4446 строки
122 KiB
C
4446 строки
122 KiB
C
/*
|
|
* WaveLAN ISA driver
|
|
*
|
|
* Jean II - HPLB '96
|
|
*
|
|
* Reorganisation and extension of the driver.
|
|
* Original copyright follows (also see the end of this file).
|
|
* See wavelan.p.h for details.
|
|
*
|
|
*
|
|
*
|
|
* AT&T GIS (nee NCR) WaveLAN card:
|
|
* An Ethernet-like radio transceiver
|
|
* controlled by an Intel 82586 coprocessor.
|
|
*/
|
|
|
|
#include "wavelan.p.h" /* Private header */
|
|
|
|
/************************* MISC SUBROUTINES **************************/
|
|
/*
|
|
* Subroutines which won't fit in one of the following category
|
|
* (WaveLAN modem or i82586)
|
|
*/
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Translate irq number to PSA irq parameter
|
|
*/
|
|
static u8 wv_irq_to_psa(int irq)
|
|
{
|
|
if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
|
|
return 0;
|
|
|
|
return irqvals[irq];
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Translate PSA irq parameter to irq number
|
|
*/
|
|
static int __init wv_psa_to_irq(u8 irqval)
|
|
{
|
|
int irq;
|
|
|
|
for (irq = 0; irq < ARRAY_SIZE(irqvals); irq++)
|
|
if (irqvals[irq] == irqval)
|
|
return irq;
|
|
|
|
return -1;
|
|
}
|
|
|
|
#ifdef STRUCT_CHECK
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Sanity routine to verify the sizes of the various WaveLAN interface
|
|
* structures.
|
|
*/
|
|
static char *wv_struct_check(void)
|
|
{
|
|
#define SC(t,s,n) if (sizeof(t) != s) return(n);
|
|
|
|
SC(psa_t, PSA_SIZE, "psa_t");
|
|
SC(mmw_t, MMW_SIZE, "mmw_t");
|
|
SC(mmr_t, MMR_SIZE, "mmr_t");
|
|
SC(ha_t, HA_SIZE, "ha_t");
|
|
|
|
#undef SC
|
|
|
|
return ((char *) NULL);
|
|
} /* wv_struct_check */
|
|
#endif /* STRUCT_CHECK */
|
|
|
|
/********************* HOST ADAPTER SUBROUTINES *********************/
|
|
/*
|
|
* Useful subroutines to manage the WaveLAN ISA interface
|
|
*
|
|
* One major difference with the PCMCIA hardware (except the port mapping)
|
|
* is that we have to keep the state of the Host Control Register
|
|
* because of the interrupt enable & bus size flags.
|
|
*/
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Read from card's Host Adaptor Status Register.
|
|
*/
|
|
static inline u16 hasr_read(unsigned long ioaddr)
|
|
{
|
|
return (inw(HASR(ioaddr)));
|
|
} /* hasr_read */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Write to card's Host Adapter Command Register.
|
|
*/
|
|
static inline void hacr_write(unsigned long ioaddr, u16 hacr)
|
|
{
|
|
outw(hacr, HACR(ioaddr));
|
|
} /* hacr_write */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Write to card's Host Adapter Command Register. Include a delay for
|
|
* those times when it is needed.
|
|
*/
|
|
static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
|
|
{
|
|
hacr_write(ioaddr, hacr);
|
|
/* delay might only be needed sometimes */
|
|
mdelay(1);
|
|
} /* hacr_write_slow */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Set the channel attention bit.
|
|
*/
|
|
static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
|
|
{
|
|
hacr_write(ioaddr, hacr | HACR_CA);
|
|
} /* set_chan_attn */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Reset, and then set host adaptor into default mode.
|
|
*/
|
|
static inline void wv_hacr_reset(unsigned long ioaddr)
|
|
{
|
|
hacr_write_slow(ioaddr, HACR_RESET);
|
|
hacr_write(ioaddr, HACR_DEFAULT);
|
|
} /* wv_hacr_reset */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Set the I/O transfer over the ISA bus to 8-bit mode
|
|
*/
|
|
static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
|
|
{
|
|
hacr &= ~HACR_16BITS;
|
|
hacr_write(ioaddr, hacr);
|
|
} /* wv_16_off */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Set the I/O transfer over the ISA bus to 8-bit mode
|
|
*/
|
|
static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
|
|
{
|
|
hacr |= HACR_16BITS;
|
|
hacr_write(ioaddr, hacr);
|
|
} /* wv_16_on */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Disable interrupts on the WaveLAN hardware.
|
|
* (called by wv_82586_stop())
|
|
*/
|
|
static inline void wv_ints_off(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
|
|
lp->hacr &= ~HACR_INTRON;
|
|
hacr_write(ioaddr, lp->hacr);
|
|
} /* wv_ints_off */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Enable interrupts on the WaveLAN hardware.
|
|
* (called by wv_hw_reset())
|
|
*/
|
|
static inline void wv_ints_on(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
|
|
lp->hacr |= HACR_INTRON;
|
|
hacr_write(ioaddr, lp->hacr);
|
|
} /* wv_ints_on */
|
|
|
|
/******************* MODEM MANAGEMENT SUBROUTINES *******************/
|
|
/*
|
|
* Useful subroutines to manage the modem of the WaveLAN
|
|
*/
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Read the Parameter Storage Area from the WaveLAN card's memory
|
|
*/
|
|
/*
|
|
* Read bytes from the PSA.
|
|
*/
|
|
static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
|
|
u8 * b, /* buffer to fill */
|
|
int n)
|
|
{ /* size to read */
|
|
wv_16_off(ioaddr, hacr);
|
|
|
|
while (n-- > 0) {
|
|
outw(o, PIOR2(ioaddr));
|
|
o++;
|
|
*b++ = inb(PIOP2(ioaddr));
|
|
}
|
|
|
|
wv_16_on(ioaddr, hacr);
|
|
} /* psa_read */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Write the Parameter Storage Area to the WaveLAN card's memory.
|
|
*/
|
|
static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
|
|
u8 * b, /* Buffer in memory */
|
|
int n)
|
|
{ /* Length of buffer */
|
|
int count = 0;
|
|
|
|
wv_16_off(ioaddr, hacr);
|
|
|
|
while (n-- > 0) {
|
|
outw(o, PIOR2(ioaddr));
|
|
o++;
|
|
|
|
outb(*b, PIOP2(ioaddr));
|
|
b++;
|
|
|
|
/* Wait for the memory to finish its write cycle */
|
|
count = 0;
|
|
while ((count++ < 100) &&
|
|
(hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
|
|
}
|
|
|
|
wv_16_on(ioaddr, hacr);
|
|
} /* psa_write */
|
|
|
|
#ifdef SET_PSA_CRC
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Calculate the PSA CRC
|
|
* Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
|
|
* NOTE: By specifying a length including the CRC position the
|
|
* returned value should be zero. (i.e. a correct checksum in the PSA)
|
|
*
|
|
* The Windows drivers don't use the CRC, but the AP and the PtP tool
|
|
* depend on it.
|
|
*/
|
|
static u16 psa_crc(u8 * psa, /* The PSA */
|
|
int size)
|
|
{ /* Number of short for CRC */
|
|
int byte_cnt; /* Loop on the PSA */
|
|
u16 crc_bytes = 0; /* Data in the PSA */
|
|
int bit_cnt; /* Loop on the bits of the short */
|
|
|
|
for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
|
|
crc_bytes ^= psa[byte_cnt]; /* Its an xor */
|
|
|
|
for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
|
|
if (crc_bytes & 0x0001)
|
|
crc_bytes = (crc_bytes >> 1) ^ 0xA001;
|
|
else
|
|
crc_bytes >>= 1;
|
|
}
|
|
}
|
|
|
|
return crc_bytes;
|
|
} /* psa_crc */
|
|
#endif /* SET_PSA_CRC */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* update the checksum field in the Wavelan's PSA
|
|
*/
|
|
static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
|
|
{
|
|
#ifdef SET_PSA_CRC
|
|
psa_t psa;
|
|
u16 crc;
|
|
|
|
/* read the parameter storage area */
|
|
psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
|
|
|
|
/* update the checksum */
|
|
crc = psa_crc((unsigned char *) &psa,
|
|
sizeof(psa) - sizeof(psa.psa_crc[0]) -
|
|
sizeof(psa.psa_crc[1])
|
|
- sizeof(psa.psa_crc_status));
|
|
|
|
psa.psa_crc[0] = crc & 0xFF;
|
|
psa.psa_crc[1] = (crc & 0xFF00) >> 8;
|
|
|
|
/* Write it ! */
|
|
psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
|
|
(unsigned char *) &psa.psa_crc, 2);
|
|
|
|
#ifdef DEBUG_IOCTL_INFO
|
|
printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
|
|
dev->name, psa.psa_crc[0], psa.psa_crc[1]);
|
|
|
|
/* Check again (luxury !) */
|
|
crc = psa_crc((unsigned char *) &psa,
|
|
sizeof(psa) - sizeof(psa.psa_crc_status));
|
|
|
|
if (crc != 0)
|
|
printk(KERN_WARNING
|
|
"%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
|
|
dev->name);
|
|
#endif /* DEBUG_IOCTL_INFO */
|
|
#endif /* SET_PSA_CRC */
|
|
} /* update_psa_checksum */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Write 1 byte to the MMC.
