WSL2-Linux-Kernel/drivers/gpu/drm/bridge/tc358767.c

1747 строки
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* tc358767 eDP bridge driver
*
* Copyright (C) 2016 CogentEmbedded Inc
* Author: Andrey Gusakov <andrey.gusakov@cogentembedded.com>
*
* Copyright (C) 2016 Pengutronix, Philipp Zabel <p.zabel@pengutronix.de>
*
* Copyright (C) 2016 Zodiac Inflight Innovations
*
* Initially based on: drivers/gpu/drm/i2c/tda998x_drv.c
*
* Copyright (C) 2012 Texas Instruments
* Author: Rob Clark <robdclark@gmail.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* Registers */
/* Display Parallel Interface */
#define DPIPXLFMT 0x0440
#define VS_POL_ACTIVE_LOW (1 << 10)
#define HS_POL_ACTIVE_LOW (1 << 9)
#define DE_POL_ACTIVE_HIGH (0 << 8)
#define SUB_CFG_TYPE_CONFIG1 (0 << 2) /* LSB aligned */
#define SUB_CFG_TYPE_CONFIG2 (1 << 2) /* Loosely Packed */
#define SUB_CFG_TYPE_CONFIG3 (2 << 2) /* LSB aligned 8-bit */
#define DPI_BPP_RGB888 (0 << 0)
#define DPI_BPP_RGB666 (1 << 0)
#define DPI_BPP_RGB565 (2 << 0)
/* Video Path */
#define VPCTRL0 0x0450
#define VSDELAY GENMASK(31, 20)
#define OPXLFMT_RGB666 (0 << 8)
#define OPXLFMT_RGB888 (1 << 8)
#define FRMSYNC_DISABLED (0 << 4) /* Video Timing Gen Disabled */
#define FRMSYNC_ENABLED (1 << 4) /* Video Timing Gen Enabled */
#define MSF_DISABLED (0 << 0) /* Magic Square FRC disabled */
#define MSF_ENABLED (1 << 0) /* Magic Square FRC enabled */
#define HTIM01 0x0454
#define HPW GENMASK(8, 0)
#define HBPR GENMASK(24, 16)
#define HTIM02 0x0458
#define HDISPR GENMASK(10, 0)
#define HFPR GENMASK(24, 16)
#define VTIM01 0x045c
#define VSPR GENMASK(7, 0)
#define VBPR GENMASK(23, 16)
#define VTIM02 0x0460
#define VFPR GENMASK(23, 16)
#define VDISPR GENMASK(10, 0)
#define VFUEN0 0x0464
#define VFUEN BIT(0) /* Video Frame Timing Upload */
/* System */
#define TC_IDREG 0x0500
#define SYSSTAT 0x0508
#define SYSCTRL 0x0510
#define DP0_AUDSRC_NO_INPUT (0 << 3)
#define DP0_AUDSRC_I2S_RX (1 << 3)
#define DP0_VIDSRC_NO_INPUT (0 << 0)
#define DP0_VIDSRC_DSI_RX (1 << 0)
#define DP0_VIDSRC_DPI_RX (2 << 0)
#define DP0_VIDSRC_COLOR_BAR (3 << 0)
#define SYSRSTENB 0x050c
#define ENBI2C (1 << 0)
#define ENBLCD0 (1 << 2)
#define ENBBM (1 << 3)
#define ENBDSIRX (1 << 4)
#define ENBREG (1 << 5)
#define ENBHDCP (1 << 8)
#define GPIOM 0x0540
#define GPIOC 0x0544
#define GPIOO 0x0548
#define GPIOI 0x054c
#define INTCTL_G 0x0560
#define INTSTS_G 0x0564
#define INT_SYSERR BIT(16)
#define INT_GPIO_H(x) (1 << (x == 0 ? 2 : 10))
#define INT_GPIO_LC(x) (1 << (x == 0 ? 3 : 11))
#define INT_GP0_LCNT 0x0584
#define INT_GP1_LCNT 0x0588
/* Control */
#define DP0CTL 0x0600
#define VID_MN_GEN BIT(6) /* Auto-generate M/N values */
#define EF_EN BIT(5) /* Enable Enhanced Framing */
#define VID_EN BIT(1) /* Video transmission enable */
#define DP_EN BIT(0) /* Enable DPTX function */
/* Clocks */
#define DP0_VIDMNGEN0 0x0610
#define DP0_VIDMNGEN1 0x0614
#define DP0_VMNGENSTATUS 0x0618
/* Main Channel */
#define DP0_SECSAMPLE 0x0640
#define DP0_VIDSYNCDELAY 0x0644
#define VID_SYNC_DLY GENMASK(15, 0)
#define THRESH_DLY GENMASK(31, 16)
#define DP0_TOTALVAL 0x0648
#define H_TOTAL GENMASK(15, 0)
#define V_TOTAL GENMASK(31, 16)
#define DP0_STARTVAL 0x064c
#define H_START GENMASK(15, 0)
#define V_START GENMASK(31, 16)
#define DP0_ACTIVEVAL 0x0650
#define H_ACT GENMASK(15, 0)
#define V_ACT GENMASK(31, 16)
#define DP0_SYNCVAL 0x0654
#define VS_WIDTH GENMASK(30, 16)
#define HS_WIDTH GENMASK(14, 0)
#define SYNCVAL_HS_POL_ACTIVE_LOW (1 << 15)
#define SYNCVAL_VS_POL_ACTIVE_LOW (1 << 31)
#define DP0_MISC 0x0658
#define TU_SIZE_RECOMMENDED (63) /* LSCLK cycles per TU */
#define MAX_TU_SYMBOL GENMASK(28, 23)
#define TU_SIZE GENMASK(21, 16)
#define BPC_6 (0 << 5)
#define BPC_8 (1 << 5)
/* AUX channel */
#define DP0_AUXCFG0 0x0660
#define DP0_AUXCFG0_BSIZE GENMASK(11, 8)
#define DP0_AUXCFG0_ADDR_ONLY BIT(4)
#define DP0_AUXCFG1 0x0664
#define AUX_RX_FILTER_EN BIT(16)
#define DP0_AUXADDR 0x0668
#define DP0_AUXWDATA(i) (0x066c + (i) * 4)
#define DP0_AUXRDATA(i) (0x067c + (i) * 4)
#define DP0_AUXSTATUS 0x068c
#define AUX_BYTES GENMASK(15, 8)
#define AUX_STATUS GENMASK(7, 4)
#define AUX_TIMEOUT BIT(1)
#define AUX_BUSY BIT(0)
#define DP0_AUXI2CADR 0x0698
/* Link Training */
#define DP0_SRCCTRL 0x06a0
#define DP0_SRCCTRL_SCRMBLDIS BIT(13)
#define DP0_SRCCTRL_EN810B BIT(12)
#define DP0_SRCCTRL_NOTP (0 << 8)
#define DP0_SRCCTRL_TP1 (1 << 8)
#define DP0_SRCCTRL_TP2 (2 << 8)
#define DP0_SRCCTRL_LANESKEW BIT(7)
#define DP0_SRCCTRL_SSCG BIT(3)
#define DP0_SRCCTRL_LANES_1 (0 << 2)
#define DP0_SRCCTRL_LANES_2 (1 << 2)
#define DP0_SRCCTRL_BW27 (1 << 1)
#define DP0_SRCCTRL_BW162 (0 << 1)
#define DP0_SRCCTRL_AUTOCORRECT BIT(0)
#define DP0_LTSTAT 0x06d0
#define LT_LOOPDONE BIT(13)
#define LT_STATUS_MASK (0x1f << 8)
