WSL2-Linux-Kernel/fs/xfs/xfs_aops.c

1430 строки
38 KiB
C
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_iomap.h"
#include "xfs_trace.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_bmap_btree.h"
#include "xfs_reflink.h"
#include <linux/gfp.h>
#include <linux/mpage.h>
#include <linux/pagevec.h>
#include <linux/writeback.h>
/*
* structure owned by writepages passed to individual writepage calls
*/
struct xfs_writepage_ctx {
struct xfs_bmbt_irec imap;
bool imap_valid;
unsigned int io_type;
struct xfs_ioend *ioend;
sector_t last_block;
};
void
xfs_count_page_state(
struct page *page,
int *delalloc,
int *unwritten)
{
struct buffer_head *bh, *head;
*delalloc = *unwritten = 0;
bh = head = page_buffers(page);
do {
if (buffer_unwritten(bh))
(*unwritten) = 1;
else if (buffer_delay(bh))
(*delalloc) = 1;
} while ((bh = bh->b_this_page) != head);
}
struct block_device *
xfs_find_bdev_for_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
if (XFS_IS_REALTIME_INODE(ip))
return mp->m_rtdev_targp->bt_bdev;
else
return mp->m_ddev_targp->bt_bdev;
}
/*
* We're now finished for good with this page. Update the page state via the
* associated buffer_heads, paying attention to the start and end offsets that
* we need to process on the page.
*
* Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
* buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
* the page at all, as we may be racing with memory reclaim and it can free both
* the bufferhead chain and the page as it will see the page as clean and
* unused.
*/
static void
xfs_finish_page_writeback(
struct inode *inode,
struct bio_vec *bvec,
int error)
{
unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
struct buffer_head *head, *bh, *next;
unsigned int off = 0;
unsigned int bsize;
ASSERT(bvec->bv_offset < PAGE_SIZE);
ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
ASSERT(end < PAGE_SIZE);
ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
bh = head = page_buffers(bvec->bv_page);
bsize = bh->b_size;
do {
next = bh->b_this_page;
if (off < bvec->bv_offset)
goto next_bh;
if (off > end)
break;
bh->b_end_io(bh, !error);
next_bh:
off += bsize;
} while ((bh = next) != head);
}
/*
* We're now finished for good with this ioend structure. Update the page
* state, release holds on bios, and finally free up memory. Do not use the
* ioend after this.
*/
STATIC void
xfs_destroy_ioend(
struct xfs_ioend *ioend,
int error)
{
struct inode *inode = ioend->io_inode;
struct bio *last = ioend->io_bio;
struct bio *bio, *next;
for (bio = &ioend->io_inline_bio; bio; bio = next) {
struct bio_vec *bvec;
int i;
/*
* For the last bio, bi_private points to the ioend, so we
* need to explicitly end the iteration here.
*/
if (bio == last)
next = NULL;
else
next = bio->bi_private;
/* walk each page on bio, ending page IO on them */
bio_for_each_segment_all(bvec, bio, i)
xfs_finish_page_writeback(inode, bvec, error);
bio_put(bio);
}
}
/*
* Fast and loose check if this write could update the on-disk inode size.
*/
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
return ioend->io_offset + ioend->io_size >
XFS_I(ioend->io_inode)->i_d.di_size;
}
STATIC int
xfs_setfilesize_trans_alloc(
struct xfs_ioend *ioend)
{
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
if (error)
return error;
ioend->io_append_trans = tp;
/*
* We may pass freeze protection with a transaction. So tell lockdep
* we released it.
*/
__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
/*
* We hand off the transaction to the completion thread now, so
* clear the flag here.
*/
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
return 0;
}
/*
* Update on-disk file size now that data has been written to disk.
*/
STATIC int
__xfs_setfilesize(
struct xfs_inode *ip,
struct xfs_trans *tp,
xfs_off_t offset,
size_t size)
{
xfs_fsize_t isize;
xfs_ilock(ip, XFS_ILOCK_EXCL);
isize = xfs_new_eof(ip, offset + size);
if (!isize) {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_trans_cancel(tp);
return 0;
}
trace_xfs_setfilesize(ip, offset, size);
ip->i_d.di_size = isize;
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
return xfs_trans_commit(tp);
}
int
xfs_setfilesize(
struct xfs_inode *ip,
xfs_off_t offset,
size_t size)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
if (error)
return error;
return __xfs_setfilesize(ip, tp, offset, size);
}
STATIC int
xfs_setfilesize_ioend(
struct xfs_ioend *ioend,
int error)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_trans *tp = ioend->io_append_trans;
/*
* The transaction may have been allocated in the I/O submission thread,
* thus we need to mark ourselves as being in a transaction manually.