|
|
*/
|
|
static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
|
|
{
|
|
int count = 0;
|
|
|
|
/* Wait for MMC to go idle */
|
|
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
|
|
udelay(10);
|
|
|
|
outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Routine to write bytes to the Modem Management Controller.
|
|
* We start at the end because it is the way it should be!
|
|
*/
|
|
static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
|
|
{
|
|
o += n;
|
|
b += n;
|
|
|
|
while (n-- > 0)
|
|
mmc_out(ioaddr, --o, *(--b));
|
|
} /* mmc_write */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Read a byte from the MMC.
|
|
* Optimised version for 1 byte, avoid using memory.
|
|
*/
|
|
static u8 mmc_in(unsigned long ioaddr, u16 o)
|
|
{
|
|
int count = 0;
|
|
|
|
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
|
|
udelay(10);
|
|
outw(o << 1, MMCR(ioaddr));
|
|
|
|
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
|
|
udelay(10);
|
|
return (u8) (inw(MMCR(ioaddr)) >> 8);
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Routine to read bytes from the Modem Management Controller.
|
|
* The implementation is complicated by a lack of address lines,
|
|
* which prevents decoding of the low-order bit.
|
|
* (code has just been moved in the above function)
|
|
* We start at the end because it is the way it should be!
|
|
*/
|
|
static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
|
|
{
|
|
o += n;
|
|
b += n;
|
|
|
|
while (n-- > 0)
|
|
*(--b) = mmc_in(ioaddr, --o);
|
|
} /* mmc_read */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Get the type of encryption available.
|
|
*/
|
|
static inline int mmc_encr(unsigned long ioaddr)
|
|
{ /* I/O port of the card */
|
|
int temp;
|
|
|
|
temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
|
|
if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
|
|
return 0;
|
|
else
|
|
return temp;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wait for the frequency EEPROM to complete a command.
|
|
* I hope this one will be optimally inlined.
|
|
*/
|
|
static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
|
|
int delay, /* Base delay to wait for */
|
|
int number)
|
|
{ /* Number of time to wait */
|
|
int count = 0; /* Wait only a limited time */
|
|
|
|
while ((count++ < number) &&
|
|
(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
|
|
MMR_FEE_STATUS_BUSY)) udelay(delay);
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Read bytes from the Frequency EEPROM (frequency select cards).
|
|
*/
|
|
static void fee_read(unsigned long ioaddr, /* I/O port of the card */
|
|
u16 o, /* destination offset */
|
|
u16 * b, /* data buffer */
|
|
int n)
|
|
{ /* number of registers */
|
|
b += n; /* Position at the end of the area */
|
|
|
|
/* Write the address */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
|
|
|
|
/* Loop on all buffer */
|
|
while (n-- > 0) {
|
|
/* Write the read command */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
|
|
MMW_FEE_CTRL_READ);
|
|
|
|
/* Wait until EEPROM is ready (should be quick). */
|
|
fee_wait(ioaddr, 10, 100);
|
|
|
|
/* Read the value. */
|
|
*--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
|
|
mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
|
|
}
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Write bytes from the Frequency EEPROM (frequency select cards).
|
|
* This is a bit complicated, because the frequency EEPROM has to
|
|
* be unprotected and the write enabled.
|
|
* Jean II
|
|
*/
|
|
static void fee_write(unsigned long ioaddr, /* I/O port of the card */
|
|
u16 o, /* destination offset */
|
|
u16 * b, /* data buffer */
|
|
int n)
|
|
{ /* number of registers */
|
|
b += n; /* Position at the end of the area. */
|
|
|
|
#ifdef EEPROM_IS_PROTECTED /* disabled */
|
|
#ifdef DOESNT_SEEM_TO_WORK /* disabled */
|
|
/* Ask to read the protected register */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
|
|
|
|
fee_wait(ioaddr, 10, 100);
|
|
|
|
/* Read the protected register. */
|
|
printk("Protected 2: %02X-%02X\n",
|
|
mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
|
|
mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
|
|
#endif /* DOESNT_SEEM_TO_WORK */
|
|
|
|
/* Enable protected register. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
|
|
|
|
fee_wait(ioaddr, 10, 100);
|
|
|
|
/* Unprotect area. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
|
|
#ifdef DOESNT_SEEM_TO_WORK /* disabled */
|
|
/* or use: */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
|
|
#endif /* DOESNT_SEEM_TO_WORK */
|
|
|
|
fee_wait(ioaddr, 10, 100);
|
|
#endif /* EEPROM_IS_PROTECTED */
|
|
|
|
/* Write enable. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
|
|
|
|
fee_wait(ioaddr, 10, 100);
|
|
|
|
/* Write the EEPROM address. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
|
|
|
|
/* Loop on all buffer */
|
|
while (n-- > 0) {
|
|
/* Write the value. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
|
|
|
|
/* Write the write command. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
|
|
MMW_FEE_CTRL_WRITE);
|
|
|
|
/* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
|
|
mdelay(10);
|
|
fee_wait(ioaddr, 10, 100);
|
|
}
|
|
|
|
/* Write disable. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
|
|
|
|
fee_wait(ioaddr, 10, 100);
|
|
|
|
#ifdef EEPROM_IS_PROTECTED /* disabled */
|
|
/* Reprotect EEPROM. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
|
|
|
|
fee_wait(ioaddr, 10, 100);
|
|
#endif /* EEPROM_IS_PROTECTED */
|
|
}
|
|
|
|
/************************ I82586 SUBROUTINES *************************/
|
|
/*
|
|
* Useful subroutines to manage the Ethernet controller
|
|
*/
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Read bytes from the on-board RAM.
|
|
* Why does inlining this function make it fail?
|
|
*/
|
|
static /*inline */ void obram_read(unsigned long ioaddr,
|
|
u16 o, u8 * b, int n)
|
|
{
|
|
outw(o, PIOR1(ioaddr));
|
|
insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Write bytes to the on-board RAM.
|
|
*/
|
|
static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
|
|
{
|
|
outw(o, PIOR1(ioaddr));
|
|
outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Acknowledge the reading of the status issued by the i82586.
|
|
*/
|
|
static void wv_ack(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
u16 scb_cs;
|
|
int i;
|
|
|
|
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
|
|
(unsigned char *) &scb_cs, sizeof(scb_cs));
|
|
scb_cs &= SCB_ST_INT;
|
|
|
|
if (scb_cs == 0)
|
|
return;
|
|
|
|
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &scb_cs, sizeof(scb_cs));
|
|
|
|
set_chan_attn(ioaddr, lp->hacr);
|
|
|
|
for (i = 1000; i > 0; i--) {
|
|
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &scb_cs, sizeof(scb_cs));
|
|
if (scb_cs == 0)
|
|
break;
|
|
|
|
udelay(10);
|
|
}
|
|
udelay(100);
|
|
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
if (i <= 0)
|
|
printk(KERN_INFO
|
|
"%s: wv_ack(): board not accepting command.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Set channel attention bit and busy wait until command has
|
|
* completed, then acknowledge completion of the command.
|
|
*/
|
|
static int wv_synchronous_cmd(struct net_device * dev, const char *str)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
u16 scb_cmd;
|
|
ach_t cb;
|
|
int i;
|
|
|
|
scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
|
|
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &scb_cmd, sizeof(scb_cmd));
|
|
|
|
set_chan_attn(ioaddr, lp->hacr);
|
|
|
|
for (i = 1000; i > 0; i--) {
|
|
obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
|
|
sizeof(cb));
|
|
if (cb.ac_status & AC_SFLD_C)
|
|
break;
|
|
|
|
udelay(10);
|
|
}
|
|
udelay(100);
|
|
|
|
if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
|
|
dev->name, str, cb.ac_status);
|
|
#endif
|
|
#ifdef DEBUG_I82586_SHOW
|
|
wv_scb_show(ioaddr);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
/* Ack the status */
|
|
wv_ack(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Configuration commands completion interrupt.
|
|
* Check if done, and if OK.
|
|
*/
|
|
static int
|
|
wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
|
|
{
|
|
unsigned short mcs_addr;
|
|
unsigned short status;
|
|
int ret;
|
|
|
|
#ifdef DEBUG_INTERRUPT_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
|
|
#endif
|
|
|
|
mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
|
|
+ sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
|
|
|
|
/* Read the status of the last command (set mc list). */
|
|
obram_read(ioaddr, acoff(mcs_addr, ac_status),
|
|
(unsigned char *) &status, sizeof(status));
|
|
|
|
/* If not completed -> exit */
|
|
if ((status & AC_SFLD_C) == 0)
|
|
ret = 0; /* Not ready to be scrapped */
|
|
else {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
unsigned short cfg_addr;
|
|
unsigned short ias_addr;
|
|
|
|
/* Check mc_config command */
|
|
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
|
|
printk(KERN_INFO
|
|
"%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
|
|
dev->name, status);
|
|
|
|
/* check ia-config command */
|
|
ias_addr = mcs_addr - sizeof(ac_ias_t);
|
|
obram_read(ioaddr, acoff(ias_addr, ac_status),
|
|
(unsigned char *) &status, sizeof(status));
|
|
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
|
|
printk(KERN_INFO
|
|
"%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
|
|
dev->name, status);
|
|
|
|
/* Check config command. */
|
|
cfg_addr = ias_addr - sizeof(ac_cfg_t);
|
|
obram_read(ioaddr, acoff(cfg_addr, ac_status),
|
|
(unsigned char *) &status, sizeof(status));
|
|
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
|
|
printk(KERN_INFO
|
|
"%s: wv_config_complete(): configure failed; status = 0x%x\n",
|
|
dev->name, status);
|
|
#endif /* DEBUG_CONFIG_ERROR */
|
|
|
|
ret = 1; /* Ready to be scrapped */
|
|
}
|
|
|
|
#ifdef DEBUG_INTERRUPT_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
|
|
ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Command completion interrupt.
