%s]\n",
acpi_drv->name, acpi_dev->pnp.bus_id));
if (acpi_drv->ops.notify) {
ret = acpi_device_install_notify_handler(acpi_dev);
if (ret) {
if (acpi_drv->ops.remove)
acpi_drv->ops.remove(acpi_dev);
acpi_dev->driver = NULL;
acpi_dev->driver_data = NULL;
return ret;
}
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found driver [%s] for device [%s]\n",
acpi_drv->name, acpi_dev->pnp.bus_id));
get_device(dev);
return 0;
}
static int acpi_device_remove(struct device *dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = acpi_dev->driver;
if (acpi_drv) {
if (acpi_drv->ops.notify)
acpi_device_remove_notify_handler(acpi_dev);
if (acpi_drv->ops.remove)
acpi_drv->ops.remove(acpi_dev);
}
acpi_dev->driver = NULL;
acpi_dev->driver_data = NULL;
put_device(dev);
return 0;
}
struct bus_type acpi_bus_type = {
.name = "acpi",
.match = acpi_bus_match,
.probe = acpi_device_probe,
.remove = acpi_device_remove,
.uevent = acpi_device_uevent,
};
/* --------------------------------------------------------------------------
Initialization/Cleanup
-------------------------------------------------------------------------- */
static int __init acpi_bus_init_irq(void)
{
acpi_status status;
char *message = NULL;
/*
* Let the system know what interrupt model we are using by
* evaluating the \_PIC object, if exists.
*/
switch (acpi_irq_model) {
case ACPI_IRQ_MODEL_PIC:
message = "PIC";
break;
case ACPI_IRQ_MODEL_IOAPIC:
message = "IOAPIC";
break;
case ACPI_IRQ_MODEL_IOSAPIC:
message = "IOSAPIC";
break;
case ACPI_IRQ_MODEL_GIC:
message = "GIC";
break;
case ACPI_IRQ_MODEL_PLATFORM:
message = "platform specific model";
break;
default:
printk(KERN_WARNING PREFIX "Unknown interrupt routing model\n");
return -ENODEV;
}
printk(KERN_INFO PREFIX "Using %s for interrupt routing\n", message);
status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model);
if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PIC"));
return -ENODEV;
}
return 0;
}
/**
* acpi_early_init - Initialize ACPICA and populate the ACPI namespace.
*
* The ACPI tables are accessible after this, but the handling of events has not
* been initialized and the global lock is not available yet, so AML should not
* be executed at this point.
*
* Doing this before switching the EFI runtime services to virtual mode allows
* the EfiBootServices memory to be freed slightly earlier on boot.
*/
void __init acpi_early_init(void)
{
acpi_status status;
if (acpi_disabled)
return;
printk(KERN_INFO PREFIX "Core revision %08x\n", ACPI_CA_VERSION);
/* enable workarounds, unless strict ACPI spec. compliance */
if (!acpi_strict)
acpi_gbl_enable_interpreter_slack = TRUE;
acpi_permanent_mmap = true;
#ifdef CONFIG_X86
/*
* If the machine falls into the DMI check table,
* DSDT will be copied to memory.
* Note that calling dmi_check_system() here on other architectures
* would not be OK because only x86 initializes dmi early enough.
* Thankfully only x86 systems need such quirks for now.
*/
dmi_check_system(dsdt_dmi_table);
#endif
status = acpi_reallocate_root_table();
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX
"Unable to reallocate ACPI tables\n");
goto error0;
}
status = acpi_initialize_subsystem();
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX
"Unable to initialize the ACPI Interpreter\n");
goto error0;
}
#ifdef CONFIG_X86
if (!acpi_ioapic) {
/* compatible (0) means level (3) */
if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) {
acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK;
acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL;
}
/* Set PIC-mode SCI trigger type */
acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt,
(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2);
} else {
/*
* now that acpi_gbl_FADT is initialized,
* update it with result from INT_SRC_OVR parsing
*/
acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi;
}
#endif
return;
error0:
disable_acpi();
}
/**
* acpi_subsystem_init - Finalize the early initialization of ACPI.
