WSL2-Linux-Kernel/fs/ext4/ialloc.c

1394 строки
38 KiB
C

/*
* linux/fs/ext4/ialloc.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* BSD ufs-inspired inode and directory allocation by
* Stephen Tweedie (sct@redhat.com), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/quotaops.h>
#include <linux/buffer_head.h>
#include <linux/random.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <asm/byteorder.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include <trace/events/ext4.h>
/*
* ialloc.c contains the inodes allocation and deallocation routines
*/
/*
* The free inodes are managed by bitmaps. A file system contains several
* blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
* block for inodes, N blocks for the inode table and data blocks.
*
* The file system contains group descriptors which are located after the
* super block. Each descriptor contains the number of the bitmap block and
* the free blocks count in the block.
*/
/*
* To avoid calling the atomic setbit hundreds or thousands of times, we only
* need to use it within a single byte (to ensure we get endianness right).
* We can use memset for the rest of the bitmap as there are no other users.
*/
void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
{
int i;
if (start_bit >= end_bit)
return;
ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
ext4_set_bit(i, bitmap);
if (i < end_bit)
memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
}
/* Initializes an uninitialized inode bitmap */
static int ext4_init_inode_bitmap(struct super_block *sb,
struct buffer_head *bh,
ext4_group_t block_group,
struct ext4_group_desc *gdp)
{
struct ext4_group_info *grp;
struct ext4_sb_info *sbi = EXT4_SB(sb);
J_ASSERT_BH(bh, buffer_locked(bh));
/* If checksum is bad mark all blocks and inodes use to prevent
* allocation, essentially implementing a per-group read-only flag. */
if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
grp = ext4_get_group_info(sb, block_group);
if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
percpu_counter_sub(&sbi->s_freeclusters_counter,
grp->bb_free);
set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
int count;
count = ext4_free_inodes_count(sb, gdp);
percpu_counter_sub(&sbi->s_freeinodes_counter,
count);
}
set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
return -EFSBADCRC;
}
memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
bh->b_data);
ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
EXT4_INODES_PER_GROUP(sb) / 8);
ext4_group_desc_csum_set(sb, block_group, gdp);
return 0;
}
void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
{
if (uptodate) {
set_buffer_uptodate(bh);
set_bitmap_uptodate(bh);
}
unlock_buffer(bh);
put_bh(bh);
}
static int ext4_validate_inode_bitmap(struct super_block *sb,
struct ext4_group_desc *desc,
ext4_group_t block_group,
struct buffer_head *bh)
{
ext4_fsblk_t blk;
struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (buffer_verified(bh))
return 0;
if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
return -EFSCORRUPTED;
ext4_lock_group(sb, block_group);
blk = ext4_inode_bitmap(sb, desc);
if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
EXT4_INODES_PER_GROUP(sb) / 8)) {
ext4_unlock_group(sb, block_group);
ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
"inode_bitmap = %llu", block_group, blk);
grp = ext4_get_group_info(sb, block_group);
if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
int count;
count = ext4_free_inodes_count(sb, desc);
percpu_counter_sub(&sbi->s_freeinodes_counter,
count);
}
set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
return -EFSBADCRC;
}
set_buffer_verified(bh);
ext4_unlock_group(sb, block_group);
return 0;
}
/*
* Read the inode allocation bitmap for a given block_group, reading
* into the specified slot in the superblock's bitmap cache.
*
* Return buffer_head of bitmap on success or NULL.