* Similarly for freeze protection.
*/
current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
/* we abort the update if there was an IO error */
if (error) {
xfs_trans_cancel(tp);
return error;
}
return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
}
/*
* IO write completion.
*/
STATIC void
xfs_end_io(
struct work_struct *work)
{
struct xfs_ioend *ioend =
container_of(work, struct xfs_ioend, io_work);
struct xfs_inode *ip = XFS_I(ioend->io_inode);
int error = ioend->io_bio->bi_error;
/*
* Set an error if the mount has shut down and proceed with end I/O
* processing so it can perform whatever cleanups are necessary.
*/
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
error = -EIO;
/*
* For a CoW extent, we need to move the mapping from the CoW fork
* to the data fork. If instead an error happened, just dump the
* new blocks.
*/
if (ioend->io_type == XFS_IO_COW) {
if (error)
goto done;
if (ioend->io_bio->bi_error) {
error = xfs_reflink_cancel_cow_range(ip,
ioend->io_offset, ioend->io_size);
goto done;
}
error = xfs_reflink_end_cow(ip, ioend->io_offset,
ioend->io_size);
if (error)
goto done;
}
/*
* For unwritten extents we need to issue transactions to convert a
* range to normal written extens after the data I/O has finished.
* Detecting and handling completion IO errors is done individually
* for each case as different cleanup operations need to be performed
* on error.
*/
if (ioend->io_type == XFS_IO_UNWRITTEN) {
if (error)
goto done;
error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
ioend->io_size);
} else if (ioend->io_append_trans) {
error = xfs_setfilesize_ioend(ioend, error);
} else {
ASSERT(!xfs_ioend_is_append(ioend) ||
ioend->io_type == XFS_IO_COW);
}
done:
xfs_destroy_ioend(ioend, error);
}
STATIC void
xfs_end_bio(
struct bio *bio)
{
struct xfs_ioend *ioend = bio->bi_private;
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
else if (ioend->io_append_trans)
queue_work(mp->m_data_workqueue, &ioend->io_work);
else
xfs_destroy_ioend(ioend, bio->bi_error);
}
STATIC int
xfs_map_blocks(
struct inode *inode,
loff_t offset,
struct xfs_bmbt_irec *imap,
int type)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t count = 1 << inode->i_blkbits;
xfs_fileoff_t offset_fsb, end_fsb;
int error = 0;
int bmapi_flags = XFS_BMAPI_ENTIRE;
int nimaps = 1;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
ASSERT(type != XFS_IO_COW);
if (type == XFS_IO_UNWRITTEN)
bmapi_flags |= XFS_BMAPI_IGSTATE;
xfs_ilock(ip, XFS_ILOCK_SHARED);
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
(ip->i_df.if_flags & XFS_IFEXTENTS));
ASSERT(offset <= mp->m_super->s_maxbytes);
if (offset + count > mp->m_super->s_maxbytes)
count = mp->m_super->s_maxbytes - offset;
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
offset_fsb = XFS_B_TO_FSBT(mp, offset);
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
imap, &nimaps, bmapi_flags);
/*
* Truncate an overwrite extent if there's a pending CoW
* reservation before the end of this extent. This forces us
* to come back to writepage to take care of the CoW.