#define LT_CHANNEL1_EQ_BITS (DP_CHANNEL_EQ_BITS << 4)
#define LT_INTERLANE_ALIGN_DONE BIT(3)
#define LT_CHANNEL0_EQ_BITS (DP_CHANNEL_EQ_BITS)
#define DP0_SNKLTCHGREQ 0x06d4
#define DP0_LTLOOPCTRL 0x06d8
#define DP0_SNKLTCTRL 0x06e4
#define DP1_SRCCTRL 0x07a0
/* PHY */
#define DP_PHY_CTRL 0x0800
#define DP_PHY_RST BIT(28) /* DP PHY Global Soft Reset */
#define BGREN BIT(25) /* AUX PHY BGR Enable */
#define PWR_SW_EN BIT(24) /* PHY Power Switch Enable */
#define PHY_M1_RST BIT(12) /* Reset PHY1 Main Channel */
#define PHY_RDY BIT(16) /* PHY Main Channels Ready */
#define PHY_M0_RST BIT(8) /* Reset PHY0 Main Channel */
#define PHY_2LANE BIT(2) /* PHY Enable 2 lanes */
#define PHY_A0_EN BIT(1) /* PHY Aux Channel0 Enable */
#define PHY_M0_EN BIT(0) /* PHY Main Channel0 Enable */
/* PLL */
#define DP0_PLLCTRL 0x0900
#define DP1_PLLCTRL 0x0904 /* not defined in DS */
#define PXL_PLLCTRL 0x0908
#define PLLUPDATE BIT(2)
#define PLLBYP BIT(1)
#define PLLEN BIT(0)
#define PXL_PLLPARAM 0x0914
#define IN_SEL_REFCLK (0 << 14)
#define SYS_PLLPARAM 0x0918
#define REF_FREQ_38M4 (0 << 8) /* 38.4 MHz */
#define REF_FREQ_19M2 (1 << 8) /* 19.2 MHz */
#define REF_FREQ_26M (2 << 8) /* 26 MHz */
#define REF_FREQ_13M (3 << 8) /* 13 MHz */
#define SYSCLK_SEL_LSCLK (0 << 4)
#define LSCLK_DIV_1 (0 << 0)
#define LSCLK_DIV_2 (1 << 0)
/* Test & Debug */
#define TSTCTL 0x0a00
#define COLOR_R GENMASK(31, 24)
#define COLOR_G GENMASK(23, 16)
#define COLOR_B GENMASK(15, 8)
#define ENI2CFILTER BIT(4)
#define COLOR_BAR_MODE GENMASK(1, 0)
#define COLOR_BAR_MODE_BARS 2
#define PLL_DBG 0x0a04
static bool tc_test_pattern;
module_param_named(test, tc_test_pattern, bool, 0644);
struct tc_edp_link {
u8 dpcd[DP_RECEIVER_CAP_SIZE];
unsigned int rate;
u8 num_lanes;
u8 assr;
bool scrambler_dis;
bool spread;
};
struct tc_data {
struct device *dev;
struct regmap *regmap;
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct drm_connector connector;
/* link settings */
struct tc_edp_link link;
/* current mode */
struct drm_display_mode mode;
u32 rev;
u8 assr;
struct gpio_desc *sd_gpio;
struct gpio_desc *reset_gpio;
struct clk *refclk;
/* do we have IRQ */
bool have_irq;
/* HPD pin number (0 or 1) or -ENODEV */
int hpd_pin;
};
static inline struct tc_data *aux_to_tc(struct drm_dp_aux *a)
{
return container_of(a, struct tc_data, aux);
}
static inline struct tc_data *bridge_to_tc(struct drm_bridge *b)
{
return container_of(b, struct tc_data, bridge);
}
static inline struct tc_data *connector_to_tc(struct drm_connector *c)
{
return container_of(c, struct tc_data, connector);
}
static inline int tc_poll_timeout(struct tc_data *tc, unsigned int addr,
unsigned int cond_mask,
unsigned int cond_value,
unsigned long sleep_us, u64 timeout_us)
{
unsigned int val;
return regmap_read_poll_timeout(tc->regmap, addr, val,
(val & cond_mask) == cond_value,
sleep_us, timeout_us);
}
static int tc_aux_wait_busy(struct tc_data *tc)
{
return tc_poll_timeout(tc, DP0_AUXSTATUS, AUX_BUSY, 0, 100, 100000);
}
static int tc_aux_write_data(struct tc_data *tc, const void *data,
size_t size)
{
u32 auxwdata[DP_AUX_MAX_PAYLOAD_BYTES / sizeof(u32)] = { 0 };
int ret, count = ALIGN(size, sizeof(u32));
memcpy(auxwdata, data, size);
ret = regmap_raw_write(tc->regmap, DP0_AUXWDATA(0), auxwdata, count);
if (ret)
return ret;
return size;
}
static int tc_aux_read_data(struct tc_data *tc, void *data, size_t size)
{
u32 auxrdata[DP_AUX_MAX_PAYLOAD_BYTES / sizeof(u32)];
int ret, count = ALIGN(size, sizeof(u32));
ret = regmap_raw_read(tc->regmap, DP0_AUXRDATA(0), auxrdata, count);
if (ret)
return ret;
memcpy(data, auxrdata, size);
return size;
}
static u32 tc_auxcfg0(struct drm_dp_aux_msg *msg, size_t size)
{
u32 auxcfg0 = msg->request;
if (size)
auxcfg0 |= FIELD_PREP(DP0_AUXCFG0_BSIZE, size - 1);
else
auxcfg0 |= DP0_AUXCFG0_ADDR_ONLY;
return auxcfg0;
}
static ssize_t tc_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct tc_data *tc = aux_to_tc(aux);
size_t size = min_t(size_t, DP_AUX_MAX_PAYLOAD_BYTES - 1, msg->size);
u8 request = msg->request & ~DP_AUX_I2C_MOT;
u32 auxstatus;
int ret;
ret = tc_aux_wait_busy(tc);
if (ret)
return ret;
switch (request) {
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
break;
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
if (size) {
ret = tc_aux_write_data(tc, msg->buffer, size);
if (ret < 0)
return ret;
}
break;
default:
return -EINVAL;
}
/* Store address */
ret = regmap_write(tc->regmap, DP0_AUXADDR, msg->address);
if (ret)
return ret;
/* Start transfer */
ret = regmap_write(tc->regmap, DP0_AUXCFG0, tc_auxcfg0(msg, size));
if (ret)
return ret;
ret = tc_aux_wait_busy(tc);
if (ret)
return ret;
ret = regmap_read(tc->regmap, DP0_AUXSTATUS, &auxstatus);
if (ret)
return ret;
if (auxstatus & AUX_TIMEOUT)
return -ETIMEDOUT;
/*