|
|
* Reclaim as many freed tx buffers as we can.
|
|
* (called in wavelan_interrupt()).
|
|
* Note : the spinlock is already grabbed for us.
|
|
*/
|
|
static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
|
|
{
|
|
int nreaped = 0;
|
|
|
|
#ifdef DEBUG_INTERRUPT_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
|
|
#endif
|
|
|
|
/* Loop on all the transmit buffers */
|
|
while (lp->tx_first_in_use != I82586NULL) {
|
|
unsigned short tx_status;
|
|
|
|
/* Read the first transmit buffer */
|
|
obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
|
|
(unsigned char *) &tx_status,
|
|
sizeof(tx_status));
|
|
|
|
/* If not completed -> exit */
|
|
if ((tx_status & AC_SFLD_C) == 0)
|
|
break;
|
|
|
|
/* Hack for reconfiguration */
|
|
if (tx_status == 0xFFFF)
|
|
if (!wv_config_complete(dev, ioaddr, lp))
|
|
break; /* Not completed */
|
|
|
|
/* We now remove this buffer */
|
|
nreaped++;
|
|
--lp->tx_n_in_use;
|
|
|
|
/*
|
|
if (lp->tx_n_in_use > 0)
|
|
printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
|
|
*/
|
|
|
|
/* Was it the last one? */
|
|
if (lp->tx_n_in_use <= 0)
|
|
lp->tx_first_in_use = I82586NULL;
|
|
else {
|
|
/* Next one in the chain */
|
|
lp->tx_first_in_use += TXBLOCKZ;
|
|
if (lp->tx_first_in_use >=
|
|
OFFSET_CU +
|
|
NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
|
|
NTXBLOCKS * TXBLOCKZ;
|
|
}
|
|
|
|
/* Hack for reconfiguration */
|
|
if (tx_status == 0xFFFF)
|
|
continue;
|
|
|
|
/* Now, check status of the finished command */
|
|
if (tx_status & AC_SFLD_OK) {
|
|
int ncollisions;
|
|
|
|
lp->stats.tx_packets++;
|
|
ncollisions = tx_status & AC_SFLD_MAXCOL;
|
|
lp->stats.collisions += ncollisions;
|
|
#ifdef DEBUG_TX_INFO
|
|
if (ncollisions > 0)
|
|
printk(KERN_DEBUG
|
|
"%s: wv_complete(): tx completed after %d collisions.\n",
|
|
dev->name, ncollisions);
|
|
#endif
|
|
} else {
|
|
lp->stats.tx_errors++;
|
|
if (tx_status & AC_SFLD_S10) {
|
|
lp->stats.tx_carrier_errors++;
|
|
#ifdef DEBUG_TX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_complete(): tx error: no CS.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
if (tx_status & AC_SFLD_S9) {
|
|
lp->stats.tx_carrier_errors++;
|
|
#ifdef DEBUG_TX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_complete(): tx error: lost CTS.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
if (tx_status & AC_SFLD_S8) {
|
|
lp->stats.tx_fifo_errors++;
|
|
#ifdef DEBUG_TX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_complete(): tx error: slow DMA.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
if (tx_status & AC_SFLD_S6) {
|
|
lp->stats.tx_heartbeat_errors++;
|
|
#ifdef DEBUG_TX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_complete(): tx error: heart beat.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
if (tx_status & AC_SFLD_S5) {
|
|
lp->stats.tx_aborted_errors++;
|
|
#ifdef DEBUG_TX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_complete(): tx error: too many collisions.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_TX_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wv_complete(): tx completed, tx_status 0x%04x\n",
|
|
dev->name, tx_status);
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG_INTERRUPT_INFO
|
|
if (nreaped > 1)
|
|
printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
|
|
dev->name, nreaped);
|
|
#endif
|
|
|
|
/*
|
|
* Inform upper layers.
|
|
*/
|
|
if (lp->tx_n_in_use < NTXBLOCKS - 1) {
|
|
netif_wake_queue(dev);
|
|
}
|
|
#ifdef DEBUG_INTERRUPT_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
|
|
#endif
|
|
return nreaped;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Reconfigure the i82586, or at least ask for it.
|
|
* Because wv_82586_config uses a transmission buffer, we must do it
|
|
* when we are sure that there is one left, so we do it now
|
|
* or in wavelan_packet_xmit() (I can't find any better place,
|
|
* wavelan_interrupt is not an option), so you may experience
|
|
* delays sometimes.
|
|
*/
|
|
static void wv_82586_reconfig(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long flags;
|
|
|
|
/* Arm the flag, will be cleard in wv_82586_config() */
|
|
lp->reconfig_82586 = 1;
|
|
|
|
/* Check if we can do it now ! */
|
|
if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
/* May fail */
|
|
wv_82586_config(dev);
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
}
|
|
else {
|
|
#ifdef DEBUG_CONFIG_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wv_82586_reconfig(): delayed (state = %lX)\n",
|
|
dev->name, dev->state);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/********************* DEBUG & INFO SUBROUTINES *********************/
|
|
/*
|
|
* This routine is used in the code to show information for debugging.
|
|
* Most of the time, it dumps the contents of hardware structures.
|
|
*/
|
|
|
|
#ifdef DEBUG_PSA_SHOW
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Print the formatted contents of the Parameter Storage Area.
|
|
*/
|
|
static void wv_psa_show(psa_t * p)
|
|
{
|
|
printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
|
|
printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
|
|
p->psa_io_base_addr_1,
|
|
p->psa_io_base_addr_2,
|
|
p->psa_io_base_addr_3, p->psa_io_base_addr_4);
|
|
printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
|
|
p->psa_rem_boot_addr_1,
|
|
p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
|
|
printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
|
|
printk("psa_int_req_no: %d\n", p->psa_int_req_no);
|
|
#ifdef DEBUG_SHOW_UNUSED
|
|
printk(KERN_DEBUG
|
|
"psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
|
|
p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2],
|
|
p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5],
|
|
p->psa_unused0[6]);
|
|
#endif /* DEBUG_SHOW_UNUSED */
|
|
printk(KERN_DEBUG
|
|
"psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1],
|
|
p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3],
|
|
p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]);
|
|
printk(KERN_DEBUG
|
|
"psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
p->psa_local_mac_addr[0], p->psa_local_mac_addr[1],
|
|
p->psa_local_mac_addr[2], p->psa_local_mac_addr[3],
|
|
p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]);
|
|
printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
|
|
p->psa_univ_local_sel);
|
|
printk("psa_comp_number: %d, ", p->psa_comp_number);
|
|
printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
|
|
printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
|
|
p->psa_feature_select);
|
|
printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
|
|
printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
|
|
printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
|
|
printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
|
|
p->psa_nwid[1]);
|
|
printk("psa_nwid_select: %d\n", p->psa_nwid_select);
|
|
printk(KERN_DEBUG "psa_encryption_select: %d, ",
|
|
p->psa_encryption_select);
|
|
printk
|
|
("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
p->psa_encryption_key[0], p->psa_encryption_key[1],
|
|
p->psa_encryption_key[2], p->psa_encryption_key[3],
|
|
p->psa_encryption_key[4], p->psa_encryption_key[5],
|
|
p->psa_encryption_key[6], p->psa_encryption_key[7]);
|
|
printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
|
|
printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
|
|
p->psa_call_code[0]);
|
|
printk
|
|
("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
|
|
p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
|
|
p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
|
|
p->psa_call_code[6], p->psa_call_code[7]);
|
|
#ifdef DEBUG_SHOW_UNUSED
|
|
printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
|
|
p->psa_reserved[0],
|
|
p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
|
|
#endif /* DEBUG_SHOW_UNUSED */
|
|
printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
|
|
printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
|
|
printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
|
|
} /* wv_psa_show */
|
|
#endif /* DEBUG_PSA_SHOW */
|
|
|
|
#ifdef DEBUG_MMC_SHOW
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Print the formatted status of the Modem Management Controller.
|
|
* This function needs to be completed.
|
|
*/
|
|
static void wv_mmc_show(struct net_device * dev)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv;
|
|
mmr_t m;
|
|
|
|
/* Basic check */
|
|
if (hasr_read(ioaddr) & HASR_NO_CLK) {
|
|
printk(KERN_WARNING
|
|
"%s: wv_mmc_show: modem not connected\n",
|
|
dev->name);
|
|
return;
|
|
}
|
|
|
|
/* Read the mmc */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
|
|
mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
|
|
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
|
|
|
|
/* Don't forget to update statistics */
|
|
lp->wstats.discard.nwid +=
|
|
(m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
|
|
|
|
printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
|
|
#ifdef DEBUG_SHOW_UNUSED
|
|
printk(KERN_DEBUG
|
|
"mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
|
|
m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
|
|
m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
|
|
m.mmr_unused0[6], m.mmr_unused0[7]);
|
|
#endif /* DEBUG_SHOW_UNUSED */
|
|
printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
|
|
m.mmr_des_avail, m.mmr_des_status);
|
|
#ifdef DEBUG_SHOW_UNUSED
|
|
printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
|
|
m.mmr_unused1[0],
|
|
m.mmr_unused1[1],
|
|
m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
|
|
#endif /* DEBUG_SHOW_UNUSED */
|
|
printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
|
|
m.mmr_dce_status,
|
|
(m.