*/
if (nimaps && type == XFS_IO_OVERWRITE)
xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (error)
return error;
if (type == XFS_IO_DELALLOC &&
(!nimaps || isnullstartblock(imap->br_startblock))) {
error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
imap);
if (!error)
trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
return error;
}
#ifdef DEBUG
if (type == XFS_IO_UNWRITTEN) {
ASSERT(nimaps);
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
}
#endif
if (nimaps)
trace_xfs_map_blocks_found(ip, offset, count, type, imap);
return 0;
}
STATIC bool
xfs_imap_valid(
struct inode *inode,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
offset >>= inode->i_blkbits;
return offset >= imap->br_startoff &&
offset < imap->br_startoff + imap->br_blockcount;
}
STATIC void
xfs_start_buffer_writeback(
struct buffer_head *bh)
{
ASSERT(buffer_mapped(bh));
ASSERT(buffer_locked(bh));
ASSERT(!buffer_delay(bh));
ASSERT(!buffer_unwritten(bh));
mark_buffer_async_write(bh);
set_buffer_uptodate(bh);
clear_buffer_dirty(bh);
}
STATIC void
xfs_start_page_writeback(
struct page *page,
int clear_dirty)
{
ASSERT(PageLocked(page));
ASSERT(!PageWriteback(page));
/*
* if the page was not fully cleaned, we need to ensure that the higher
* layers come back to it correctly. That means we need to keep the page
* dirty, and for WB_SYNC_ALL writeback we need to ensure the
* PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
* write this page in this writeback sweep will be made.
*/
if (clear_dirty) {
clear_page_dirty_for_io(page);
set_page_writeback(page);
} else
set_page_writeback_keepwrite(page);
unlock_page(page);
}
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
{
return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
}
/*
* Submit the bio for an ioend. We are passed an ioend with a bio attached to
* it, and we submit that bio. The ioend may be used for multiple bio
* submissions, so we only want to allocate an append transaction for the ioend
* once. In the case of multiple bio submission, each bio will take an IO
* reference to the ioend to ensure that the ioend completion is only done once
* all bios have been submitted and the ioend is really done.
*
* If @fail is non-zero, it means that we have a situation where some part of
* the submission process has failed after we have marked paged for writeback
* and unlocked them. In this situation, we need to fail the bio and ioend
* rather than submit it to IO. This typically only happens on a filesystem
* shutdown.
*/
STATIC int
xfs_submit_ioend(
struct writeback_control *wbc,
struct xfs_ioend *ioend,
int status)
{
/* Reserve log space if we might write beyond the on-disk inode size. */
if (!status &&
ioend->io_type != XFS_IO_UNWRITTEN &&
xfs_ioend_is_append(ioend) &&
!ioend->io_append_trans)
status = xfs_setfilesize_trans_alloc(ioend);
ioend->io_bio->bi_private = ioend;
ioend->io_bio->bi_end_io = xfs_end_bio;
ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
/*
* If we are failing the IO now, just mark the ioend with an
* error and finish it. This will run IO completion immediately
* as there is only one reference to the ioend at this point in
* time.
*/
if (status) {
ioend->io_bio->bi_error = status;
bio_endio(ioend->io_bio);
return status;
}
submit_bio(ioend->io_bio);
return 0;
}
static void
xfs_init_bio_from_bh(
struct bio *bio,
struct buffer_head *bh)
{
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
bio->bi_bdev = bh->b_bdev;
}
static struct xfs_ioend *
xfs_alloc_ioend(
struct inode *inode,
unsigned int type,
xfs_off_t offset,
struct buffer_head *bh)
{
struct xfs_ioend *ioend;
struct bio *bio;
bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
xfs_init_bio_from_bh(bio, bh);
ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
INIT_LIST_HEAD(&ioend->io_list);
ioend->io_type = type;
ioend->io_inode = inode;
ioend->io_size = 0;
ioend->io_offset = offset;
INIT_WORK(&ioend->io_work, xfs_end_io);
ioend->io_append_trans = NULL;
ioend->io_bio = bio;
return ioend;
}
/*
* Allocate a new bio, and chain the old bio to the new one.
*
* Note that we have to do perform the chaining in this unintuitive order
* so that the bi_private linkage is set up in the right direction for the
* traversal in xfs_destroy_ioend().
*/
static void
xfs_chain_bio(
struct xfs_ioend *ioend,
struct writeback_control *wbc,
struct buffer_head *bh)
{
struct bio *new;
new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
xfs_init_bio_from_bh(new, bh);
bio_chain(ioend->io_bio, new);
bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
submit_bio(ioend->io_bio);
ioend->io_bio = new;
}
/*
* Test to see if we've been building up a completion structure for
* earlier buffers -- if so, we try to append to this ioend if we
* can, otherwise we finish off any current ioend and start another.
* Return the ioend we finished off so that the caller can submit it
* once it has finished processing the dirty page.