* For some reason address-only DP_AUX_I2C_WRITE (MOT), still
* reports 1 byte transferred in its status. To deal we that
* we ignore aux_bytes field if we know that this was an
* address-only transfer
*/
if (size)
size = FIELD_GET(AUX_BYTES, auxstatus);
msg->reply = FIELD_GET(AUX_STATUS, auxstatus);
switch (request) {
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
if (size)
return tc_aux_read_data(tc, msg->buffer, size);
break;
}
return size;
}
static const char * const training_pattern1_errors[] = {
"No errors",
"Aux write error",
"Aux read error",
"Max voltage reached error",
"Loop counter expired error",
"res", "res", "res"
};
static const char * const training_pattern2_errors[] = {
"No errors",
"Aux write error",
"Aux read error",
"Clock recovery failed error",
"Loop counter expired error",
"res", "res", "res"
};
static u32 tc_srcctrl(struct tc_data *tc)
{
/*
* No training pattern, skew lane 1 data by two LSCLK cycles with
* respect to lane 0 data, AutoCorrect Mode = 0
*/
u32 reg = DP0_SRCCTRL_NOTP | DP0_SRCCTRL_LANESKEW | DP0_SRCCTRL_EN810B;
if (tc->link.scrambler_dis)
reg |= DP0_SRCCTRL_SCRMBLDIS; /* Scrambler Disabled */
if (tc->link.spread)
reg |= DP0_SRCCTRL_SSCG; /* Spread Spectrum Enable */
if (tc->link.num_lanes == 2)
reg |= DP0_SRCCTRL_LANES_2; /* Two Main Channel Lanes */
if (tc->link.rate != 162000)
reg |= DP0_SRCCTRL_BW27; /* 2.7 Gbps link */
return reg;
}
static int tc_pllupdate(struct tc_data *tc, unsigned int pllctrl)
{
int ret;
ret = regmap_write(tc->regmap, pllctrl, PLLUPDATE | PLLEN);
if (ret)
return ret;
/* Wait for PLL to lock: up to 2.09 ms, depending on refclk */
usleep_range(3000, 6000);
return 0;
}
static int tc_pxl_pll_en(struct tc_data *tc, u32 refclk, u32 pixelclock)
{
int ret;
int i_pre, best_pre = 1;
int i_post, best_post = 1;
int div, best_div = 1;
int mul, best_mul = 1;
int delta, best_delta;
int ext_div[] = {1, 2, 3, 5, 7};
int best_pixelclock = 0;
int vco_hi = 0;
u32 pxl_pllparam;
dev_dbg(tc->dev, "PLL: requested %d pixelclock, ref %d\n", pixelclock,
refclk);
best_delta = pixelclock;
/* Loop over all possible ext_divs, skipping invalid configurations */
for (i_pre = 0; i_pre < ARRAY_SIZE(ext_div); i_pre++) {
/*
* refclk / ext_pre_div should be in the 1 to 200 MHz range.
* We don't allow any refclk > 200 MHz, only check lower bounds.
*/
if (refclk / ext_div[i_pre] < 1000000)
continue;
for (i_post = 0; i_post < ARRAY_SIZE(ext_div); i_post++) {
for (div = 1; div <= 16; div++) {
u32 clk;
u64 tmp;
tmp = pixelclock * ext_div[i_pre] *
ext_div[i_post] * div;
do_div(tmp, refclk);
mul = tmp;
/* Check limits */
if ((mul < 1) || (mul > 128))
continue;
clk = (refclk / ext_div[i_pre] / div) * mul;
/*
* refclk * mul / (ext_pre_div * pre_div)
* should be in the 150 to 650 MHz range
*/
if ((clk > 650000000) || (clk < 150000000))
continue;
clk = clk / ext_div[i_post];
delta = clk - pixelclock;
if (abs(delta) < abs(best_delta)) {
best_pre = i_pre;
best_post = i_post;
best_div = div;
best_mul = mul;
best_delta = delta;
best_pixelclock = clk;
}
}
}
}
if (best_pixelclock == 0) {
dev_err(tc->dev, "Failed to calc clock for %d pixelclock\n",
pixelclock);
return -EINVAL;
}
dev_dbg(tc->dev, "PLL: got %d, delta %d\n", best_pixelclock,
best_delta);
dev_dbg(tc->dev, "PLL: %d / %d / %d * %d / %d\n", refclk,
ext_div[best_pre], best_div, best_mul, ext_div[best_post]);
/* if VCO >= 300 MHz */
if (refclk / ext_div[best_pre] / best_div * best_mul >= 300000000)
vco_hi = 1;
/* see DS */
if (best_div == 16)
best_div = 0;
if (best_mul == 128)
best_mul = 0;
/* Power up PLL and switch to bypass */
ret = regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP | PLLEN);
if (ret)
return ret;
pxl_pllparam = vco_hi << 24; /* For PLL VCO >= 300 MHz = 1 */
pxl_pllparam |= ext_div[best_pre] << 20; /* External Pre-divider */
pxl_pllparam |= ext_div[best_post] << 16; /* External Post-divider */
pxl_pllparam |= IN_SEL_REFCLK; /* Use RefClk as PLL input */
pxl_pllparam |= best_div << 8; /* Divider for PLL RefClk */
pxl_pllparam |= best_mul; /* Multiplier for PLL */
ret = regmap_write(tc->regmap, PXL_PLLPARAM, pxl_pllparam);
if (ret)
return ret;
/* Force PLL parameter update and disable bypass */
return tc_pllupdate(tc, PXL_PLLCTRL);
}
static int tc_pxl_pll_dis(struct tc_data *tc)
{
/* Enable PLL bypass, power down PLL */
return regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP);
}
static int tc_stream_clock_calc(struct tc_data *tc)
{
/*
* If the Stream clock and Link Symbol clock are
* asynchronous with each other, the value of M changes over
* time. This way of generating link clock and stream
* clock is called Asynchronous Clock mode. The value M
* must change while the value N stays constant. The
* value of N in this Asynchronous Clock mode must be set
* to 2^15 or 32,768.