|
|
mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
|
|
"energy detected," : "",
|
|
(m.
|
|
mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
|
|
"loop test indicated," : "",
|
|
(m.
|
|
mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
|
|
"transmitter on," : "",
|
|
(m.
|
|
mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
|
|
"jabber timer expired," : "");
|
|
printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
|
|
#ifdef DEBUG_SHOW_UNUSED
|
|
printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
|
|
m.mmr_unused2[0], m.mmr_unused2[1]);
|
|
#endif /* DEBUG_SHOW_UNUSED */
|
|
printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
|
|
(m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
|
|
(m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
|
|
printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
|
|
m.mmr_thr_pre_set & MMR_THR_PRE_SET,
|
|
(m.
|
|
mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
|
|
"below");
|
|
printk(KERN_DEBUG "signal_lvl: %d [%s], ",
|
|
m.mmr_signal_lvl & MMR_SIGNAL_LVL,
|
|
(m.
|
|
mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
|
|
"no new msg");
|
|
printk("silence_lvl: %d [%s], ",
|
|
m.mmr_silence_lvl & MMR_SILENCE_LVL,
|
|
(m.
|
|
mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
|
|
"no new update");
|
|
printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
|
|
(m.
|
|
mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
|
|
"Antenna 0");
|
|
#ifdef DEBUG_SHOW_UNUSED
|
|
printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
|
|
#endif /* DEBUG_SHOW_UNUSED */
|
|
} /* wv_mmc_show */
|
|
#endif /* DEBUG_MMC_SHOW */
|
|
|
|
#ifdef DEBUG_I82586_SHOW
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Print the last block of the i82586 memory.
|
|
*/
|
|
static void wv_scb_show(unsigned long ioaddr)
|
|
{
|
|
scb_t scb;
|
|
|
|
obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
|
|
sizeof(scb));
|
|
|
|
printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
|
|
|
|
printk(KERN_DEBUG "status: ");
|
|
printk("stat 0x%x[%s%s%s%s] ",
|
|
(scb.
|
|
scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
|
|
SCB_ST_RNR)) >> 12,
|
|
(scb.
|
|
scb_status & SCB_ST_CX) ? "command completion interrupt," :
|
|
"", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
|
|
(scb.
|
|
scb_status & SCB_ST_CNA) ? "command unit not active," : "",
|
|
(scb.
|
|
scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
|
|
"");
|
|
printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
|
|
((scb.scb_status & SCB_ST_CUS) ==
|
|
SCB_ST_CUS_IDLE) ? "idle" : "",
|
|
((scb.scb_status & SCB_ST_CUS) ==
|
|
SCB_ST_CUS_SUSP) ? "suspended" : "",
|
|
((scb.scb_status & SCB_ST_CUS) ==
|
|
SCB_ST_CUS_ACTV) ? "active" : "");
|
|
printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
|
|
((scb.scb_status & SCB_ST_RUS) ==
|
|
SCB_ST_RUS_IDLE) ? "idle" : "",
|
|
((scb.scb_status & SCB_ST_RUS) ==
|
|
SCB_ST_RUS_SUSP) ? "suspended" : "",
|
|
((scb.scb_status & SCB_ST_RUS) ==
|
|
SCB_ST_RUS_NRES) ? "no resources" : "",
|
|
((scb.scb_status & SCB_ST_RUS) ==
|
|
SCB_ST_RUS_RDY) ? "ready" : "");
|
|
|
|
printk(KERN_DEBUG "command: ");
|
|
printk("ack 0x%x[%s%s%s%s] ",
|
|
(scb.
|
|
scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
|
|
SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
|
|
(scb.
|
|
scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
|
|
(scb.
|
|
scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
|
|
(scb.
|
|
scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
|
|
(scb.
|
|
scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
|
|
printk("cuc 0x%x[%s%s%s%s%s] ",
|
|
(scb.scb_command & SCB_CMD_CUC) >> 8,
|
|
((scb.scb_command & SCB_CMD_CUC) ==
|
|
SCB_CMD_CUC_NOP) ? "nop" : "",
|
|
((scb.scb_command & SCB_CMD_CUC) ==
|
|
SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
|
|
((scb.scb_command & SCB_CMD_CUC) ==
|
|
SCB_CMD_CUC_RES) ? "resume execution" : "",
|
|
((scb.scb_command & SCB_CMD_CUC) ==
|
|
SCB_CMD_CUC_SUS) ? "suspend execution" : "",
|
|
((scb.scb_command & SCB_CMD_CUC) ==
|
|
SCB_CMD_CUC_ABT) ? "abort execution" : "");
|
|
printk("ruc 0x%x[%s%s%s%s%s]\n",
|
|
(scb.scb_command & SCB_CMD_RUC) >> 4,
|
|
((scb.scb_command & SCB_CMD_RUC) ==
|
|
SCB_CMD_RUC_NOP) ? "nop" : "",
|
|
((scb.scb_command & SCB_CMD_RUC) ==
|
|
SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
|
|
((scb.scb_command & SCB_CMD_RUC) ==
|
|
SCB_CMD_RUC_RES) ? "resume reception" : "",
|
|
((scb.scb_command & SCB_CMD_RUC) ==
|
|
SCB_CMD_RUC_SUS) ? "suspend reception" : "",
|
|
((scb.scb_command & SCB_CMD_RUC) ==
|
|
SCB_CMD_RUC_ABT) ? "abort reception" : "");
|
|
|
|
printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
|
|
printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
|
|
|
|
printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
|
|
printk("alnerrs %d ", scb.scb_alnerrs);
|
|
printk("rscerrs %d ", scb.scb_rscerrs);
|
|
printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Print the formatted status of the i82586's receive unit.
|
|
*/
|
|
static void wv_ru_show(struct net_device * dev)
|
|
{
|
|
/* net_local *lp = (net_local *) dev->priv; */
|
|
|
|
printk(KERN_DEBUG
|
|
"##### WaveLAN i82586 receiver unit status: #####\n");
|
|
printk(KERN_DEBUG "ru:");
|
|
/*
|
|
* Not implemented yet
|
|
*/
|
|
printk("\n");
|
|
} /* wv_ru_show */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Display info about one control block of the i82586 memory.
|
|
*/
|
|
static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
|
|
{
|
|
unsigned long ioaddr;
|
|
ac_tx_t actx;
|
|
|
|
ioaddr = dev->base_addr;
|
|
|
|
printk("%d: 0x%x:", i, p);
|
|
|
|
obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
|
|
printk(" status=0x%x,", actx.tx_h.ac_status);
|
|
printk(" command=0x%x,", actx.tx_h.ac_command);
|
|
|
|
/*
|
|
{
|
|
tbd_t tbd;
|
|
|
|
obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
|
|
printk(" tbd_status=0x%x,", tbd.tbd_status);
|
|
}
|
|
*/
|
|
|
|
printk("|");
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Print status of the command unit of the i82586.
|
|
*/
|
|
static void wv_cu_show(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned int i;
|
|
u16 p;
|
|
|
|
printk(KERN_DEBUG
|
|
"##### WaveLAN i82586 command unit status: #####\n");
|
|
|
|
printk(KERN_DEBUG);
|
|
for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
|
|
wv_cu_show_one(dev, lp, i, p);
|
|
|
|
p += TXBLOCKZ;
|
|
if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
|
|
p -= NTXBLOCKS * TXBLOCKZ;
|
|
}
|
|
printk("\n");
|
|
}
|
|
#endif /* DEBUG_I82586_SHOW */
|
|
|
|
#ifdef DEBUG_DEVICE_SHOW
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Print the formatted status of the WaveLAN PCMCIA device driver.
|
|
*/
|
|
static void wv_dev_show(struct net_device * dev)
|
|
{
|
|
printk(KERN_DEBUG "dev:");
|
|
printk(" state=%lX,", dev->state);
|
|
printk(" trans_start=%ld,", dev->trans_start);
|
|
printk(" flags=0x%x,", dev->flags);
|
|
printk("\n");
|
|
} /* wv_dev_show */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Print the formatted status of the WaveLAN PCMCIA device driver's
|
|
* private information.