*/
STATIC void
xfs_add_to_ioend(
struct inode *inode,
struct buffer_head *bh,
xfs_off_t offset,
struct xfs_writepage_ctx *wpc,
struct writeback_control *wbc,
struct list_head *iolist)
{
if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
bh->b_blocknr != wpc->last_block + 1 ||
offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
if (wpc->ioend)
list_add(&wpc->ioend->io_list, iolist);
wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
}
/*
* If the buffer doesn't fit into the bio we need to allocate a new
* one. This shouldn't happen more than once for a given buffer.
*/
while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
xfs_chain_bio(wpc->ioend, wbc, bh);
wpc->ioend->io_size += bh->b_size;
wpc->last_block = bh->b_blocknr;
xfs_start_buffer_writeback(bh);
}
STATIC void
xfs_map_buffer(
struct inode *inode,
struct buffer_head *bh,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
sector_t bn;
struct xfs_mount *m = XFS_I(inode)->i_mount;
xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
((offset - iomap_offset) >> inode->i_blkbits);
ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
bh->b_blocknr = bn;
set_buffer_mapped(bh);
}
STATIC void
xfs_map_at_offset(
struct inode *inode,
struct buffer_head *bh,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
xfs_map_buffer(inode, bh, imap, offset);
set_buffer_mapped(bh);
clear_buffer_delay(bh);
clear_buffer_unwritten(bh);
}
/*
* Test if a given page contains at least one buffer of a given @type.
* If @check_all_buffers is true, then we walk all the buffers in the page to
* try to find one of the type passed in. If it is not set, then the caller only
* needs to check the first buffer on the page for a match.
*/
STATIC bool
xfs_check_page_type(
struct page *page,
unsigned int type,
bool check_all_buffers)
{
struct buffer_head *bh;
struct buffer_head *head;
if (PageWriteback(page))
return false;
if (!page->mapping)
return false;
if (!page_has_buffers(page))
return false;
bh = head = page_buffers(page);
do {
if (buffer_unwritten(bh)) {
if (type == XFS_IO_UNWRITTEN)
return true;
} else if (buffer_delay(bh)) {
if (type == XFS_IO_DELALLOC)
return true;
} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
if (type == XFS_IO_OVERWRITE)
return true;
}
/* If we are only checking the first buffer, we are done now. */
if (!check_all_buffers)
break;
} while ((bh = bh->b_this_page) != head);
return false;
}
STATIC void
xfs_vm_invalidatepage(
struct page *page,
unsigned int offset,
unsigned int length)
{
trace_xfs_invalidatepage(page->mapping->host, page, offset,
length);
block_invalidatepage(page, offset, length);
}
/*
* If the page has delalloc buffers on it, we need to punch them out before we
* invalidate the page. If we don't, we leave a stale delalloc mapping on the
* inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
* is done on that same region - the delalloc extent is returned when none is
* supposed to be there.
*
* We prevent this by truncating away the delalloc regions on the page before
* invalidating it. Because they are delalloc, we can do this without needing a
* transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
* truncation without a transaction as there is no space left for block
* reservation (typically why we see a ENOSPC in writeback).
*
* This is not a performance critical path, so for now just do the punching a
* buffer head at a time.
*/
STATIC void
xfs_aops_discard_page(
struct page *page)
{
struct inode *inode = page->mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct buffer_head *bh, *head;
loff_t offset = page_offset(page);
if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
goto out_invalidate;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
goto out_invalidate;
xfs_alert(ip->i_mount,
"page discard on page %p, inode 0x%llx, offset %llu.",
page, ip->i_ino, offset);
xfs_ilock(ip, XFS_ILOCK_EXCL);
bh = head = page_buffers(page);
do {
int error;
xfs_fileoff_t start_fsb;
if (!buffer_delay(bh))
goto next_buffer;
start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
if (error) {
/* something screwed, just bail */
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
xfs_alert(ip->i_mount,
"page discard unable to remove delalloc mapping.");
}
break;
}
next_buffer:
offset += 1 << inode->i_blkbits;
} while ((bh = bh->b_this_page) != head);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out_invalidate:
xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
return;
}
static int
xfs_map_cow(
struct xfs_writepage_ctx *wpc,
struct inode *inode,
loff_t offset,
unsigned int *new_type)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_bmbt_irec imap;
bool is_cow = false;
int error;
/*
* If we already have a valid COW mapping keep using it.
*/
if (wpc->io_type == XFS_IO_COW) {
wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
if (wpc->imap_valid) {
*new_type = XFS_IO_COW;
return 0;
}
}
/*
* Else we need to check if there is a COW mapping at this offset.