*/
static struct buffer_head *
ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
{
struct ext4_group_desc *desc;
struct buffer_head *bh = NULL;
ext4_fsblk_t bitmap_blk;
int err;
desc = ext4_get_group_desc(sb, block_group, NULL);
if (!desc)
return ERR_PTR(-EFSCORRUPTED);
bitmap_blk = ext4_inode_bitmap(sb, desc);
bh = sb_getblk(sb, bitmap_blk);
if (unlikely(!bh)) {
ext4_error(sb, "Cannot read inode bitmap - "
"block_group = %u, inode_bitmap = %llu",
block_group, bitmap_blk);
return ERR_PTR(-EIO);
}
if (bitmap_uptodate(bh))
goto verify;
lock_buffer(bh);
if (bitmap_uptodate(bh)) {
unlock_buffer(bh);
goto verify;
}
ext4_lock_group(sb, block_group);
if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
set_bitmap_uptodate(bh);
set_buffer_uptodate(bh);
set_buffer_verified(bh);
ext4_unlock_group(sb, block_group);
unlock_buffer(bh);
if (err) {
ext4_error(sb, "Failed to init inode bitmap for group "
"%u: %d", block_group, err);
goto out;
}
return bh;
}
ext4_unlock_group(sb, block_group);
if (buffer_uptodate(bh)) {
/*
* if not uninit if bh is uptodate,
* bitmap is also uptodate
*/
set_bitmap_uptodate(bh);
unlock_buffer(bh);
goto verify;
}
/*
* submit the buffer_head for reading
*/
trace_ext4_load_inode_bitmap(sb, block_group);
bh->b_end_io = ext4_end_bitmap_read;
get_bh(bh);
submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
put_bh(bh);
ext4_error(sb, "Cannot read inode bitmap - "
"block_group = %u, inode_bitmap = %llu",
block_group, bitmap_blk);
return ERR_PTR(-EIO);
}
verify:
err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
if (err)
goto out;
return bh;
out:
put_bh(bh);
return ERR_PTR(err);
}
/*
* NOTE! When we get the inode, we're the only people
* that have access to it, and as such there are no
* race conditions we have to worry about. The inode
* is not on the hash-lists, and it cannot be reached
* through the filesystem because the directory entry
* has been deleted earlier.
*
* HOWEVER: we must make sure that we get no aliases,
* which means that we have to call "clear_inode()"
* _before_ we mark the inode not in use in the inode
* bitmaps. Otherwise a newly created file might use
* the same inode number (not actually the same pointer
* though), and then we'd have two inodes sharing the
* same inode number and space on the harddisk.
*/
void ext4_free_inode(handle_t *handle, struct inode *inode)
{
struct super_block *sb = inode->i_sb;
int is_directory;
unsigned long ino;
struct buffer_head *bitmap_bh = NULL;
struct buffer_head *bh2;
ext4_group_t block_group;
unsigned long bit;
struct ext4_group_desc *gdp;
struct ext4_super_block *es;
struct ext4_sb_info *sbi;
int fatal = 0, err, count, cleared;
struct ext4_group_info *grp;
if (!sb) {
printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
"nonexistent device\n", __func__, __LINE__);
return;
}
if (atomic_read(&inode->i_count) > 1) {
ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
__func__, __LINE__, inode->i_ino,
atomic_read(&inode->i_count));
return;
}
if (inode->i_nlink) {
ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
__func__, __LINE__, inode->i_ino, inode->i_nlink);
return;
}
sbi = EXT4_SB(sb);
ino = inode->i_ino;
ext4_debug("freeing inode %lu\n", ino);
trace_ext4_free_inode(inode);
/*
* Note: we must free any quota before locking the superblock,
* as writing the quota to disk may need the lock as well.
*/
dquot_initialize(inode);
ext4_xattr_delete_inode(handle, inode);
dquot_free_inode(inode);
dquot_drop(inode);
is_directory = S_ISDIR(inode->i_mode);
/* Do this BEFORE marking the inode not in use or returning an error */
ext4_clear_inode(inode);
es = EXT4_SB(sb)->s_es;
if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
ext4_error(sb, "reserved or nonexistent inode %lu", ino);
goto error_return;
}
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
/* Don't bother if the inode bitmap is corrupt. */
grp = ext4_get_group_info(sb, block_group);
if (IS_ERR(bitmap_bh)) {
fatal = PTR_ERR(bitmap_bh);
bitmap_bh = NULL;
goto error_return;
}
if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
fatal = -EFSCORRUPTED;
goto error_return;
}
BUFFER_TRACE(bitmap_bh, "get_write_access");
fatal = ext4_journal_get_write_access(handle, bitmap_bh);
if (fatal)
goto error_return;
fatal = -ESRCH;
gdp = ext4_get_group_desc(sb, block_group, &bh2);
if (gdp) {
BUFFER_TRACE(bh2, "get_write_access");
fatal = ext4_journal_get_write_access(handle, bh2);
}
ext4_lock_group(sb, block_group);
cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
if (fatal || !cleared) {
ext4_unlock_group(sb, block_group);
goto out;
}
count = ext4_free_inodes_count(sb, gdp) + 1;
ext4_free_inodes_set(sb, gdp, count);
if (is_directory) {
count = ext4_used_dirs_count(sb, gdp) - 1;
ext4_used_dirs_set(sb, gdp, count);
percpu_counter_dec(&sbi->s_dirs_counter);
}
ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
EXT4_INODES_PER_GROUP(sb) / 8);
ext4_group_desc_csum_set(sb, block_group, gdp);
ext4_unlock_group(sb, block_group);
percpu_counter_inc(&sbi->s_freeinodes_counter);
if (sbi->s_log_groups_per_flex) {
ext4_group_t f = ext4_flex_group(sbi, block_group);
atomic_inc(&sbi->s_flex_groups[f].free_inodes);
if (is_directory)
atomic_dec(&sbi->s_flex_groups[f].used_dirs);
}
BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
out:
if (cleared) {
BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
if (!fatal)
fatal = err;
} else {
ext4_error(sb, "bit already cleared for inode %lu", ino);
if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
int count;
count = ext4_free_inodes_count(sb, gdp);
percpu_counter_sub(&sbi->s_freeinodes_counter,
count);
}
set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
}
error_return:
brelse(bitmap_bh);
ext4_std_error(sb, fatal);
}
struct orlov_stats {
__u64 free_clusters;
__u32 free_inodes;
__u32 used_dirs;
};
/*
* Helper function for Orlov's allocator; returns critical information
* for a particular block group or flex_bg. If flex_size is 1, then g
* is a block group number; otherwise it is flex_bg number.