|
|
*/
|
|
static void wv_local_show(struct net_device * dev)
|
|
{
|
|
net_local *lp;
|
|
|
|
lp = (net_local *) dev->priv;
|
|
|
|
printk(KERN_DEBUG "local:");
|
|
printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
|
|
printk(" hacr=0x%x,", lp->hacr);
|
|
printk(" rx_head=0x%x,", lp->rx_head);
|
|
printk(" rx_last=0x%x,", lp->rx_last);
|
|
printk(" tx_first_free=0x%x,", lp->tx_first_free);
|
|
printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
|
|
printk("\n");
|
|
} /* wv_local_show */
|
|
#endif /* DEBUG_DEVICE_SHOW */
|
|
|
|
#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Dump packet header (and content if necessary) on the screen
|
|
*/
|
|
static inline void wv_packet_info(u8 * p, /* Packet to dump */
|
|
int length, /* Length of the packet */
|
|
char *msg1, /* Name of the device */
|
|
char *msg2)
|
|
{ /* Name of the function */
|
|
int i;
|
|
int maxi;
|
|
|
|
printk(KERN_DEBUG
|
|
"%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n",
|
|
msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length);
|
|
printk(KERN_DEBUG
|
|
"%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n",
|
|
msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12],
|
|
p[13]);
|
|
|
|
#ifdef DEBUG_PACKET_DUMP
|
|
|
|
printk(KERN_DEBUG "data=\"");
|
|
|
|
if ((maxi = length) > DEBUG_PACKET_DUMP)
|
|
maxi = DEBUG_PACKET_DUMP;
|
|
for (i = 14; i < maxi; i++)
|
|
if (p[i] >= ' ' && p[i] <= '~')
|
|
printk(" %c", p[i]);
|
|
else
|
|
printk("%02X", p[i]);
|
|
if (maxi < length)
|
|
printk("..");
|
|
printk("\"\n");
|
|
printk(KERN_DEBUG "\n");
|
|
#endif /* DEBUG_PACKET_DUMP */
|
|
}
|
|
#endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This is the information which is displayed by the driver at startup.
|
|
* There are lots of flags for configuring it to your liking.
|
|
*/
|
|
static void wv_init_info(struct net_device * dev)
|
|
{
|
|
short ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv;
|
|
psa_t psa;
|
|
int i;
|
|
|
|
/* Read the parameter storage area */
|
|
psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
|
|
|
|
#ifdef DEBUG_PSA_SHOW
|
|
wv_psa_show(&psa);
|
|
#endif
|
|
#ifdef DEBUG_MMC_SHOW
|
|
wv_mmc_show(dev);
|
|
#endif
|
|
#ifdef DEBUG_I82586_SHOW
|
|
wv_cu_show(dev);
|
|
#endif
|
|
|
|
#ifdef DEBUG_BASIC_SHOW
|
|
/* Now, let's go for the basic stuff. */
|
|
printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr);
|
|
for (i = 0; i < WAVELAN_ADDR_SIZE; i++)
|
|
printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]);
|
|
printk(", IRQ %d", dev->irq);
|
|
|
|
/* Print current network ID. */
|
|
if (psa.psa_nwid_select)
|
|
printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
|
|
psa.psa_nwid[1]);
|
|
else
|
|
printk(", nwid off");
|
|
|
|
/* If 2.00 card */
|
|
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
|
|
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
|
|
unsigned short freq;
|
|
|
|
/* Ask the EEPROM to read the frequency from the first area. */
|
|
fee_read(ioaddr, 0x00, &freq, 1);
|
|
|
|
/* Print frequency */
|
|
printk(", 2.00, %ld", (freq >> 6) + 2400L);
|
|
|
|
/* Hack! */
|
|
if (freq & 0x20)
|
|
printk(".5");
|
|
} else {
|
|
printk(", PC");
|
|
switch (psa.psa_comp_number) {
|
|
case PSA_COMP_PC_AT_915:
|
|
case PSA_COMP_PC_AT_2400:
|
|
printk("-AT");
|
|
break;
|
|
case PSA_COMP_PC_MC_915:
|
|
case PSA_COMP_PC_MC_2400:
|
|
printk("-MC");
|
|
break;
|
|
case PSA_COMP_PCMCIA_915:
|
|
printk("MCIA");
|
|
break;
|
|
default:
|
|
printk("?");
|
|
}
|
|
printk(", ");
|
|
switch (psa.psa_subband) {
|
|
case PSA_SUBBAND_915:
|
|
printk("915");
|
|
break;
|
|
case PSA_SUBBAND_2425:
|
|
printk("2425");
|
|
break;
|
|
case PSA_SUBBAND_2460:
|
|
printk("2460");
|
|
break;
|
|
case PSA_SUBBAND_2484:
|
|
printk("2484");
|
|
break;
|
|
case PSA_SUBBAND_2430_5:
|
|
printk("2430.5");
|
|
break;
|
|
default:
|
|
printk("?");
|
|
}
|
|
}
|
|
|
|
printk(" MHz\n");
|
|
#endif /* DEBUG_BASIC_SHOW */
|
|
|
|
#ifdef DEBUG_VERSION_SHOW
|
|
/* Print version information */
|
|
printk(KERN_NOTICE "%s", version);
|
|
#endif
|
|
} /* wv_init_info */
|
|
|
|
/********************* IOCTL, STATS & RECONFIG *********************/
|
|
/*
|
|
* We found here routines that are called by Linux on different
|
|
* occasions after the configuration and not for transmitting data
|
|
* These may be called when the user use ifconfig, /proc/net/dev
|
|
* or wireless extensions
|
|
*/
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Get the current Ethernet statistics. This may be called with the
|
|
* card open or closed.
|
|
* Used when the user read /proc/net/dev
|
|
*/
|
|
static en_stats *wavelan_get_stats(struct net_device * dev)
|
|
{
|
|
#ifdef DEBUG_IOCTL_TRACE
|
|
printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
|
|
#endif
|
|
|
|
return (&((net_local *) dev->priv)->stats);
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Set or clear the multicast filter for this adaptor.
|
|
* num_addrs == -1 Promiscuous mode, receive all packets
|
|
* num_addrs == 0 Normal mode, clear multicast list
|
|
* num_addrs > 0 Multicast mode, receive normal and MC packets,
|
|
* and do best-effort filtering.
|
|
*/
|
|
static void wavelan_set_multicast_list(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
|
|
#ifdef DEBUG_IOCTL_TRACE
|
|
printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
|
|
dev->name);
|
|
#endif
|
|
|
|
#ifdef DEBUG_IOCTL_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
|
|
dev->name, dev->flags, dev->mc_count);
|
|
#endif
|
|
|
|
/* Are we asking for promiscuous mode,
|
|
* or all multicast addresses (we don't have that!)
|
|
* or too many multicast addresses for the hardware filter? */
|
|
if ((dev->flags & IFF_PROMISC) ||
|
|
(dev->flags & IFF_ALLMULTI) ||
|
|
(dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
|
|
/*
|
|
* Enable promiscuous mode: receive all packets.
|
|
*/
|
|
if (!lp->promiscuous) {
|
|
lp->promiscuous = 1;
|
|
lp->mc_count = 0;
|
|
|
|
wv_82586_reconfig(dev);
|
|
|
|
/* Tell the kernel that we are doing a really bad job. */
|
|
dev->flags |= IFF_PROMISC;
|
|
}
|
|
} else
|
|
/* Are there multicast addresses to send? */
|
|
if (dev->mc_list != (struct dev_mc_list *) NULL) {
|
|
/*
|
|
* Disable promiscuous mode, but receive all packets
|
|
* in multicast list
|
|
*/
|
|
#ifdef MULTICAST_AVOID
|
|
if (lp->promiscuous || (dev->mc_count != lp->mc_count))
|
|
#endif
|
|
{
|
|
lp->promiscuous = 0;
|
|
lp->mc_count = dev->mc_count;
|
|
|
|
wv_82586_reconfig(dev);
|
|
}
|
|
} else {
|
|
/*
|
|
* Switch to normal mode: disable promiscuous mode and
|
|
* clear the multicast list.
|
|
*/
|
|
if (lp->promiscuous || lp->mc_count == 0) {
|
|
lp->promiscuous = 0;
|
|
lp->mc_count = 0;
|
|
|
|
wv_82586_reconfig(dev);
|
|
}
|
|
}
|
|
#ifdef DEBUG_IOCTL_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This function doesn't exist.
|
|
* (Note : it was a nice way to test the reconfigure stuff...)
|
|
*/
|
|
#ifdef SET_MAC_ADDRESS
|
|
static int wavelan_set_mac_address(struct net_device * dev, void *addr)
|
|
{
|
|
struct sockaddr *mac = addr;
|
|
|
|
/* Copy the address. */
|
|
memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
|
|
|
|
/* Reconfigure the beast. */
|
|
wv_82586_reconfig(dev);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* SET_MAC_ADDRESS */
|
|
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Frequency setting (for hardware capable of it)
|
|
* It's a bit complicated and you don't really want to look into it.
|
|
* (called in wavelan_ioctl)
|
|
*/
|
|
static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
|
|
iw_freq * frequency)
|
|
{
|
|
const int BAND_NUM = 10; /* Number of bands */
|
|
long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
|
|
#ifdef DEBUG_IOCTL_INFO
|
|
int i;
|
|
#endif
|
|
|
|
/* Setting by frequency */
|
|
/* Theoretically, you may set any frequency between
|
|
* the two limits with a 0.5 MHz precision. In practice,
|
|
* I don't want you to have trouble with local regulations.