*/
xfs_ilock(ip, XFS_ILOCK_SHARED);
is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (!is_cow)
return 0;
/*
* And if the COW mapping has a delayed extent here we need to
* allocate real space for it now.
*/
if (isnullstartblock(imap.br_startblock)) {
error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
&imap);
if (error)
return error;
}
wpc->io_type = *new_type = XFS_IO_COW;
wpc->imap_valid = true;
wpc->imap = imap;
return 0;
}
/*
* We implement an immediate ioend submission policy here to avoid needing to
* chain multiple ioends and hence nest mempool allocations which can violate
* forward progress guarantees we need to provide. The current ioend we are
* adding buffers to is cached on the writepage context, and if the new buffer
* does not append to the cached ioend it will create a new ioend and cache that
* instead.
*
* If a new ioend is created and cached, the old ioend is returned and queued
* locally for submission once the entire page is processed or an error has been
* detected. While ioends are submitted immediately after they are completed,
* batching optimisations are provided by higher level block plugging.
*
* At the end of a writeback pass, there will be a cached ioend remaining on the
* writepage context that the caller will need to submit.
*/
static int
xfs_writepage_map(
struct xfs_writepage_ctx *wpc,
struct writeback_control *wbc,
struct inode *inode,
struct page *page,
loff_t offset,
__uint64_t end_offset)
{
LIST_HEAD(submit_list);
struct xfs_ioend *ioend, *next;
struct buffer_head *bh, *head;
ssize_t len = 1 << inode->i_blkbits;
int error = 0;
int count = 0;
int uptodate = 1;
unsigned int new_type;
bh = head = page_buffers(page);
offset = page_offset(page);
do {
if (offset >= end_offset)
break;
if (!buffer_uptodate(bh))
uptodate = 0;
/*
* set_page_dirty dirties all buffers in a page, independent
* of their state. The dirty state however is entirely
* meaningless for holes (!mapped && uptodate), so skip
* buffers covering holes here.
*/
if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
wpc->imap_valid = false;
continue;
}
if (buffer_unwritten(bh))
new_type = XFS_IO_UNWRITTEN;
else if (buffer_delay(bh))
new_type = XFS_IO_DELALLOC;
else if (buffer_uptodate(bh))
new_type = XFS_IO_OVERWRITE;
else {
if (PageUptodate(page))
ASSERT(buffer_mapped(bh));
/*
* This buffer is not uptodate and will not be
* written to disk. Ensure that we will put any
* subsequent writeable buffers into a new
* ioend.
*/
wpc->imap_valid = false;
continue;
}
if (xfs_is_reflink_inode(XFS_I(inode))) {
error = xfs_map_cow(wpc, inode, offset, &new_type);
if (error)
goto out;
}
if (wpc->io_type != new_type) {
wpc->io_type = new_type;
wpc->imap_valid = false;
}
if (wpc->imap_valid)
wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
offset);
if (!wpc->imap_valid) {
error = xfs_map_blocks(inode, offset, &wpc->imap,
wpc->io_type);
if (error)
goto out;
wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
offset);
}
if (wpc->imap_valid) {
lock_buffer(bh);
if (wpc->io_type != XFS_IO_OVERWRITE)
xfs_map_at_offset(inode, bh, &wpc->imap, offset);
xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
count++;
}
} while (offset += len, ((bh = bh->b_this_page) != head));
if (uptodate && bh == head)
SetPageUptodate(page);
ASSERT(wpc->ioend || list_empty(&submit_list));
out:
/*
* On error, we have to fail the ioend here because we have locked
* buffers in the ioend. If we don't do this, we'll deadlock
* invalidating the page as that tries to lock the buffers on the page.
* Also, because we may have set pages under writeback, we have to make
* sure we run IO completion to mark the error state of the IO
* appropriately, so we can't cancel the ioend directly here. That means
* we have to mark this page as under writeback if we included any
* buffers from it in the ioend chain so that completion treats it
* correctly.
*
* If we didn't include the page in the ioend, the on error we can
* simply discard and unlock it as there are no other users of the page
* or it's buffers right now. The caller will still need to trigger
* submission of outstanding ioends on the writepage context so they are
* treated correctly on error.