*
* Switch over the platform to the ACPI mode (if possible).
*
* Doing this too early is generally unsafe, but at the same time it needs to be
* done before all things that really depend on ACPI. The right spot appears to
* be before finalizing the EFI initialization.
*/
void __init acpi_subsystem_init(void)
{
acpi_status status;
if (acpi_disabled)
return;
status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE);
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX "Unable to enable ACPI\n");
disable_acpi();
} else {
/*
* If the system is using ACPI then we can be reasonably
* confident that any regulators are managed by the firmware
* so tell the regulator core it has everything it needs to
* know.
*/
regulator_has_full_constraints();
}
}
static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context)
{
acpi_scan_table_handler(event, table, context);
return acpi_sysfs_table_handler(event, table, context);
}
static int __init acpi_bus_init(void)
{
int result;
acpi_status status;
acpi_os_initialize1();
status = acpi_load_tables();
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX
"Unable to load the System Description Tables\n");
goto error1;
}
/*
* ACPI 2.0 requires the EC driver to be loaded and work before the EC
* device is found in the namespace.
*
* This is accomplished by looking for the ECDT table and getting the EC
* parameters out of that.
*
* Do that before calling acpi_initialize_objects() which may trigger EC
* address space accesses.
*/
acpi_ec_ecdt_probe();
status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE);
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX
"Unable to start the ACPI Interpreter\n");
goto error1;
}
status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION);
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX "Unable to initialize ACPI objects\n");
goto error1;
}
/* Set capability bits for _OSC under processor scope */
acpi_early_processor_osc();
/*
* _OSC method may exist in module level code,
* so it must be run after ACPI_FULL_INITIALIZATION
*/
acpi_bus_osc_support();
/*
* _PDC control method may load dynamic SSDT tables,
* and we need to install the table handler before that.
*/
status = acpi_install_table_handler(acpi_bus_table_handler, NULL);
acpi_sysfs_init();
acpi_early_processor_set_pdc();
/*
* Maybe EC region is required at bus_scan/acpi_get_devices. So it
* is necessary to enable it as early as possible.
*/
acpi_ec_dsdt_probe();
printk(KERN_INFO PREFIX "Interpreter enabled\n");
/* Initialize sleep structures */
acpi_sleep_init();
/*
* Get the system interrupt model and evaluate \_PIC.
*/
result = acpi_bus_init_irq();
if (result)
goto error1;
/*
* Register the for all standard device notifications.
*/
status =
acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY,
&acpi_bus_notify, NULL);
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX
"Unable to register for device notifications\n");
goto error1;
}
/*
* Create the top ACPI proc directory
*/
acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL);
result = bus_register(&acpi_bus_type);
if (!result)
return 0;
/* Mimic structured exception handling */
error1:
acpi_terminate();
return -ENODEV;
}
struct kobject *acpi_kobj;
EXPORT_SYMBOL_GPL(acpi_kobj);
static int __init acpi_init(void)
{
int result;
if (acpi_disabled) {
printk(KERN_INFO PREFIX "Interpreter disabled.\n");
return -ENODEV;
}
acpi_kobj = kobject_create_and_add("acpi", firmware_kobj);
if (!acpi_kobj) {
printk(KERN_WARNING "%s: kset create error\n", __func__);
acpi_kobj = NULL;
}
result = acpi_bus_init();
if (result) {
disable_acpi();
return result;
}
pci_mmcfg_late_init();
acpi_iort_init();
acpi_scan_init();
acpi_ec_init();
acpi_debugfs_init();
acpi_sleep_proc_init();
acpi_wakeup_device_init();
acpi_debugger_init();
acpi_setup_sb_notify_handler();
return 0;
}
subsys_initcall(acpi_init);