*/
static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
int flex_size, struct orlov_stats *stats)
{
struct ext4_group_desc *desc;
struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
if (flex_size > 1) {
stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
return;
}
desc = ext4_get_group_desc(sb, g, NULL);
if (desc) {
stats->free_inodes = ext4_free_inodes_count(sb, desc);
stats->free_clusters = ext4_free_group_clusters(sb, desc);
stats->used_dirs = ext4_used_dirs_count(sb, desc);
} else {
stats->free_inodes = 0;
stats->free_clusters = 0;
stats->used_dirs = 0;
}
}
/*
* Orlov's allocator for directories.
*
* We always try to spread first-level directories.
*
* If there are blockgroups with both free inodes and free blocks counts
* not worse than average we return one with smallest directory count.
* Otherwise we simply return a random group.
*
* For the rest rules look so:
*
* It's OK to put directory into a group unless
* it has too many directories already (max_dirs) or
* it has too few free inodes left (min_inodes) or
* it has too few free blocks left (min_blocks) or
* Parent's group is preferred, if it doesn't satisfy these
* conditions we search cyclically through the rest. If none
* of the groups look good we just look for a group with more
* free inodes than average (starting at parent's group).
*/
static int find_group_orlov(struct super_block *sb, struct inode *parent,
ext4_group_t *group, umode_t mode,
const struct qstr *qstr)
{
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_group_t real_ngroups = ext4_get_groups_count(sb);
int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
unsigned int freei, avefreei, grp_free;
ext4_fsblk_t freeb, avefreec;
unsigned int ndirs;
int max_dirs, min_inodes;
ext4_grpblk_t min_clusters;
ext4_group_t i, grp, g, ngroups;
struct ext4_group_desc *desc;
struct orlov_stats stats;
int flex_size = ext4_flex_bg_size(sbi);
struct dx_hash_info hinfo;
ngroups = real_ngroups;
if (flex_size > 1) {
ngroups = (real_ngroups + flex_size - 1) >>
sbi->s_log_groups_per_flex;
parent_group >>= sbi->s_log_groups_per_flex;
}
freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
avefreei = freei / ngroups;
freeb = EXT4_C2B(sbi,
percpu_counter_read_positive(&sbi->s_freeclusters_counter));
avefreec = freeb;
do_div(avefreec, ngroups);
ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
if (S_ISDIR(mode) &&
((parent == d_inode(sb->s_root)) ||
(ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
int best_ndir = inodes_per_group;
int ret = -1;
if (qstr) {
hinfo.hash_version = DX_HASH_HALF_MD4;
hinfo.seed = sbi->s_hash_seed;
ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
grp = hinfo.hash;
} else
grp = prandom_u32();
parent_group = (unsigned)grp % ngroups;
for (i = 0; i < ngroups; i++) {
g = (parent_group + i) % ngroups;
get_orlov_stats(sb, g, flex_size, &stats);
if (!stats.free_inodes)
continue;
if (stats.used_dirs >= best_ndir)
continue;
if (stats.free_inodes < avefreei)
continue;
if (stats.free_clusters < avefreec)
continue;
grp = g;
ret = 0;
best_ndir = stats.used_dirs;
}
if (ret)
goto fallback;
found_flex_bg:
if (flex_size == 1) {
*group = grp;
return 0;
}
/*
* We pack inodes at the beginning of the flexgroup's
* inode tables. Block allocation decisions will do
* something similar, although regular files will
* start at 2nd block group of the flexgroup. See
* ext4_ext_find_goal() and ext4_find_near().