*/
if (count) {
xfs_start_page_writeback(page, !error);
/*
* Preserve the original error if there was one, otherwise catch
* submission errors here and propagate into subsequent ioend
* submissions.
*/
list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
int error2;
list_del_init(&ioend->io_list);
error2 = xfs_submit_ioend(wbc, ioend, error);
if (error2 && !error)
error = error2;
}
} else if (error) {
xfs_aops_discard_page(page);
ClearPageUptodate(page);
unlock_page(page);
} else {
/*
* We can end up here with no error and nothing to write if we
* race with a partial page truncate on a sub-page block sized
* filesystem. In that case we need to mark the page clean.
*/
xfs_start_page_writeback(page, 1);
end_page_writeback(page);
}
mapping_set_error(page->mapping, error);
return error;
}
/*
* Write out a dirty page.
*
* For delalloc space on the page we need to allocate space and flush it.
* For unwritten space on the page we need to start the conversion to
* regular allocated space.
* For any other dirty buffer heads on the page we should flush them.
*/
STATIC int
xfs_do_writepage(
struct page *page,
struct writeback_control *wbc,
void *data)
{
struct xfs_writepage_ctx *wpc = data;
struct inode *inode = page->mapping->host;
loff_t offset;
__uint64_t end_offset;
pgoff_t end_index;
trace_xfs_writepage(inode, page, 0, 0);
ASSERT(page_has_buffers(page));
/*
* Refuse to write the page out if we are called from reclaim context.
*
* This avoids stack overflows when called from deeply used stacks in
* random callers for direct reclaim or memcg reclaim. We explicitly
* allow reclaim from kswapd as the stack usage there is relatively low.
*
* This should never happen except in the case of a VM regression so
* warn about it.
*/
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
PF_MEMALLOC))
goto redirty;
/*
* Given that we do not allow direct reclaim to call us, we should
* never be called while in a filesystem transaction.
*/
if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
goto redirty;
/*
* Is this page beyond the end of the file?
*
* The page index is less than the end_index, adjust the end_offset
* to the highest offset that this page should represent.
* -----------------------------------------------------
* | file mapping | <EOF> |
* -----------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | |
* ^--------------------------------^----------|--------
* | desired writeback range | see else |
* ---------------------------------^------------------|
*/
offset = i_size_read(inode);
end_index = offset >> PAGE_SHIFT;
if (page->index < end_index)
end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
else {
/*
* Check whether the page to write out is beyond or straddles
* i_size or not.
* -------------------------------------------------------
* | file mapping | <EOF> |
* -------------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
* ^--------------------------------^-----------|---------
* | | Straddles |
* ---------------------------------^-----------|--------|
*/
unsigned offset_into_page = offset & (PAGE_SIZE - 1);
/*
* Skip the page if it is fully outside i_size, e.g. due to a
* truncate operation that is in progress. We must redirty the
* page so that reclaim stops reclaiming it. Otherwise
* xfs_vm_releasepage() is called on it and gets confused.
*
* Note that the end_index is unsigned long, it would overflow
* if the given offset is greater than 16TB on 32-bit system
* and if we do check the page is fully outside i_size or not
* via "if (page->index >= end_index + 1)" as "end_index + 1"
* will be evaluated to 0. Hence this page will be redirtied
* and be written out repeatedly which would result in an
* infinite loop, the user program that perform this operation
* will hang. Instead, we can verify this situation by checking
* if the page to write is totally beyond the i_size or if it's
* offset is just equal to the EOF.
*/
if (page->index > end_index ||
(page->index == end_index && offset_into_page == 0))
goto redirty;
/*
* The page straddles i_size. It must be zeroed out on each
* and every writepage invocation because it may be mmapped.
* "A file is mapped in multiples of the page size. For a file
* that is not a multiple of the page size, the remaining
* memory is zeroed when mapped, and writes to that region are
* not written out to the file."