*
* LSCLK = 1/10 of high speed link clock
*
* f_STRMCLK = M/N * f_LSCLK
* M/N = f_STRMCLK / f_LSCLK
*
*/
return regmap_write(tc->regmap, DP0_VIDMNGEN1, 32768);
}
static int tc_set_syspllparam(struct tc_data *tc)
{
unsigned long rate;
u32 pllparam = SYSCLK_SEL_LSCLK | LSCLK_DIV_2;
rate = clk_get_rate(tc->refclk);
switch (rate) {
case 38400000:
pllparam |= REF_FREQ_38M4;
break;
case 26000000:
pllparam |= REF_FREQ_26M;
break;
case 19200000:
pllparam |= REF_FREQ_19M2;
break;
case 13000000:
pllparam |= REF_FREQ_13M;
break;
default:
dev_err(tc->dev, "Invalid refclk rate: %lu Hz\n", rate);
return -EINVAL;
}
return regmap_write(tc->regmap, SYS_PLLPARAM, pllparam);
}
static int tc_aux_link_setup(struct tc_data *tc)
{
int ret;
u32 dp0_auxcfg1;
/* Setup DP-PHY / PLL */
ret = tc_set_syspllparam(tc);
if (ret)
goto err;
ret = regmap_write(tc->regmap, DP_PHY_CTRL,
BGREN | PWR_SW_EN | PHY_A0_EN);
if (ret)
goto err;
/*
* Initially PLLs are in bypass. Force PLL parameter update,
* disable PLL bypass, enable PLL
*/
ret = tc_pllupdate(tc, DP0_PLLCTRL);
if (ret)
goto err;
ret = tc_pllupdate(tc, DP1_PLLCTRL);
if (ret)
goto err;
ret = tc_poll_timeout(tc, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 100, 100000);
if (ret == -ETIMEDOUT) {
dev_err(tc->dev, "Timeout waiting for PHY to become ready");
return ret;
} else if (ret) {
goto err;
}
/* Setup AUX link */
dp0_auxcfg1 = AUX_RX_FILTER_EN;
dp0_auxcfg1 |= 0x06 << 8; /* Aux Bit Period Calculator Threshold */
dp0_auxcfg1 |= 0x3f << 0; /* Aux Response Timeout Timer */
ret = regmap_write(tc->regmap, DP0_AUXCFG1, dp0_auxcfg1);
if (ret)
goto err;
return 0;
err:
dev_err(tc->dev, "tc_aux_link_setup failed: %d\n", ret);
return ret;
}
static int tc_get_display_props(struct tc_data *tc)
{
u8 revision, num_lanes;
unsigned int rate;
int ret;
u8 reg;
/* Read DP Rx Link Capability */
ret = drm_dp_dpcd_read(&tc->aux, DP_DPCD_REV, tc->link.dpcd,
DP_RECEIVER_CAP_SIZE);
if (ret < 0)
goto err_dpcd_read;
revision = tc->link.dpcd[DP_DPCD_REV];
rate = drm_dp_max_link_rate(tc->link.dpcd);
num_lanes = drm_dp_max_lane_count(tc->link.dpcd);
if (rate != 162000 && rate != 270000) {
dev_dbg(tc->dev, "Falling to 2.7 Gbps rate\n");
rate = 270000;
}
tc->link.rate = rate;
if (num_lanes > 2) {
dev_dbg(tc->dev, "Falling to 2 lanes\n");
num_lanes = 2;
}
tc->link.num_lanes = num_lanes;
ret = drm_dp_dpcd_readb(&tc->aux, DP_MAX_DOWNSPREAD, &reg);
if (ret < 0)
goto err_dpcd_read;
tc->link.spread = reg & DP_MAX_DOWNSPREAD_0_5;
ret = drm_dp_dpcd_readb(&tc->aux, DP_MAIN_LINK_CHANNEL_CODING, &reg);
if (ret < 0)
goto err_dpcd_read;
tc->link.scrambler_dis = false;
/* read assr */
ret = drm_dp_dpcd_readb(&tc->aux, DP_EDP_CONFIGURATION_SET, &reg);
if (ret < 0)
goto err_dpcd_read;
tc->link.assr = reg & DP_ALTERNATE_SCRAMBLER_RESET_ENABLE;
dev_dbg(tc->dev, "DPCD rev: %d.%d, rate: %s, lanes: %d, framing: %s\n",
revision >> 4, revision & 0x0f,
(tc->link.rate == 162000) ? "1.62Gbps" : "2.7Gbps",
tc->link.num_lanes,
drm_dp_enhanced_frame_cap(tc->link.dpcd) ?
"enhanced" : "default");
dev_dbg(tc->dev, "Downspread: %s, scrambler: %s\n",
tc->link.spread ? "0.5%" : "0.0%",
tc->link.scrambler_dis ? "disabled" : "enabled");
dev_dbg(tc->dev, "Display ASSR: %d, TC358767 ASSR: %d\n",
tc->link.assr, tc->assr);
return 0;
err_dpcd_read:
dev_err(tc->dev, "failed to read DPCD: %d\n", ret);
return ret;
}
static int tc_set_video_mode(struct tc_data *tc,
const struct drm_display_mode *mode)
{
int ret;
int vid_sync_dly;
int max_tu_symbol;
int left_margin = mode->htotal - mode->hsync_end;
int right_margin = mode->hsync_start - mode->hdisplay;
int hsync_len = mode->hsync_end - mode->hsync_start;
int upper_margin = mode->vtotal - mode->vsync_end;
int lower_margin = mode->vsync_start - mode->vdisplay;
int vsync_len = mode->vsync_end - mode->vsync_start;
u32 dp0_syncval;
u32 bits_per_pixel = 24;
u32 in_bw, out_bw;
/*
* Recommended maximum number of symbols transferred in a transfer unit:
* DIV_ROUND_UP((input active video bandwidth in bytes) * tu_size,
* (output active video bandwidth in bytes))
* Must be less than tu_size.