*/
grp *= flex_size;
for (i = 0; i < flex_size; i++) {
if (grp+i >= real_ngroups)
break;
desc = ext4_get_group_desc(sb, grp+i, NULL);
if (desc && ext4_free_inodes_count(sb, desc)) {
*group = grp+i;
return 0;
}
}
goto fallback;
}
max_dirs = ndirs / ngroups + inodes_per_group / 16;
min_inodes = avefreei - inodes_per_group*flex_size / 4;
if (min_inodes < 1)
min_inodes = 1;
min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
/*
* Start looking in the flex group where we last allocated an
* inode for this parent directory
*/
if (EXT4_I(parent)->i_last_alloc_group != ~0) {
parent_group = EXT4_I(parent)->i_last_alloc_group;
if (flex_size > 1)
parent_group >>= sbi->s_log_groups_per_flex;
}
for (i = 0; i < ngroups; i++) {
grp = (parent_group + i) % ngroups;
get_orlov_stats(sb, grp, flex_size, &stats);
if (stats.used_dirs >= max_dirs)
continue;
if (stats.free_inodes < min_inodes)
continue;
if (stats.free_clusters < min_clusters)
continue;
goto found_flex_bg;
}
fallback:
ngroups = real_ngroups;
avefreei = freei / ngroups;
fallback_retry:
parent_group = EXT4_I(parent)->i_block_group;
for (i = 0; i < ngroups; i++) {
grp = (parent_group + i) % ngroups;
desc = ext4_get_group_desc(sb, grp, NULL);
if (desc) {
grp_free = ext4_free_inodes_count(sb, desc);
if (grp_free && grp_free >= avefreei) {
*group = grp;
return 0;
}
}
}
if (avefreei) {
/*
* The free-inodes counter is approximate, and for really small
* filesystems the above test can fail to find any blockgroups
*/
avefreei = 0;
goto fallback_retry;
}
return -1;
}
static int find_group_other(struct super_block *sb, struct inode *parent,
ext4_group_t *group, umode_t mode)
{
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
struct ext4_group_desc *desc;
int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
/*
* Try to place the inode is the same flex group as its
* parent. If we can't find space, use the Orlov algorithm to
* find another flex group, and store that information in the
* parent directory's inode information so that use that flex
* group for future allocations.
*/
if (flex_size > 1) {
int retry = 0;
try_again:
parent_group &= ~(flex_size-1);
last = parent_group + flex_size;
if (last > ngroups)
last = ngroups;
for (i = parent_group; i < last; i++) {
desc = ext4_get_group_desc(sb, i, NULL);
if (desc && ext4_free_inodes_count(sb, desc)) {
*group = i;
return 0;
}
}
if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
retry = 1;
parent_group = EXT4_I(parent)->i_last_alloc_group;
goto try_again;
}
/*
* If this didn't work, use the Orlov search algorithm
* to find a new flex group; we pass in the mode to
* avoid the topdir algorithms.
*/
*group = parent_group + flex_size;
if (*group > ngroups)
*group = 0;
return find_group_orlov(sb, parent, group, mode, NULL);
}
/*
* Try to place the inode in its parent directory
*/
*group = parent_group;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc) &&
ext4_free_group_clusters(sb, desc))
return 0;
/*
* We're going to place this inode in a different blockgroup from its
* parent. We want to cause files in a common directory to all land in
* the same blockgroup. But we want files which are in a different
* directory which shares a blockgroup with our parent to land in a
* different blockgroup.
*
* So add our directory's i_ino into the starting point for the hash.
*/
*group = (*group + parent->i_ino) % ngroups;
/*
* Use a quadratic hash to find a group with a free inode and some free
* blocks.
*/
for (i = 1; i < ngroups; i <<= 1) {
*group += i;
if (*group >= ngroups)
*group -= ngroups;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc) &&
ext4_free_group_clusters(sb, desc))
return 0;
}
/*
* That failed: try linear search for a free inode, even if that group
* has no free blocks.
*/
*group = parent_group;
for (i = 0; i < ngroups; i++) {
if (++*group >= ngroups)
*group = 0;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc))
return 0;
}
return -1;
}
/*
* In no journal mode, if an inode has recently been deleted, we want
* to avoid reusing it until we're reasonably sure the inode table
* block has been written back to disk. (Yes, these values are
* somewhat arbitrary...)