*/
zero_user_segment(page, offset_into_page, PAGE_SIZE);
/* Adjust the end_offset to the end of file */
end_offset = offset;
}
return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
redirty:
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
STATIC int
xfs_vm_writepage(
struct page *page,
struct writeback_control *wbc)
{
struct xfs_writepage_ctx wpc = {
.io_type = XFS_IO_INVALID,
};
int ret;
ret = xfs_do_writepage(page, wbc, &wpc);
if (wpc.ioend)
ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
return ret;
}
STATIC int
xfs_vm_writepages(
struct address_space *mapping,
struct writeback_control *wbc)
{
struct xfs_writepage_ctx wpc = {
.io_type = XFS_IO_INVALID,
};
int ret;
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
if (dax_mapping(mapping))
return dax_writeback_mapping_range(mapping,
xfs_find_bdev_for_inode(mapping->host), wbc);
ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
if (wpc.ioend)
ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
return ret;
}
/*
* Called to move a page into cleanable state - and from there
* to be released. The page should already be clean. We always
* have buffer heads in this call.
*
* Returns 1 if the page is ok to release, 0 otherwise.
*/
STATIC int
xfs_vm_releasepage(
struct page *page,
gfp_t gfp_mask)
{
int delalloc, unwritten;
trace_xfs_releasepage(page->mapping->host, page, 0, 0);
/*
* mm accommodates an old ext3 case where clean pages might not have had
* the dirty bit cleared. Thus, it can send actual dirty pages to
* ->releasepage() via shrink_active_list(). Conversely,
* block_invalidatepage() can send pages that are still marked dirty
* but otherwise have invalidated buffers.
*
* We want to release the latter to avoid unnecessary buildup of the
* LRU, skip the former and warn if we've left any lingering
* delalloc/unwritten buffers on clean pages. Skip pages with delalloc
* or unwritten buffers and warn if the page is not dirty. Otherwise
* try to release the buffers.
*/
xfs_count_page_state(page, &delalloc, &unwritten);
if (delalloc) {
WARN_ON_ONCE(!PageDirty(page));
return 0;
}
if (unwritten) {
WARN_ON_ONCE(!PageDirty(page));
return 0;
}
return try_to_free_buffers(page);
}
/*
* If this is O_DIRECT or the mpage code calling tell them how large the mapping
* is, so that we can avoid repeated get_blocks calls.
*
* If the mapping spans EOF, then we have to break the mapping up as the mapping
* for blocks beyond EOF must be marked new so that sub block regions can be
* correctly zeroed. We can't do this for mappings within EOF unless the mapping
* was just allocated or is unwritten, otherwise the callers would overwrite
* existing data with zeros. Hence we have to split the mapping into a range up
* to and including EOF, and a second mapping for beyond EOF.
*/
static void
xfs_map_trim_size(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
struct xfs_bmbt_irec *imap,
xfs_off_t offset,
ssize_t size)
{
xfs_off_t mapping_size;
mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
mapping_size <<= inode->i_blkbits;
ASSERT(mapping_size > 0);
if (mapping_size > size)
mapping_size = size;
if (offset < i_size_read(inode) &&
offset + mapping_size >= i_size_read(inode)) {
/* limit mapping to block that spans EOF */
mapping_size = roundup_64(i_size_read(inode) - offset,
1 << inode->i_blkbits);
}
if (mapping_size > LONG_MAX)
mapping_size = LONG_MAX;
bh_result->b_size = mapping_size;
}
static int
xfs_get_blocks(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb, end_fsb;
int error = 0;
int lockmode = 0;
struct xfs_bmbt_irec imap;
int nimaps = 1;
xfs_off_t offset;
ssize_t size;
BUG_ON(create);
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
offset = (xfs_off_t)iblock << inode->i_blkbits;
ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
size = bh_result->b_size;
if (offset >= i_size_read(inode))
return 0;
/*
* Direct I/O is usually done on preallocated files, so try getting
* a block mapping without an exclusive lock first.
*/
lockmode = xfs_ilock_data_map_shared(ip);
ASSERT(offset <= mp->m_super->s_maxbytes);
if (offset + size > mp->m_super->s_maxbytes)
size = mp->m_super->s_maxbytes - offset;
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
offset_fsb = XFS_B_TO_FSBT(mp, offset);
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
&imap, &nimaps, XFS_BMAPI_ENTIRE);
if (error)
goto out_unlock;
if (nimaps) {
trace_xfs_get_blocks_found(ip, offset, size,
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
: XFS_IO_OVERWRITE, &imap);
xfs_iunlock(ip, lockmode);
} else {
trace_xfs_get_blocks_notfound(ip, offset, size);
goto out_unlock;
}
/* trim mapping down to size requested */
xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
/*
* For unwritten extents do not report a disk address in the buffered
* read case (treat as if we're reading into a hole).