*/
in_bw = mode->clock * bits_per_pixel / 8;
out_bw = tc->link.num_lanes * tc->link.rate;
max_tu_symbol = DIV_ROUND_UP(in_bw * TU_SIZE_RECOMMENDED, out_bw);
dev_dbg(tc->dev, "set mode %dx%d\n",
mode->hdisplay, mode->vdisplay);
dev_dbg(tc->dev, "H margin %d,%d sync %d\n",
left_margin, right_margin, hsync_len);
dev_dbg(tc->dev, "V margin %d,%d sync %d\n",
upper_margin, lower_margin, vsync_len);
dev_dbg(tc->dev, "total: %dx%d\n", mode->htotal, mode->vtotal);
/*
* LCD Ctl Frame Size
* datasheet is not clear of vsdelay in case of DPI
* assume we do not need any delay when DPI is a source of
* sync signals
*/
ret = regmap_write(tc->regmap, VPCTRL0,
FIELD_PREP(VSDELAY, 0) |
OPXLFMT_RGB888 | FRMSYNC_DISABLED | MSF_DISABLED);
if (ret)
return ret;
ret = regmap_write(tc->regmap, HTIM01,
FIELD_PREP(HBPR, ALIGN(left_margin, 2)) |
FIELD_PREP(HPW, ALIGN(hsync_len, 2)));
if (ret)
return ret;
ret = regmap_write(tc->regmap, HTIM02,
FIELD_PREP(HDISPR, ALIGN(mode->hdisplay, 2)) |
FIELD_PREP(HFPR, ALIGN(right_margin, 2)));
if (ret)
return ret;
ret = regmap_write(tc->regmap, VTIM01,
FIELD_PREP(VBPR, upper_margin) |
FIELD_PREP(VSPR, vsync_len));
if (ret)
return ret;
ret = regmap_write(tc->regmap, VTIM02,
FIELD_PREP(VFPR, lower_margin) |
FIELD_PREP(VDISPR, mode->vdisplay));
if (ret)
return ret;
ret = regmap_write(tc->regmap, VFUEN0, VFUEN); /* update settings */
if (ret)
return ret;
/* Test pattern settings */
ret = regmap_write(tc->regmap, TSTCTL,
FIELD_PREP(COLOR_R, 120) |
FIELD_PREP(COLOR_G, 20) |
FIELD_PREP(COLOR_B, 99) |
ENI2CFILTER |
FIELD_PREP(COLOR_BAR_MODE, COLOR_BAR_MODE_BARS));
if (ret)
return ret;
/* DP Main Stream Attributes */
vid_sync_dly = hsync_len + left_margin + mode->hdisplay;
ret = regmap_write(tc->regmap, DP0_VIDSYNCDELAY,
FIELD_PREP(THRESH_DLY, max_tu_symbol) |
FIELD_PREP(VID_SYNC_DLY, vid_sync_dly));
ret = regmap_write(tc->regmap, DP0_TOTALVAL,
FIELD_PREP(H_TOTAL, mode->htotal) |
FIELD_PREP(V_TOTAL, mode->vtotal));
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_STARTVAL,
FIELD_PREP(H_START, left_margin + hsync_len) |
FIELD_PREP(V_START, upper_margin + vsync_len));
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_ACTIVEVAL,
FIELD_PREP(V_ACT, mode->vdisplay) |
FIELD_PREP(H_ACT, mode->hdisplay));
if (ret)
return ret;
dp0_syncval = FIELD_PREP(VS_WIDTH, vsync_len) |
FIELD_PREP(HS_WIDTH, hsync_len);
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
dp0_syncval |= SYNCVAL_VS_POL_ACTIVE_LOW;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
dp0_syncval |= SYNCVAL_HS_POL_ACTIVE_LOW;
ret = regmap_write(tc->regmap, DP0_SYNCVAL, dp0_syncval);
if (ret)
return ret;
ret = regmap_write(tc->regmap, DPIPXLFMT,
VS_POL_ACTIVE_LOW | HS_POL_ACTIVE_LOW |
DE_POL_ACTIVE_HIGH | SUB_CFG_TYPE_CONFIG1 |
DPI_BPP_RGB888);
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_MISC,
FIELD_PREP(MAX_TU_SYMBOL, max_tu_symbol) |
FIELD_PREP(TU_SIZE, TU_SIZE_RECOMMENDED) |
BPC_8);
if (ret)
return ret;
return 0;
}
static int tc_wait_link_training(struct tc_data *tc)
{
u32 value;
int ret;
ret = tc_poll_timeout(tc, DP0_LTSTAT, LT_LOOPDONE,
LT_LOOPDONE, 500, 100000);
if (ret) {
dev_err(tc->dev, "Link training timeout waiting for LT_LOOPDONE!\n");
return ret;
}
ret = regmap_read(tc->regmap, DP0_LTSTAT, &value);
if (ret)
return ret;
return (value >> 8) & 0x7;
}
static int tc_main_link_enable(struct tc_data *tc)
{
struct drm_dp_aux *aux = &tc->aux;
struct device *dev = tc->dev;
u32 dp_phy_ctrl;
u32 value;
int ret;
u8 tmp[DP_LINK_STATUS_SIZE];
dev_dbg(tc->dev, "link enable\n");
ret = regmap_read(tc->regmap, DP0CTL, &value);
if (ret)
return ret;
if (WARN_ON(value & DP_EN)) {
ret = regmap_write(tc->regmap, DP0CTL, 0);
if (ret)
return ret;
}
ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc));
if (ret)
return ret;
/* SSCG and BW27 on DP1 must be set to the same as on DP0 */
ret = regmap_write(tc->regmap, DP1_SRCCTRL,
(tc->link.spread ? DP0_SRCCTRL_SSCG : 0) |
((tc->link.rate != 162000) ? DP0_SRCCTRL_BW27 : 0));
if (ret)
return ret;
ret = tc_set_syspllparam(tc);
if (ret)
return ret;
/* Setup Main Link */
dp_phy_ctrl = BGREN | PWR_SW_EN | PHY_A0_EN | PHY_M0_EN;
if (tc->link.num_lanes == 2)
dp_phy_ctrl |= PHY_2LANE;
ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
if (ret)
return ret;
/* PLL setup */
ret = tc_pllupdate(tc, DP0_PLLCTRL);
if (ret)
return ret;
ret = tc_pllupdate(tc, DP1_PLLCTRL);
if (ret)
return ret;
/* Reset/Enable Main Links */
dp_phy_ctrl |= DP_PHY_RST | PHY_M1_RST | PHY_M0_RST;
ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
usleep_range(100, 200);
dp_phy_ctrl &= ~(DP_PHY_RST | PHY_M1_RST | PHY_M0_RST);
ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
ret = tc_poll_timeout(tc, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 500, 100000);
if (ret) {
dev_err(dev, "timeout waiting for phy become ready");
return ret;
}
/* Set misc: 8 bits per color */
ret = regmap_update_bits(tc->regmap, DP0_MISC, BPC_8, BPC_8);
if (ret)
return ret;
/*
* ASSR mode
* on TC358767 side ASSR configured through strap pin
* seems there is no way to change this setting from SW
*
* check is tc configured for same mode
*/
if (tc->assr != tc->link.assr) {
dev_dbg(dev, "Trying to set display to ASSR: %d\n",
tc->assr);
/* try to set ASSR on display side */
tmp[0] = tc->assr;
ret = drm_dp_dpcd_writeb(aux, DP_EDP_CONFIGURATION_SET, tmp[0]);
if (ret < 0)
goto err_dpcd_read;
/* read back */
ret = drm_dp_dpcd_readb(aux, DP_EDP_CONFIGURATION_SET, tmp);
if (ret < 0)
goto err_dpcd_read;
if (tmp[0] != tc->assr) {
dev_dbg(dev, "Failed to switch display ASSR to %d, falling back to unscrambled mode\n",
tc->assr);
/* trying with disabled scrambler */
tc->link.scrambler_dis = true;
}
}
/* Setup Link & DPRx Config for Training */
tmp[0] = drm_dp_link_rate_to_bw_code(tc->link.rate);
tmp[1] = tc->link.num_lanes;
if (drm_dp_enhanced_frame_cap(tc->link.dpcd))
tmp[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
ret = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, tmp, 2);
if (ret < 0)
goto err_dpcd_write;
/* DOWNSPREAD_CTRL */
tmp[0] = tc->link.spread ? DP_SPREAD_AMP_0_5 : 0x00;
/* MAIN_LINK_CHANNEL_CODING_SET */
tmp[1] = DP_SET_ANSI_8B10B;
ret = drm_dp_dpcd_write(aux, DP_DOWNSPREAD_CTRL, tmp, 2);
if (ret < 0)
goto err_dpcd_write;
/* Reset voltage-swing & pre-emphasis */
tmp[0] = tmp[1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 |
DP_TRAIN_PRE_EMPH_LEVEL_0;
ret = drm_dp_dpcd_write(aux, DP_TRAINING_LANE0_SET, tmp, 2);
if (ret < 0)
goto err_dpcd_write;
/* Clock-Recovery */
/* Set DPCD 0x102 for Training Pattern 1 */
ret = regmap_write(tc->regmap, DP0_SNKLTCTRL,
DP_LINK_SCRAMBLING_DISABLE |
DP_TRAINING_PATTERN_1);
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_LTLOOPCTRL,
(15 << 28) | /* Defer Iteration Count */
(15 << 24) | /* Loop Iteration Count */
(0xd << 0)); /* Loop Timer Delay */
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_SRCCTRL,
tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS |
DP0_SRCCTRL_AUTOCORRECT |
DP0_SRCCTRL_TP1);
if (ret)
return ret;
/* Enable DP0 to start Link Training */
ret = regmap_write(tc->regmap, DP0CTL,
(drm_dp_enhanced_frame_cap(tc->link.dpcd) ?