*/
#define RECENTCY_MIN 5
#define RECENTCY_DIRTY 30
static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
{
struct ext4_group_desc *gdp;
struct ext4_inode *raw_inode;
struct buffer_head *bh;
unsigned long dtime, now;
int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
int offset, ret = 0, recentcy = RECENTCY_MIN;
gdp = ext4_get_group_desc(sb, group, NULL);
if (unlikely(!gdp))
return 0;
bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
(ino / inodes_per_block));
if (unlikely(!bh) || !buffer_uptodate(bh))
/*
* If the block is not in the buffer cache, then it
* must have been written out.
*/
goto out;
offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
raw_inode = (struct ext4_inode *) (bh->b_data + offset);
dtime = le32_to_cpu(raw_inode->i_dtime);
now = get_seconds();
if (buffer_dirty(bh))
recentcy += RECENTCY_DIRTY;
if (dtime && (dtime < now) && (now < dtime + recentcy))
ret = 1;
out:
brelse(bh);
return ret;
}
/*
* There are two policies for allocating an inode. If the new inode is
* a directory, then a forward search is made for a block group with both
* free space and a low directory-to-inode ratio; if that fails, then of
* the groups with above-average free space, that group with the fewest
* directories already is chosen.
*
* For other inodes, search forward from the parent directory's block
* group to find a free inode.
*/
struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
umode_t mode, const struct qstr *qstr,
__u32 goal, uid_t *owner, int handle_type,
unsigned int line_no, int nblocks)
{
struct super_block *sb;
struct buffer_head *inode_bitmap_bh = NULL;
struct buffer_head *group_desc_bh;
ext4_group_t ngroups, group = 0;
unsigned long ino = 0;
struct inode *inode;
struct ext4_group_desc *gdp = NULL;
struct ext4_inode_info *ei;
struct ext4_sb_info *sbi;
int ret2, err;
struct inode *ret;
ext4_group_t i;
ext4_group_t flex_group;
struct ext4_group_info *grp;
int encrypt = 0;
/* Cannot create files in a deleted directory */
if (!dir || !dir->i_nlink)
return ERR_PTR(-EPERM);
if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
return ERR_PTR(-EIO);
if ((ext4_encrypted_inode(dir) ||
DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
(S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
err = fscrypt_get_encryption_info(dir);
if (err)
return ERR_PTR(err);
if (!fscrypt_has_encryption_key(dir))
return ERR_PTR(-ENOKEY);
if (!handle)
nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
encrypt = 1;
}
sb = dir->i_sb;
ngroups = ext4_get_groups_count(sb);
trace_ext4_request_inode(dir, mode);
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
ei = EXT4_I(inode);
sbi = EXT4_SB(sb);
/*
* Initialize owners and quota early so that we don't have to account
* for quota initialization worst case in standard inode creating
* transaction
*/
if (owner) {
inode->i_mode = mode;
i_uid_write(inode, owner[0]);
i_gid_write(inode, owner[1]);
} else if (test_opt(sb, GRPID)) {
inode->i_mode = mode;
inode->i_uid = current_fsuid();
inode->i_gid = dir->i_gid;
} else
inode_init_owner(inode, dir, mode);
if (ext4_has_feature_project(sb) &&
ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
ei->i_projid = EXT4_I(dir)->i_projid;
else
ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
err = dquot_initialize(inode);
if (err)
goto out;
if (!goal)
goal = sbi->s_inode_goal;
if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
ret2 = 0;
goto got_group;
}
if (S_ISDIR(mode))
ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
else
ret2 = find_group_other(sb, dir, &group, mode);
got_group:
EXT4_I(dir)->i_last_alloc_group = group;
err = -ENOSPC;
if (ret2 == -1)
goto out;
/*
* Normally we will only go through one pass of this loop,
* unless we get unlucky and it turns out the group we selected
* had its last inode grabbed by someone else.
*/
for (i = 0; i < ngroups; i++, ino = 0) {
err = -EIO;
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
if (!gdp)
goto out;
/*
* Check free inodes count before loading bitmap.