*/
if (imap.br_startblock != HOLESTARTBLOCK &&
imap.br_startblock != DELAYSTARTBLOCK &&
!ISUNWRITTEN(&imap))
xfs_map_buffer(inode, bh_result, &imap, offset);
/*
* If this is a realtime file, data may be on a different device.
* to that pointed to from the buffer_head b_bdev currently.
*/
bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
return 0;
out_unlock:
xfs_iunlock(ip, lockmode);
return error;
}
STATIC ssize_t
xfs_vm_direct_IO(
struct kiocb *iocb,
struct iov_iter *iter)
{
/*
* We just need the method present so that open/fcntl allow direct I/O.
*/
return -EINVAL;
}
STATIC sector_t
xfs_vm_bmap(
struct address_space *mapping,
sector_t block)
{
struct inode *inode = (struct inode *)mapping->host;
struct xfs_inode *ip = XFS_I(inode);
trace_xfs_vm_bmap(XFS_I(inode));
/*
* The swap code (ab-)uses ->bmap to get a block mapping and then
* bypasseѕ the file system for actual I/O. We really can't allow
* that on reflinks inodes, so we have to skip out here. And yes,
* 0 is the magic code for a bmap error..
*/
if (xfs_is_reflink_inode(ip))
return 0;
filemap_write_and_wait(mapping);
return generic_block_bmap(mapping, block, xfs_get_blocks);
}
STATIC int
xfs_vm_readpage(
struct file *unused,
struct page *page)
{
trace_xfs_vm_readpage(page->mapping->host, 1);
return mpage_readpage(page, xfs_get_blocks);
}
STATIC int
xfs_vm_readpages(
struct file *unused,
struct address_space *mapping,
struct list_head *pages,
unsigned nr_pages)
{
trace_xfs_vm_readpages(mapping->host, nr_pages);
return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
}
/*
* This is basically a copy of __set_page_dirty_buffers() with one
* small tweak: buffers beyond EOF do not get marked dirty. If we mark them
* dirty, we'll never be able to clean them because we don't write buffers
* beyond EOF, and that means we can't invalidate pages that span EOF
* that have been marked dirty. Further, the dirty state can leak into
* the file interior if the file is extended, resulting in all sorts of
* bad things happening as the state does not match the underlying data.
*
* XXX: this really indicates that bufferheads in XFS need to die. Warts like
* this only exist because of bufferheads and how the generic code manages them.
*/
STATIC int
xfs_vm_set_page_dirty(
struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
loff_t end_offset;
loff_t offset;
int newly_dirty;
if (unlikely(!mapping))
return !TestSetPageDirty(page);
end_offset = i_size_read(inode);
offset = page_offset(page);
spin_lock(&mapping->private_lock);
if (page_has_buffers(page)) {
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh = head;
do {
if (offset < end_offset)
set_buffer_dirty(bh);
bh = bh->b_this_page;
offset += 1 << inode->i_blkbits;
} while (bh != head);
}
/*
* Lock out page->mem_cgroup migration to keep PageDirty
* synchronized with per-memcg dirty page counters.
*/
lock_page_memcg(page);
newly_dirty = !TestSetPageDirty(page);
spin_unlock(&mapping->private_lock);
if (newly_dirty) {
/* sigh - __set_page_dirty() is static, so copy it here, too */
unsigned long flags;
spin_lock_irqsave(&mapping->tree_lock, flags);
if (page->mapping) { /* Race with truncate? */
WARN_ON_ONCE(!PageUptodate(page));
account_page_dirtied(page, mapping);
radix_tree_tag_set(&mapping->page_tree,
page_index(page), PAGECACHE_TAG_DIRTY);
}
spin_unlock_irqrestore(&mapping->tree_lock, flags);
}
unlock_page_memcg(page);
if (newly_dirty)
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
return newly_dirty;
}
const struct address_space_operations xfs_address_space_operations = {
.readpage = xfs_vm_readpage,
.readpages = xfs_vm_readpages,
.writepage = xfs_vm_writepage,
.writepages = xfs_vm_writepages,
.set_page_dirty = xfs_vm_set_page_dirty,
.releasepage = xfs_vm_releasepage,
.invalidatepage = xfs_vm_invalidatepage,
.bmap = xfs_vm_bmap,
.direct_IO = xfs_vm_direct_IO,
.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};