EF_EN : 0) | DP_EN);
if (ret)
return ret;
/* wait */
ret = tc_wait_link_training(tc);
if (ret < 0)
return ret;
if (ret) {
dev_err(tc->dev, "Link training phase 1 failed: %s\n",
training_pattern1_errors[ret]);
return -ENODEV;
}
/* Channel Equalization */
/* Set DPCD 0x102 for Training Pattern 2 */
ret = regmap_write(tc->regmap, DP0_SNKLTCTRL,
DP_LINK_SCRAMBLING_DISABLE |
DP_TRAINING_PATTERN_2);
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_SRCCTRL,
tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS |
DP0_SRCCTRL_AUTOCORRECT |
DP0_SRCCTRL_TP2);
if (ret)
return ret;
/* wait */
ret = tc_wait_link_training(tc);
if (ret < 0)
return ret;
if (ret) {
dev_err(tc->dev, "Link training phase 2 failed: %s\n",
training_pattern2_errors[ret]);
return -ENODEV;
}
/*
* Toshiba's documentation suggests to first clear DPCD 0x102, then
* clear the training pattern bit in DP0_SRCCTRL. Testing shows
* that the link sometimes drops if those steps are done in that order,
* but if the steps are done in reverse order, the link stays up.
*
* So we do the steps differently than documented here.
*/
/* Clear Training Pattern, set AutoCorrect Mode = 1 */
ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc) |
DP0_SRCCTRL_AUTOCORRECT);
if (ret)
return ret;
/* Clear DPCD 0x102 */
/* Note: Can Not use DP0_SNKLTCTRL (0x06E4) short cut */
tmp[0] = tc->link.scrambler_dis ? DP_LINK_SCRAMBLING_DISABLE : 0x00;
ret = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, tmp[0]);
if (ret < 0)
goto err_dpcd_write;
/* Check link status */
ret = drm_dp_dpcd_read_link_status(aux, tmp);
if (ret < 0)
goto err_dpcd_read;
ret = 0;
value = tmp[0] & DP_CHANNEL_EQ_BITS;
if (value != DP_CHANNEL_EQ_BITS) {
dev_err(tc->dev, "Lane 0 failed: %x\n", value);
ret = -ENODEV;
}
if (tc->link.num_lanes == 2) {
value = (tmp[0] >> 4) & DP_CHANNEL_EQ_BITS;
if (value != DP_CHANNEL_EQ_BITS) {
dev_err(tc->dev, "Lane 1 failed: %x\n", value);
ret = -ENODEV;
}
if (!(tmp[2] & DP_INTERLANE_ALIGN_DONE)) {
dev_err(tc->dev, "Interlane align failed\n");
ret = -ENODEV;
}
}
if (ret) {
dev_err(dev, "0x0202 LANE0_1_STATUS: 0x%02x\n", tmp[0]);
dev_err(dev, "0x0203 LANE2_3_STATUS 0x%02x\n", tmp[1]);
dev_err(dev, "0x0204 LANE_ALIGN_STATUS_UPDATED: 0x%02x\n", tmp[2]);
dev_err(dev, "0x0205 SINK_STATUS: 0x%02x\n", tmp[3]);
dev_err(dev, "0x0206 ADJUST_REQUEST_LANE0_1: 0x%02x\n", tmp[4]);
dev_err(dev, "0x0207 ADJUST_REQUEST_LANE2_3: 0x%02x\n", tmp[5]);
return ret;
}
return 0;
err_dpcd_read:
dev_err(tc->dev, "Failed to read DPCD: %d\n", ret);
return ret;
err_dpcd_write:
dev_err(tc->dev, "Failed to write DPCD: %d\n", ret);
return ret;
}
static int tc_main_link_disable(struct tc_data *tc)
{
int ret;
dev_dbg(tc->dev, "link disable\n");
ret = regmap_write(tc->regmap, DP0_SRCCTRL, 0);
if (ret)
return ret;
return regmap_write(tc->regmap, DP0CTL, 0);
}
static int tc_stream_enable(struct tc_data *tc)
{
int ret;
u32 value;
dev_dbg(tc->dev, "enable video stream\n");
/* PXL PLL setup */
if (tc_test_pattern) {
ret = tc_pxl_pll_en(tc, clk_get_rate(tc->refclk),
1000 * tc->mode.clock);
if (ret)
return ret;
}
ret = tc_set_video_mode(tc, &tc->mode);
if (ret)
return ret;
/* Set M/N */
ret = tc_stream_clock_calc(tc);
if (ret)
return ret;
value = VID_MN_GEN | DP_EN;
if (drm_dp_enhanced_frame_cap(tc->link.dpcd))
value |= EF_EN;
ret = regmap_write(tc->regmap, DP0CTL, value);
if (ret)
return ret;
/*
* VID_EN assertion should be delayed by at least N * LSCLK
* cycles from the time VID_MN_GEN is enabled in order to
* generate stable values for VID_M. LSCLK is 270 MHz or
* 162 MHz, VID_N is set to 32768 in tc_stream_clock_calc(),
* so a delay of at least 203 us should suffice.