*/
if (ext4_free_inodes_count(sb, gdp) == 0) {
if (++group == ngroups)
group = 0;
continue;
}
grp = ext4_get_group_info(sb, group);
/* Skip groups with already-known suspicious inode tables */
if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
if (++group == ngroups)
group = 0;
continue;
}
brelse(inode_bitmap_bh);
inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
/* Skip groups with suspicious inode tables */
if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
IS_ERR(inode_bitmap_bh)) {
inode_bitmap_bh = NULL;
if (++group == ngroups)
group = 0;
continue;
}
repeat_in_this_group:
ino = ext4_find_next_zero_bit((unsigned long *)
inode_bitmap_bh->b_data,
EXT4_INODES_PER_GROUP(sb), ino);
if (ino >= EXT4_INODES_PER_GROUP(sb))
goto next_group;
if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
ext4_error(sb, "reserved inode found cleared - "
"inode=%lu", ino + 1);
continue;
}
if ((EXT4_SB(sb)->s_journal == NULL) &&
recently_deleted(sb, group, ino)) {
ino++;
goto next_inode;
}
if (!handle) {
BUG_ON(nblocks <= 0);
handle = __ext4_journal_start_sb(dir->i_sb, line_no,
handle_type, nblocks,
0);
if (IS_ERR(handle)) {
err = PTR_ERR(handle);
ext4_std_error(sb, err);
goto out;
}
}
BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
if (err) {
ext4_std_error(sb, err);
goto out;
}
ext4_lock_group(sb, group);
ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
ext4_unlock_group(sb, group);
ino++; /* the inode bitmap is zero-based */
if (!ret2)
goto got; /* we grabbed the inode! */
next_inode:
if (ino < EXT4_INODES_PER_GROUP(sb))
goto repeat_in_this_group;
next_group:
if (++group == ngroups)
group = 0;
}
err = -ENOSPC;
goto out;
got:
BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
if (err) {
ext4_std_error(sb, err);
goto out;
}
BUFFER_TRACE(group_desc_bh, "get_write_access");
err = ext4_journal_get_write_access(handle, group_desc_bh);
if (err) {
ext4_std_error(sb, err);
goto out;
}
/* We may have to initialize the block bitmap if it isn't already */
if (ext4_has_group_desc_csum(sb) &&
gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
struct buffer_head *block_bitmap_bh;
block_bitmap_bh = ext4_read_block_bitmap(sb, group);
if (IS_ERR(block_bitmap_bh)) {
err = PTR_ERR(block_bitmap_bh);
goto out;
}
BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
err = ext4_journal_get_write_access(handle, block_bitmap_bh);
if (err) {
brelse(block_bitmap_bh);
ext4_std_error(sb, err);
goto out;
}
BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
/* recheck and clear flag under lock if we still need to */
ext4_lock_group(sb, group);
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
ext4_free_group_clusters_set(sb, gdp,
ext4_free_clusters_after_init(sb, group, gdp));
ext4_block_bitmap_csum_set(sb, group, gdp,
block_bitmap_bh);
ext4_group_desc_csum_set(sb, group, gdp);
}
ext4_unlock_group(sb, group);
brelse(block_bitmap_bh);
if (err) {
ext4_std_error(sb, err);
goto out;
}
}
/* Update the relevant bg descriptor fields */
if (ext4_has_group_desc_csum(sb)) {
int free;
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
ext4_lock_group(sb, group); /* while we modify the bg desc */
free = EXT4_INODES_PER_GROUP(sb) -
ext4_itable_unused_count(sb, gdp);
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
free = 0;
}
/*
* Check the relative inode number against the last used
* relative inode number in this group. if it is greater
* we need to update the bg_itable_unused count
*/
if (ino > free)
ext4_itable_unused_set(sb, gdp,
(EXT4_INODES_PER_GROUP(sb) - ino));
up_read(&grp->alloc_sem);
} else {
ext4_lock_group(sb, group);
}
ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
if (S_ISDIR(mode)) {
ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
if (sbi->s_log_groups_per_flex) {
ext4_group_t f = ext4_flex_group(sbi, group);
atomic_inc(&sbi->s_flex_groups[f].used_dirs);
}
}
if (ext4_has_group_desc_csum(sb)) {
ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
EXT4_INODES_PER_GROUP(sb) / 8);
ext4_group_desc_csum_set(sb, group, gdp);
}
ext4_unlock_group(sb, group);
BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
if (err) {
ext4_std_error(sb, err);
goto out;
}
percpu_counter_dec(&sbi->s_freeinodes_counter);
if (S_ISDIR(mode))
percpu_counter_inc(&sbi->s_dirs_counter);
if (sbi->s_log_groups_per_flex) {
flex_group = ext4_flex_group(sbi, group);
atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
}
inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
/* This is the optimal IO size (for stat), not the fs block size */
inode->i_blocks = 0;
inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
current_time(inode);
memset(ei->i_data, 0, sizeof(ei->i_data));
ei->i_dir_start_lookup = 0;
ei->i_disksize = 0;
/* Don't inherit extent flag from directory, amongst others. */
ei->i_flags =
ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
ei->i_file_acl = 0;
ei->i_dtime = 0;
ei->i_block_group = group;
ei->i_last_alloc_group = ~0;
ext4_set_inode_flags(inode);
if (IS_DIRSYNC(inode))
ext4_handle_sync(handle);
if (insert_inode_locked(inode) < 0) {
/*
* Likely a bitmap corruption causing inode to be allocated
* twice.