|
|
*/
|
|
if ((frequency->e == 1) &&
|
|
(frequency->m >= (int) 2.412e8)
|
|
&& (frequency->m <= (int) 2.487e8)) {
|
|
freq = ((frequency->m / 10000) - 24000L) / 5;
|
|
}
|
|
|
|
/* Setting by channel (same as wfreqsel) */
|
|
/* Warning: each channel is 22 MHz wide, so some of the channels
|
|
* will interfere. */
|
|
if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
|
|
/* Get frequency offset. */
|
|
freq = channel_bands[frequency->m] >> 1;
|
|
}
|
|
|
|
/* Verify that the frequency is allowed. */
|
|
if (freq != 0L) {
|
|
u16 table[10]; /* Authorized frequency table */
|
|
|
|
/* Read the frequency table. */
|
|
fee_read(ioaddr, 0x71, table, 10);
|
|
|
|
#ifdef DEBUG_IOCTL_INFO
|
|
printk(KERN_DEBUG "Frequency table: ");
|
|
for (i = 0; i < 10; i++) {
|
|
printk(" %04X", table[i]);
|
|
}
|
|
printk("\n");
|
|
#endif
|
|
|
|
/* Look in the table to see whether the frequency is allowed. */
|
|
if (!(table[9 - ((freq - 24) / 16)] &
|
|
(1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
|
|
} else
|
|
return -EINVAL;
|
|
|
|
/* if we get a usable frequency */
|
|
if (freq != 0L) {
|
|
unsigned short area[16];
|
|
unsigned short dac[2];
|
|
unsigned short area_verify[16];
|
|
unsigned short dac_verify[2];
|
|
/* Corresponding gain (in the power adjust value table)
|
|
* See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
|
|
* and WCIN062D.DOC, page 6.2.9. */
|
|
unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
|
|
int power_band = 0; /* Selected band */
|
|
unsigned short power_adjust; /* Correct value */
|
|
|
|
/* Search for the gain. */
|
|
power_band = 0;
|
|
while ((freq > power_limit[power_band]) &&
|
|
(power_limit[++power_band] != 0));
|
|
|
|
/* Read the first area. */
|
|
fee_read(ioaddr, 0x00, area, 16);
|
|
|
|
/* Read the DAC. */
|
|
fee_read(ioaddr, 0x60, dac, 2);
|
|
|
|
/* Read the new power adjust value. */
|
|
fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
|
|
1);
|
|
if (power_band & 0x1)
|
|
power_adjust >>= 8;
|
|
else
|
|
power_adjust &= 0xFF;
|
|
|
|
#ifdef DEBUG_IOCTL_INFO
|
|
printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
|
|
for (i = 0; i < 16; i++) {
|
|
printk(" %04X", area[i]);
|
|
}
|
|
printk("\n");
|
|
|
|
printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
|
|
dac[0], dac[1]);
|
|
#endif
|
|
|
|
/* Frequency offset (for info only) */
|
|
area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
|
|
|
|
/* Receiver Principle main divider coefficient */
|
|
area[3] = (freq >> 1) + 2400L - 352L;
|
|
area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
|
|
|
|
/* Transmitter Main divider coefficient */
|
|
area[13] = (freq >> 1) + 2400L;
|
|
area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
|
|
|
|
/* Other parts of the area are flags, bit streams or unused. */
|
|
|
|
/* Set the value in the DAC. */
|
|
dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
|
|
dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
|
|
|
|
/* Write the first area. */
|
|
fee_write(ioaddr, 0x00, area, 16);
|
|
|
|
/* Write the DAC. */
|
|
fee_write(ioaddr, 0x60, dac, 2);
|
|
|
|
/* We now should verify here that the writing of the EEPROM went OK. */
|
|
|
|
/* Reread the first area. */
|
|
fee_read(ioaddr, 0x00, area_verify, 16);
|
|
|
|
/* Reread the DAC. */
|
|
fee_read(ioaddr, 0x60, dac_verify, 2);
|
|
|
|
/* Compare. */
|
|
if (memcmp(area, area_verify, 16 * 2) ||
|
|
memcmp(dac, dac_verify, 2 * 2)) {
|
|
#ifdef DEBUG_IOCTL_ERROR
|
|
printk(KERN_INFO
|
|
"WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
|
|
#endif
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* We must download the frequency parameters to the
|
|
* synthesizers (from the EEPROM - area 1)
|
|
* Note: as the EEPROM is automatically decremented, we set the end
|
|
* if the area... */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
|
|
MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
|
|
|
|
/* Wait until the download is finished. */
|
|
fee_wait(ioaddr, 100, 100);
|
|
|
|
/* We must now download the power adjust value (gain) to
|
|
* the synthesizers (from the EEPROM - area 7 - DAC). */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
|
|
MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
|
|
|
|
/* Wait for the download to finish. */
|
|
fee_wait(ioaddr, 100, 100);
|
|
|
|
#ifdef DEBUG_IOCTL_INFO
|
|
/* Verification of what we have done */
|
|
|
|
printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
|
|
for (i = 0; i < 16; i++) {
|
|
printk(" %04X", area_verify[i]);
|
|
}
|
|
printk("\n");
|
|
|
|
printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
|
|
dac_verify[0], dac_verify[1]);
|
|
#endif
|
|
|
|
return 0;
|
|
} else
|
|
return -EINVAL; /* Bah, never get there... */
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Give the list of available frequencies.
|
|
*/
|
|
static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
|
|
iw_freq * list, /* List of frequencies to fill */
|
|
int max)
|
|
{ /* Maximum number of frequencies */
|
|
u16 table[10]; /* Authorized frequency table */
|
|
long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
|
|
int i; /* index in the table */
|
|
int c = 0; /* Channel number */
|
|
|
|
/* Read the frequency table. */
|
|
fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
|
|
|
|
/* Check all frequencies. */
|
|
i = 0;
|
|
for (freq = 0; freq < 150; freq++)
|
|
/* Look in the table if the frequency is allowed */
|
|
if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
|
|
/* Compute approximate channel number */
|
|
while ((c < ARRAY_SIZE(channel_bands)) &&
|
|
(((channel_bands[c] >> 1) - 24) < freq))
|
|
c++;
|
|
list[i].i = c; /* Set the list index */
|
|
|
|
/* put in the list */
|
|
list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
|
|
list[i++].e = 1;
|
|
|
|
/* Check number. */
|
|
if (i >= max)
|
|
return (i);
|
|
}
|
|
|
|
return (i);
|
|
}
|
|
|
|
#ifdef IW_WIRELESS_SPY
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Gather wireless spy statistics: for each packet, compare the source
|
|
* address with our list, and if they match, get the statistics.
|
|
* Sorry, but this function really needs the wireless extensions.
|
|
*/
|
|
static inline void wl_spy_gather(struct net_device * dev,
|
|
u8 * mac, /* MAC address */
|
|
u8 * stats) /* Statistics to gather */
|
|
{
|
|
struct iw_quality wstats;
|
|
|
|
wstats.qual = stats[2] & MMR_SGNL_QUAL;
|
|
wstats.level = stats[0] & MMR_SIGNAL_LVL;
|
|
wstats.noise = stats[1] & MMR_SILENCE_LVL;
|
|
wstats.updated = 0x7;
|
|
|
|
/* Update spy records */
|
|
wireless_spy_update(dev, mac, &wstats);
|
|
}
|
|
#endif /* IW_WIRELESS_SPY */
|
|
|
|
#ifdef HISTOGRAM
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This function calculates a histogram of the signal level.
|
|
* As the noise is quite constant, it's like doing it on the SNR.
|
|
* We have defined a set of interval (lp->his_range), and each time
|
|
* the level goes in that interval, we increment the count (lp->his_sum).
|
|
* With this histogram you may detect if one WaveLAN is really weak,
|
|
* or you may also calculate the mean and standard deviation of the level.