*/
usleep_range(500, 1000);
value |= VID_EN;
ret = regmap_write(tc->regmap, DP0CTL, value);
if (ret)
return ret;
/* Set input interface */
value = DP0_AUDSRC_NO_INPUT;
if (tc_test_pattern)
value |= DP0_VIDSRC_COLOR_BAR;
else
value |= DP0_VIDSRC_DPI_RX;
ret = regmap_write(tc->regmap, SYSCTRL, value);
if (ret)
return ret;
return 0;
}
static int tc_stream_disable(struct tc_data *tc)
{
int ret;
dev_dbg(tc->dev, "disable video stream\n");
ret = regmap_update_bits(tc->regmap, DP0CTL, VID_EN, 0);
if (ret)
return ret;
tc_pxl_pll_dis(tc);
return 0;
}
static void tc_bridge_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
ret = tc_get_display_props(tc);
if (ret < 0) {
dev_err(tc->dev, "failed to read display props: %d\n", ret);
return;
}
ret = tc_main_link_enable(tc);
if (ret < 0) {
dev_err(tc->dev, "main link enable error: %d\n", ret);
return;
}
ret = tc_stream_enable(tc);
if (ret < 0) {
dev_err(tc->dev, "main link stream start error: %d\n", ret);
tc_main_link_disable(tc);
return;
}
}
static void tc_bridge_disable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
ret = tc_stream_disable(tc);
if (ret < 0)
dev_err(tc->dev, "main link stream stop error: %d\n", ret);
ret = tc_main_link_disable(tc);
if (ret < 0)
dev_err(tc->dev, "main link disable error: %d\n", ret);
}
static bool tc_bridge_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adj)
{
/* Fixup sync polarities, both hsync and vsync are active low */
adj->flags = mode->flags;
adj->flags |= (DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adj->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
return true;
}
static enum drm_mode_status tc_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct tc_data *tc = bridge_to_tc(bridge);
u32 req, avail;
u32 bits_per_pixel = 24;
/* DPI interface clock limitation: upto 154 MHz */
if (mode->clock > 154000)
return MODE_CLOCK_HIGH;
req = mode->clock * bits_per_pixel / 8;
avail = tc->link.num_lanes * tc->link.rate;
if (req > avail)
return MODE_BAD;
return MODE_OK;
}
static void tc_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj)
{
struct tc_data *tc = bridge_to_tc(bridge);
tc->mode = *mode;
}
static struct edid *tc_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct tc_data *tc = bridge_to_tc(bridge);
return drm_get_edid(connector, &tc->aux.ddc);
}
static int tc_connector_get_modes(struct drm_connector *connector)
{
struct tc_data *tc = connector_to_tc(connector);
int num_modes;
struct edid *edid;
int ret;
ret = tc_get_display_props(tc);
if (ret < 0) {
dev_err(tc->dev, "failed to read display props: %d\n", ret);
return 0;
}
if (tc->panel_bridge) {
num_modes = drm_bridge_get_modes(tc->panel_bridge, connector);
if (num_modes > 0)
return num_modes;
}
edid = tc_get_edid(&tc->bridge, connector);
num_modes = drm_add_edid_modes(connector, edid);
kfree(edid);
return num_modes;
}
static const struct drm_connector_helper_funcs tc_connector_helper_funcs = {
.get_modes = tc_connector_get_modes,
};
static enum drm_connector_status tc_bridge_detect(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
bool conn;
u32 val;
int ret;
ret = regmap_read(tc->regmap, GPIOI, &val);
if (ret)
return connector_status_unknown;
conn = val & BIT(tc->hpd_pin);
if (conn)
return connector_status_connected;
else
return connector_status_disconnected;
}
static enum drm_connector_status
tc_connector_detect(struct drm_connector *connector, bool force)
{
struct tc_data *tc = connector_to_tc(connector);
if (tc->hpd_pin >= 0)
return tc_bridge_detect(&tc->bridge);
if (tc->panel_bridge)
return connector_status_connected;
else
return connector_status_unknown;
}
static const struct drm_connector_funcs tc_connector_funcs = {
.detect = tc_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int tc_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
struct tc_data *tc = bridge_to_tc(bridge);
struct drm_device *drm = bridge->dev;
int ret;
if (tc->panel_bridge) {
/* If a connector is required then this driver shall create it */
ret = drm_bridge_attach(tc->bridge.encoder, tc->panel_bridge,
&tc->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret)
return ret;
}
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
tc->aux.drm_dev = drm;
ret = drm_dp_aux_register(&tc->aux);
if (ret < 0)
return ret;
/* Create DP/eDP connector */
drm_connector_helper_add(&tc->connector, &tc_connector_helper_funcs);
ret = drm_connector_init(drm, &tc->connector, &tc_connector_funcs, tc->bridge.type);
if (ret)
goto aux_unregister;
/* Don't poll if don't have HPD connected */
if (tc->hpd_pin >= 0) {
if (tc->have_irq)
tc->connector.polled = DRM_CONNECTOR_POLL_HPD;
else
tc->connector.polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
}
drm_display_info_set_bus_formats(&tc->connector.display_info,
&bus_format, 1);
tc->connector.display_info.bus_flags =
DRM_BUS_FLAG_DE_HIGH |
DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE |
DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE;
drm_connector_attach_encoder(&tc->connector, tc->bridge.encoder);
return 0;
aux_unregister:
drm_dp_aux_unregister(&tc->aux);
return ret;
}
static void tc_bridge_detach(struct drm_bridge *bridge)
{
drm_dp_aux_unregister(&bridge_to_tc(bridge)->aux);
}
static const struct drm_bridge_funcs tc_bridge_funcs = {
.attach = tc_bridge_attach,
.detach = tc_bridge_detach,
.mode_valid = tc_mode_valid,
.mode_set = tc_bridge_mode_set,
.enable = tc_bridge_enable,
.disable = tc_bridge_disable,
.mode_fixup = tc_bridge_mode_fixup,
.detect = tc_bridge_detect,
.get_edid = tc_get_edid,
};
static bool tc_readable_reg(struct device *dev, unsigned int reg)
{
return reg != SYSCTRL;
}
static const struct regmap_range tc_volatile_ranges[] = {
regmap_reg_range(DP0_AUXWDATA(0), DP0_AUXSTATUS),
regmap_reg_range(DP0_LTSTAT, DP0_SNKLTCHGREQ),
regmap_reg_range(DP_PHY_CTRL, DP_PHY_CTRL),
regmap_reg_range(DP0_PLLCTRL, PXL_PLLCTRL),
regmap_reg_range(VFUEN0, VFUEN0),
regmap_reg_range(INTSTS_G, INTSTS_G),
regmap_reg_range(GPIOI, GPIOI),
};
static const struct regmap_access_table tc_volatile_table = {
.yes_ranges = tc_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(tc_volatile_ranges),
};
static bool tc_writeable_reg(struct device *dev, unsigned int reg)
{
return (reg != TC_IDREG) &&
(reg != DP0_LTSTAT) &&
(reg != DP0_SNKLTCHGREQ);
}
static const struct regmap_config tc_regmap_config = {
.name = "tc358767",
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = PLL_DBG,
.cache_type = REGCACHE_RBTREE,
.readable_reg = tc_readable_reg,
.volatile_table = &tc_volatile_table,
.writeable_reg = tc_writeable_reg,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static irqreturn_t tc_irq_handler(int irq, void *arg)
{
struct tc_data *tc = arg;
u32 val;
int r;
r = regmap_read(tc->regmap, INTSTS_G, &val);
if (r)
return IRQ_NONE;
if (!val)
return IRQ_NONE;
if (val & INT_SYSERR) {
u32 stat = 0;
regmap_read(tc->regmap, SYSSTAT, &stat);
dev_err(tc->dev, "syserr %x\n", stat);
}
if (tc->hpd_pin >= 0 && tc->bridge.dev) {
/*
* H is triggered when the GPIO goes high.