*/
err = -EIO;
ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
inode->i_ino);
goto out;
}
spin_lock(&sbi->s_next_gen_lock);
inode->i_generation = sbi->s_next_generation++;
spin_unlock(&sbi->s_next_gen_lock);
/* Precompute checksum seed for inode metadata */
if (ext4_has_metadata_csum(sb)) {
__u32 csum;
__le32 inum = cpu_to_le32(inode->i_ino);
__le32 gen = cpu_to_le32(inode->i_generation);
csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
sizeof(inum));
ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
sizeof(gen));
}
ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ext4_set_inode_state(inode, EXT4_STATE_NEW);
ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
ei->i_inline_off = 0;
if (ext4_has_feature_inline_data(sb))
ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
ret = inode;
err = dquot_alloc_inode(inode);
if (err)
goto fail_drop;
err = ext4_init_acl(handle, inode, dir);
if (err)
goto fail_free_drop;
err = ext4_init_security(handle, inode, dir, qstr);
if (err)
goto fail_free_drop;
if (ext4_has_feature_extents(sb)) {
/* set extent flag only for directory, file and normal symlink*/
if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
ext4_ext_tree_init(handle, inode);
}
}
if (ext4_handle_valid(handle)) {
ei->i_sync_tid = handle->h_transaction->t_tid;
ei->i_datasync_tid = handle->h_transaction->t_tid;
}
if (encrypt) {
err = fscrypt_inherit_context(dir, inode, handle, true);
if (err)
goto fail_free_drop;
}
err = ext4_mark_inode_dirty(handle, inode);
if (err) {
ext4_std_error(sb, err);
goto fail_free_drop;
}
ext4_debug("allocating inode %lu\n", inode->i_ino);
trace_ext4_allocate_inode(inode, dir, mode);
brelse(inode_bitmap_bh);
return ret;
fail_free_drop:
dquot_free_inode(inode);
fail_drop:
clear_nlink(inode);
unlock_new_inode(inode);
out:
dquot_drop(inode);
inode->i_flags |= S_NOQUOTA;
iput(inode);
brelse(inode_bitmap_bh);
return ERR_PTR(err);
}
/* Verify that we are loading a valid orphan from disk */
struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
{
unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
ext4_group_t block_group;
int bit;
struct buffer_head *bitmap_bh = NULL;
struct inode *inode = NULL;
int err = -EFSCORRUPTED;
if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
goto bad_orphan;
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
if (IS_ERR(bitmap_bh)) {
ext4_error(sb, "inode bitmap error %ld for orphan %lu",
ino, PTR_ERR(bitmap_bh));
return (struct inode *) bitmap_bh;
}
/* Having the inode bit set should be a 100% indicator that this
* is a valid orphan (no e2fsck run on fs). Orphans also include
* inodes that were being truncated, so we can't check i_nlink==0.
*/
if (!ext4_test_bit(bit, bitmap_bh->b_data))
goto bad_orphan;
inode = ext4_iget(sb, ino);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
ino, err);
return inode;
}
/*
* If the orphans has i_nlinks > 0 then it should be able to
* be truncated, otherwise it won't be removed from the orphan
* list during processing and an infinite loop will result.
* Similarly, it must not be a bad inode.