|
|
*/
|
|
static inline void wl_his_gather(struct net_device * dev, u8 * stats)
|
|
{ /* Statistics to gather */
|
|
net_local *lp = (net_local *) dev->priv;
|
|
u8 level = stats[0] & MMR_SIGNAL_LVL;
|
|
int i;
|
|
|
|
/* Find the correct interval. */
|
|
i = 0;
|
|
while ((i < (lp->his_number - 1))
|
|
&& (level >= lp->his_range[i++]));
|
|
|
|
/* Increment interval counter. */
|
|
(lp->his_sum[i])++;
|
|
}
|
|
#endif /* HISTOGRAM */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : get protocol name
|
|
*/
|
|
static int wavelan_get_name(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
strcpy(wrqu->name, "WaveLAN");
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : set NWID
|
|
*/
|
|
static int wavelan_set_nwid(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
psa_t psa;
|
|
mm_t m;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Set NWID in WaveLAN. */
|
|
if (!wrqu->nwid.disabled) {
|
|
/* Set NWID in psa */
|
|
psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
|
|
psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
|
|
psa.psa_nwid_select = 0x01;
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) psa.psa_nwid - (char *) &psa,
|
|
(unsigned char *) psa.psa_nwid, 3);
|
|
|
|
/* Set NWID in mmc. */
|
|
m.w.mmw_netw_id_l = psa.psa_nwid[1];
|
|
m.w.mmw_netw_id_h = psa.psa_nwid[0];
|
|
mmc_write(ioaddr,
|
|
(char *) &m.w.mmw_netw_id_l -
|
|
(char *) &m,
|
|
(unsigned char *) &m.w.mmw_netw_id_l, 2);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
|
|
} else {
|
|
/* Disable NWID in the psa. */
|
|
psa.psa_nwid_select = 0x00;
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_nwid_select -
|
|
(char *) &psa,
|
|
(unsigned char *) &psa.psa_nwid_select,
|
|
1);
|
|
|
|
/* Disable NWID in the mmc (no filtering). */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
|
|
MMW_LOOPT_SEL_DIS_NWID);
|
|
}
|
|
/* update the Wavelan checksum */
|
|
update_psa_checksum(dev, ioaddr, lp->hacr);
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : get NWID
|
|
*/
|
|
static int wavelan_get_nwid(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
psa_t psa;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Read the NWID. */
|
|
psa_read(ioaddr, lp->hacr,
|
|
(char *) psa.psa_nwid - (char *) &psa,
|
|
(unsigned char *) psa.psa_nwid, 3);
|
|
wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
|
|
wrqu->nwid.disabled = !(psa.psa_nwid_select);
|
|
wrqu->nwid.fixed = 1; /* Superfluous */
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : set frequency
|
|
*/
|
|
static int wavelan_set_freq(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
|
|
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
|
|
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
|
|
ret = wv_set_frequency(ioaddr, &(wrqu->freq));
|
|
else
|
|
ret = -EOPNOTSUPP;
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : get frequency
|
|
*/
|
|
static int wavelan_get_freq(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
psa_t psa;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
|
|
* Does it work for everybody, especially old cards? */
|
|
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
|
|
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
|
|
unsigned short freq;
|
|
|
|
/* Ask the EEPROM to read the frequency from the first area. */
|
|
fee_read(ioaddr, 0x00, &freq, 1);
|
|
wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
|
|
wrqu->freq.e = 1;
|
|
} else {
|
|
psa_read(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_subband - (char *) &psa,
|
|
(unsigned char *) &psa.psa_subband, 1);
|
|
|
|
if (psa.psa_subband <= 4) {
|
|
wrqu->freq.m = fixed_bands[psa.psa_subband];
|
|
wrqu->freq.e = (psa.psa_subband != 0);
|
|
} else
|
|
ret = -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : set level threshold
|
|
*/
|
|
static int wavelan_set_sens(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
psa_t psa;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Set the level threshold. */
|
|
/* We should complain loudly if wrqu->sens.fixed = 0, because we
|
|
* can't set auto mode... */
|
|
psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_thr_pre_set - (char *) &psa,
|
|
(unsigned char *) &psa.psa_thr_pre_set, 1);
|
|
/* update the Wavelan checksum */
|
|
update_psa_checksum(dev, ioaddr, lp->hacr);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
|
|
psa.psa_thr_pre_set);
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : get level threshold
|
|
*/
|
|
static int wavelan_get_sens(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
psa_t psa;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Read the level threshold. */
|
|
psa_read(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_thr_pre_set - (char *) &psa,
|
|
(unsigned char *) &psa.psa_thr_pre_set, 1);
|
|
wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
|
|
wrqu->sens.fixed = 1;
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : set encryption key
|
|
*/
|
|
static int wavelan_set_encode(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
unsigned long flags;
|
|
psa_t psa;
|
|
int ret = 0;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Check if capable of encryption */
|
|
if (!mmc_encr(ioaddr)) {
|
|
ret = -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Check the size of the key */
|
|
if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if(!ret) {
|
|
/* Basic checking... */
|
|
if (wrqu->encoding.length == 8) {
|
|
/* Copy the key in the driver */
|
|
memcpy(psa.psa_encryption_key, extra,
|
|
wrqu->encoding.length);
|
|
psa.psa_encryption_select = 1;
|
|
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_encryption_select -
|
|
(char *) &psa,
|
|
(unsigned char *) &psa.
|
|
psa_encryption_select, 8 + 1);
|
|
|
|
mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
|
|
MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
|
|
mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
|
|
(unsigned char *) &psa.
|
|
psa_encryption_key, 8);
|
|
}
|
|
|
|
/* disable encryption */
|
|
if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
|
|
psa.psa_encryption_select = 0;
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_encryption_select -
|
|
(char *) &psa,
|
|
(unsigned char *) &psa.
|
|
psa_encryption_select, 1);
|
|
|
|
mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
|
|
}
|
|
/* update the Wavelan checksum */
|
|
update_psa_checksum(dev, ioaddr, lp->hacr);
|
|
}
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : get encryption key
|
|
*/
|
|
static int wavelan_get_encode(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
psa_t psa;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Check if encryption is available */
|
|
if (!mmc_encr(ioaddr)) {
|
|
ret = -EOPNOTSUPP;
|
|
} else {
|
|
/* Read the encryption key */
|
|
psa_read(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_encryption_select -
|
|
(char *) &psa,
|
|
(unsigned char *) &psa.
|
|
psa_encryption_select, 1 + 8);
|
|
|
|
/* encryption is enabled ? */
|
|
if (psa.psa_encryption_select)
|
|
wrqu->encoding.flags = IW_ENCODE_ENABLED;
|
|
else
|
|
wrqu->encoding.flags = IW_ENCODE_DISABLED;
|
|
wrqu->encoding.flags |= mmc_encr(ioaddr);
|
|
|
|
/* Copy the key to the user buffer */
|
|
wrqu->encoding.length = 8;
|
|
memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
|
|
}
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Handler : get range info
|
|
*/
|
|
static int wavelan_get_range(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
struct iw_range *range = (struct iw_range *) extra;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* Set the length (very important for backward compatibility) */
|
|
wrqu->data.length = sizeof(struct iw_range);
|
|
|
|
/* Set all the info we don't care or don't know about to zero */
|
|
memset(range, 0, sizeof(struct iw_range));
|
|
|
|
/* Set the Wireless Extension versions */
|
|
range->we_version_compiled = WIRELESS_EXT;
|
|
range->we_version_source = 9;
|
|
|
|
/* Set information in the range struct. */
|
|
range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
|
|
range->min_nwid = 0x0000;
|
|
range->max_nwid = 0xFFFF;
|
|
|
|
range->sensitivity = 0x3F;
|
|
range->max_qual.qual = MMR_SGNL_QUAL;
|
|
range->max_qual.level = MMR_SIGNAL_LVL;
|
|
range->max_qual.noise = MMR_SILENCE_LVL;
|
|
range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
|
|
/* Need to get better values for those two */
|
|
range->avg_qual.level = 30;
|
|
range->avg_qual.noise = 8;
|
|
|
|
range->num_bitrates = 1;
|
|
range->bitrate[0] = 2000000; /* 2 Mb/s */
|
|
|
|
/* Event capability (kernel + driver) */
|
|
range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
|
|
IW_EVENT_CAPA_MASK(0x8B04));
|
|
range->event_capa[1] = IW_EVENT_CAPA_K_1;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
|
|
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
|
|
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
|
|
range->num_channels = 10;
|
|
range->num_frequency = wv_frequency_list(ioaddr, range->freq,
|
|
IW_MAX_FREQUENCIES);
|
|
} else
|
|
range->num_channels = range->num_frequency = 0;
|
|
|
|
/* Encryption supported ? */
|
|
if (mmc_encr(ioaddr)) {
|
|
range->encoding_size[0] = 8; /* DES = 64 bits key */
|
|
range->num_encoding_sizes = 1;
|
|
range->max_encoding_tokens = 1; /* Only one key possible */
|
|
} else {
|
|
range->num_encoding_sizes = 0;
|
|
range->max_encoding_tokens = 0;
|
|
}
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Private Handler : set quality threshold
|
|
*/
|
|
static int wavelan_set_qthr(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
psa_t psa;
|
|
unsigned long flags;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
psa.psa_quality_thr = *(extra) & 0x0F;
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_quality_thr - (char *) &psa,
|
|
(unsigned char *) &psa.psa_quality_thr, 1);
|
|
/* update the Wavelan checksum */
|
|
update_psa_checksum(dev, ioaddr, lp->hacr);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
|
|
psa.psa_quality_thr);
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Private Handler : get quality threshold
|
|
*/
|
|
static int wavelan_get_qthr(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
psa_t psa;
|
|
unsigned long flags;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
psa_read(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_quality_thr - (char *) &psa,
|
|
(unsigned char *) &psa.psa_quality_thr, 1);
|
|
*(extra) = psa.psa_quality_thr & 0x0F;
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HISTOGRAM
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Private Handler : set histogram
|
|
*/
|
|
static int wavelan_set_histo(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
|
|
/* Check the number of intervals. */
|
|
if (wrqu->data.length > 16) {
|
|
return(-E2BIG);
|
|
}
|
|
|
|
/* Disable histo while we copy the addresses.