*
* LC is triggered when the GPIO goes low and stays low for
* the duration of LCNT
*/
bool h = val & INT_GPIO_H(tc->hpd_pin);
bool lc = val & INT_GPIO_LC(tc->hpd_pin);
dev_dbg(tc->dev, "GPIO%d: %s %s\n", tc->hpd_pin,
h ? "H" : "", lc ? "LC" : "");
if (h || lc)
drm_kms_helper_hotplug_event(tc->bridge.dev);
}
regmap_write(tc->regmap, INTSTS_G, val);
return IRQ_HANDLED;
}
static int tc_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct drm_panel *panel;
struct tc_data *tc;
int ret;
tc = devm_kzalloc(dev, sizeof(*tc), GFP_KERNEL);
if (!tc)
return -ENOMEM;
tc->dev = dev;
/* port@2 is the output port */
ret = drm_of_find_panel_or_bridge(dev->of_node, 2, 0, &panel, NULL);
if (ret && ret != -ENODEV)
return ret;
if (panel) {
struct drm_bridge *panel_bridge;
panel_bridge = devm_drm_panel_bridge_add(dev, panel);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
tc->panel_bridge = panel_bridge;
tc->bridge.type = DRM_MODE_CONNECTOR_eDP;
} else {
tc->bridge.type = DRM_MODE_CONNECTOR_DisplayPort;
}
/* Shut down GPIO is optional */
tc->sd_gpio = devm_gpiod_get_optional(dev, "shutdown", GPIOD_OUT_HIGH);
if (IS_ERR(tc->sd_gpio))
return PTR_ERR(tc->sd_gpio);
if (tc->sd_gpio) {
gpiod_set_value_cansleep(tc->sd_gpio, 0);
usleep_range(5000, 10000);
}
/* Reset GPIO is optional */
tc->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(tc->reset_gpio))
return PTR_ERR(tc->reset_gpio);
if (tc->reset_gpio) {
gpiod_set_value_cansleep(tc->reset_gpio, 1);
usleep_range(5000, 10000);
}
tc->refclk = devm_clk_get(dev, "ref");
if (IS_ERR(tc->refclk)) {
ret = PTR_ERR(tc->refclk);
dev_err(dev, "Failed to get refclk: %d\n", ret);
return ret;
}
tc->regmap = devm_regmap_init_i2c(client, &tc_regmap_config);
if (IS_ERR(tc->regmap)) {
ret = PTR_ERR(tc->regmap);
dev_err(dev, "Failed to initialize regmap: %d\n", ret);
return ret;
}
ret = of_property_read_u32(dev->of_node, "toshiba,hpd-pin",
&tc->hpd_pin);
if (ret) {
tc->hpd_pin = -ENODEV;
} else {
if (tc->hpd_pin < 0 || tc->hpd_pin > 1) {
dev_err(dev, "failed to parse HPD number\n");
return ret;
}
}
if (client->irq > 0) {
/* enable SysErr */
regmap_write(tc->regmap, INTCTL_G, INT_SYSERR);
ret = devm_request_threaded_irq(dev, client->irq,
NULL, tc_irq_handler,
IRQF_ONESHOT,
"tc358767-irq", tc);
if (ret) {
dev_err(dev, "failed to register dp interrupt\n");
return ret;
}
tc->have_irq = true;
}
ret = regmap_read(tc->regmap, TC_IDREG, &tc->rev);
if (ret) {
dev_err(tc->dev, "can not read device ID: %d\n", ret);
return ret;
}
if ((tc->rev != 0x6601) && (tc->rev != 0x6603)) {
dev_err(tc->dev, "invalid device ID: 0x%08x\n", tc->rev);
return -EINVAL;
}
tc->assr = (tc->rev == 0x6601); /* Enable ASSR for eDP panels */
if (!tc->reset_gpio) {
/*
* If the reset pin isn't present, do a software reset. It isn't
* as thorough as the hardware reset, as we can't reset the I2C
* communication block for obvious reasons, but it's getting the
* chip into a defined state.
*/
regmap_update_bits(tc->regmap, SYSRSTENB,
ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP,
0);
regmap_update_bits(tc->regmap, SYSRSTENB,
ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP,
ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP);
usleep_range(5000, 10000);
}
if (tc->hpd_pin >= 0) {
u32 lcnt_reg = tc->hpd_pin == 0 ? INT_GP0_LCNT : INT_GP1_LCNT;
u32 h_lc = INT_GPIO_H(tc->hpd_pin) | INT_GPIO_LC(tc->hpd_pin);
/* Set LCNT to 2ms */
regmap_write(tc->regmap, lcnt_reg,
clk_get_rate(tc->refclk) * 2 / 1000);
/* We need the "alternate" mode for HPD */
regmap_write(tc->regmap, GPIOM, BIT(tc->hpd_pin));
if (tc->have_irq) {
/* enable H & LC */
regmap_update_bits(tc->regmap, INTCTL_G, h_lc, h_lc);
}
}
ret = tc_aux_link_setup(tc);
if (ret)
return ret;
/* Register DP AUX channel */
tc->aux.name = "TC358767 AUX i2c adapter";
tc->aux.dev = tc->dev;
tc->aux.transfer = tc_aux_transfer;
drm_dp_aux_init(&tc->aux);
tc->bridge.funcs = &tc_bridge_funcs;
if (tc->hpd_pin >= 0)
tc->bridge.ops |= DRM_BRIDGE_OP_DETECT;
tc->bridge.ops |= DRM_BRIDGE_OP_EDID;
tc->bridge.of_node = dev->of_node;
drm_bridge_add(&tc->bridge);
i2c_set_clientdata(client, tc);
return 0;
}
static int tc_remove(struct i2c_client *client)
{
struct tc_data *tc = i2c_get_clientdata(client);
drm_bridge_remove(&tc->bridge);
return 0;
}
static const struct i2c_device_id tc358767_i2c_ids[] = {
{ "tc358767", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tc358767_i2c_ids);
static const struct of_device_id tc358767_of_ids[] = {
{ .compatible = "toshiba,tc358767", },
{ }
};
MODULE_DEVICE_TABLE(of, tc358767_of_ids);
static struct i2c_driver tc358767_driver = {
.driver = {
.name = "tc358767",
.of_match_table = tc358767_of_ids,
},
.id_table = tc358767_i2c_ids,
.probe = tc_probe,
.remove = tc_remove,
};
module_i2c_driver(tc358767_driver);
MODULE_AUTHOR("Andrey Gusakov <andrey.gusakov@cogentembedded.com>");
MODULE_DESCRIPTION("tc358767 eDP encoder driver");
MODULE_LICENSE("GPL");