*/
if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
is_bad_inode(inode))
goto bad_orphan;
if (NEXT_ORPHAN(inode) > max_ino)
goto bad_orphan;
brelse(bitmap_bh);
return inode;
bad_orphan:
ext4_error(sb, "bad orphan inode %lu", ino);
if (bitmap_bh)
printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
bit, (unsigned long long)bitmap_bh->b_blocknr,
ext4_test_bit(bit, bitmap_bh->b_data));
if (inode) {
printk(KERN_ERR "is_bad_inode(inode)=%d\n",
is_bad_inode(inode));
printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
NEXT_ORPHAN(inode));
printk(KERN_ERR "max_ino=%lu\n", max_ino);
printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
/* Avoid freeing blocks if we got a bad deleted inode */
if (inode->i_nlink == 0)
inode->i_blocks = 0;
iput(inode);
}
brelse(bitmap_bh);
return ERR_PTR(err);
}
unsigned long ext4_count_free_inodes(struct super_block *sb)
{
unsigned long desc_count;
struct ext4_group_desc *gdp;
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
#ifdef EXT4FS_DEBUG
struct ext4_super_block *es;
unsigned long bitmap_count, x;
struct buffer_head *bitmap_bh = NULL;
es = EXT4_SB(sb)->s_es;
desc_count = 0;
bitmap_count = 0;
gdp = NULL;
for (i = 0; i < ngroups; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
desc_count += ext4_free_inodes_count(sb, gdp);
brelse(bitmap_bh);
bitmap_bh = ext4_read_inode_bitmap(sb, i);
if (IS_ERR(bitmap_bh)) {
bitmap_bh = NULL;
continue;
}
x = ext4_count_free(bitmap_bh->b_data,
EXT4_INODES_PER_GROUP(sb) / 8);
printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
bitmap_count += x;
}
brelse(bitmap_bh);
printk(KERN_DEBUG "ext4_count_free_inodes: "
"stored = %u, computed = %lu, %lu\n",
le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
return desc_count;
#else
desc_count = 0;
for (i = 0; i < ngroups; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
desc_count += ext4_free_inodes_count(sb, gdp);
cond_resched();
}
return desc_count;
#endif
}
/* Called at mount-time, super-block is locked */
unsigned long ext4_count_dirs(struct super_block * sb)
{
unsigned long count = 0;
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
for (i = 0; i < ngroups; i++) {
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
count += ext4_used_dirs_count(sb, gdp);
}
return count;
}
/*
* Zeroes not yet zeroed inode table - just write zeroes through the whole
* inode table. Must be called without any spinlock held. The only place
* where it is called from on active part of filesystem is ext4lazyinit
* thread, so we do not need any special locks, however we have to prevent
* inode allocation from the current group, so we take alloc_sem lock, to
* block ext4_new_inode() until we are finished.
*/
int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
int barrier)
{
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *gdp = NULL;
struct buffer_head *group_desc_bh;
handle_t *handle;
ext4_fsblk_t blk;
int num, ret = 0, used_blks = 0;
/* This should not happen, but just to be sure check this */
if (sb->s_flags & MS_RDONLY) {
ret = 1;
goto out;
}
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
if (!gdp)
goto out;
/*
* We do not need to lock this, because we are the only one
* handling this flag.
*/
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
goto out;
handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto out;
}
down_write(&grp->alloc_sem);
/*
* If inode bitmap was already initialized there may be some
* used inodes so we need to skip blocks with used inodes in
* inode table.
*/
if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
ext4_itable_unused_count(sb, gdp)),
sbi->s_inodes_per_block);
if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
ext4_error(sb, "Something is wrong with group %u: "
"used itable blocks: %d; "
"itable unused count: %u",
group, used_blks,
ext4_itable_unused_count(sb, gdp));
ret = 1;
goto err_out;
}
blk = ext4_inode_table(sb, gdp) + used_blks;
num = sbi->s_itb_per_group - used_blks;
BUFFER_TRACE(group_desc_bh, "get_write_access");
ret = ext4_journal_get_write_access(handle,
group_desc_bh);
if (ret)
goto err_out;
/*
* Skip zeroout if the inode table is full. But we set the ZEROED
* flag anyway, because obviously, when it is full it does not need
* further zeroing.
*/
if (unlikely(num == 0))
goto skip_zeroout;
ext4_debug("going to zero out inode table in group %d\n",
group);
ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
if (ret < 0)
goto err_out;
if (barrier)
blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
skip_zeroout:
ext4_lock_group(sb, group);
gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
ext4_group_desc_csum_set(sb, group, gdp);
ext4_unlock_group(sb, group);
BUFFER_TRACE(group_desc_bh,
"call ext4_handle_dirty_metadata");
ret = ext4_handle_dirty_metadata(handle, NULL,
group_desc_bh);
err_out:
up_write(&grp->alloc_sem);
ext4_journal_stop(handle);
out:
return ret;
}