|
|
* As we don't disable interrupts, we need to do this */
|
|
lp->his_number = 0;
|
|
|
|
/* Are there ranges to copy? */
|
|
if (wrqu->data.length > 0) {
|
|
/* Copy interval ranges to the driver */
|
|
memcpy(lp->his_range, extra, wrqu->data.length);
|
|
|
|
{
|
|
int i;
|
|
printk(KERN_DEBUG "Histo :");
|
|
for(i = 0; i < wrqu->data.length; i++)
|
|
printk(" %d", lp->his_range[i]);
|
|
printk("\n");
|
|
}
|
|
|
|
/* Reset result structure. */
|
|
memset(lp->his_sum, 0x00, sizeof(long) * 16);
|
|
}
|
|
|
|
/* Now we can set the number of ranges */
|
|
lp->his_number = wrqu->data.length;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Wireless Private Handler : get histogram
|
|
*/
|
|
static int wavelan_get_histo(struct net_device *dev,
|
|
struct iw_request_info *info,
|
|
union iwreq_data *wrqu,
|
|
char *extra)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
|
|
|
|
/* Set the number of intervals. */
|
|
wrqu->data.length = lp->his_number;
|
|
|
|
/* Give back the distribution statistics */
|
|
if(lp->his_number > 0)
|
|
memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
|
|
|
|
return(0);
|
|
}
|
|
#endif /* HISTOGRAM */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Structures to export the Wireless Handlers
|
|
*/
|
|
|
|
static const iw_handler wavelan_handler[] =
|
|
{
|
|
NULL, /* SIOCSIWNAME */
|
|
wavelan_get_name, /* SIOCGIWNAME */
|
|
wavelan_set_nwid, /* SIOCSIWNWID */
|
|
wavelan_get_nwid, /* SIOCGIWNWID */
|
|
wavelan_set_freq, /* SIOCSIWFREQ */
|
|
wavelan_get_freq, /* SIOCGIWFREQ */
|
|
NULL, /* SIOCSIWMODE */
|
|
NULL, /* SIOCGIWMODE */
|
|
wavelan_set_sens, /* SIOCSIWSENS */
|
|
wavelan_get_sens, /* SIOCGIWSENS */
|
|
NULL, /* SIOCSIWRANGE */
|
|
wavelan_get_range, /* SIOCGIWRANGE */
|
|
NULL, /* SIOCSIWPRIV */
|
|
NULL, /* SIOCGIWPRIV */
|
|
NULL, /* SIOCSIWSTATS */
|
|
NULL, /* SIOCGIWSTATS */
|
|
iw_handler_set_spy, /* SIOCSIWSPY */
|
|
iw_handler_get_spy, /* SIOCGIWSPY */
|
|
iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
|
|
iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
|
|
NULL, /* SIOCSIWAP */
|
|
NULL, /* SIOCGIWAP */
|
|
NULL, /* -- hole -- */
|
|
NULL, /* SIOCGIWAPLIST */
|
|
NULL, /* -- hole -- */
|
|
NULL, /* -- hole -- */
|
|
NULL, /* SIOCSIWESSID */
|
|
NULL, /* SIOCGIWESSID */
|
|
NULL, /* SIOCSIWNICKN */
|
|
NULL, /* SIOCGIWNICKN */
|
|
NULL, /* -- hole -- */
|
|
NULL, /* -- hole -- */
|
|
NULL, /* SIOCSIWRATE */
|
|
NULL, /* SIOCGIWRATE */
|
|
NULL, /* SIOCSIWRTS */
|
|
NULL, /* SIOCGIWRTS */
|
|
NULL, /* SIOCSIWFRAG */
|
|
NULL, /* SIOCGIWFRAG */
|
|
NULL, /* SIOCSIWTXPOW */
|
|
NULL, /* SIOCGIWTXPOW */
|
|
NULL, /* SIOCSIWRETRY */
|
|
NULL, /* SIOCGIWRETRY */
|
|
/* Bummer ! Why those are only at the end ??? */
|
|
wavelan_set_encode, /* SIOCSIWENCODE */
|
|
wavelan_get_encode, /* SIOCGIWENCODE */
|
|
};
|
|
|
|
static const iw_handler wavelan_private_handler[] =
|
|
{
|
|
wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
|
|
wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
|
|
#ifdef HISTOGRAM
|
|
wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */
|
|
wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */
|
|
#endif /* HISTOGRAM */
|
|
};
|
|
|
|
static const struct iw_priv_args wavelan_private_args[] = {
|
|
/*{ cmd, set_args, get_args, name } */
|
|
{ SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
|
|
{ SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
|
|
{ SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
|
|
{ SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
|
|
};
|
|
|
|
static const struct iw_handler_def wavelan_handler_def =
|
|
{
|
|
.num_standard = sizeof(wavelan_handler)/sizeof(iw_handler),
|
|
.num_private = sizeof(wavelan_private_handler)/sizeof(iw_handler),
|
|
.num_private_args = sizeof(wavelan_private_args)/sizeof(struct iw_priv_args),
|
|
.standard = wavelan_handler,
|
|
.private = wavelan_private_handler,
|
|
.private_args = wavelan_private_args,
|
|
.get_wireless_stats = wavelan_get_wireless_stats,
|
|
};
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Get wireless statistics.
|
|
* Called by /proc/net/wireless
|
|
*/
|
|
static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv;
|
|
mmr_t m;
|
|
iw_stats *wstats;
|
|
unsigned long flags;
|
|
|
|
#ifdef DEBUG_IOCTL_TRACE
|
|
printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
|
|
dev->name);
|
|
#endif
|
|
|
|
/* Check */
|
|
if (lp == (net_local *) NULL)
|
|
return (iw_stats *) NULL;
|
|
|
|
/* Disable interrupts and save flags. */
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
wstats = &lp->wstats;
|
|
|
|
/* Get data from the mmc. */
|
|
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
|
|
|
|
mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
|
|
mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
|
|
2);
|
|
mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
|
|
4);
|
|
|
|
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
|
|
|
|
/* Copy data to wireless stuff. */
|
|
wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
|
|
wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
|
|
wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
|
|
wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
|
|
wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
|
|
| ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
|
|
| ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
|
|
wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
|
|
wstats->discard.code = 0L;
|
|
wstats->discard.misc = 0L;
|
|
|
|
/* Enable interrupts and restore flags. */
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
#ifdef DEBUG_IOCTL_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
|
|
dev->name);
|
|
#endif
|
|
return &lp->wstats;
|
|
}
|
|
|
|
/************************* PACKET RECEPTION *************************/
|
|
/*
|
|
* This part deals with receiving the packets.
|
|
* The interrupt handler gets an interrupt when a packet has been
|
|
* successfully received and calls this part.
|
|
*/
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This routine does the actual copying of data (including the Ethernet
|
|
* header structure) from the WaveLAN card to an sk_buff chain that
|
|
* will be passed up to the network interface layer. NOTE: we
|
|
* currently don't handle trailer protocols (neither does the rest of
|
|
* the network interface), so if that is needed, it will (at least in
|
|
* part) be added here. The contents of the receive ring buffer are
|
|
* copied to a message chain that is then passed to the kernel.
|
|
*
|
|
* Note: if any errors occur, the packet is "dropped on the floor".
|
|
* (called by wv_packet_rcv())
|
|
*/
|
|
static void
|
|
wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
struct sk_buff *skb;
|
|
|
|
#ifdef DEBUG_RX_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
|
|
dev->name, buf_off, sksize);
|
|
#endif
|
|
|
|
/* Allocate buffer for the data */
|
|
if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
|
|
#ifdef DEBUG_RX_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
|
|
dev->name, sksize);
|
|
#endif
|
|
lp->stats.rx_dropped++;
|
|
return;
|
|
}
|
|
|
|
/* Copy the packet to the buffer. */
|
|
obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
#ifdef DEBUG_RX_INFO
|
|
wv_packet_info(skb_mac_header(skb), sksize, dev->name,
|
|
"wv_packet_read");
|
|
#endif /* DEBUG_RX_INFO */
|
|
|
|
/* Statistics-gathering and associated stuff.
|
|
* It seem a bit messy with all the define, but it's really
|
|
* simple... */
|
|
if (
|
|
#ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
|
|
(lp->spy_data.spy_number > 0) ||
|
|
#endif /* IW_WIRELESS_SPY */
|
|
#ifdef HISTOGRAM
|
|
(lp->his_number > 0) ||
|
|
#endif /* HISTOGRAM */
|
|
0) {
|
|
u8 stats[3]; /* signal level, noise level, signal quality */
|
|
|
|
/* Read signal level, silence level and signal quality bytes */
|
|
/* Note: in the PCMCIA hardware, these are part of the frame.
|
|
* It seems that for the ISA hardware, it's nowhere to be
|
|
* found in the frame, so I'm obliged to do this (it has a
|
|
* side effect on /proc/net/wireless).
|
|
* Any ideas?
|
|
*/
|
|
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
|
|
mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
|
|
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
|
|
|
|
#ifdef DEBUG_RX_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
|
|
dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
|
|
stats[2] & 0x0F);
|
|
#endif
|
|
|
|
/* Spying stuff */
|
|
#ifdef IW_WIRELESS_SPY
|
|
wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
|
|
stats);
|
|
#endif /* IW_WIRELESS_SPY */
|
|
#ifdef HISTOGRAM
|
|
wl_his_gather(dev, stats);
|
|
#endif /* HISTOGRAM */
|
|
}
|
|
|
|
/*
|
|
* Hand the packet to the network module.
|
|
*/
|
|
netif_rx(skb);
|
|
|
|
/* Keep statistics up to date */
|
|
dev->last_rx = jiffies;
|
|
lp->stats.rx_packets++;
|
|
lp->stats.rx_bytes += sksize;
|
|
|
|
#ifdef DEBUG_RX_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
|
|
#endif
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Transfer as many packets as we can
|
|
* from the device RAM.
|
|
* (called in wavelan_interrupt()).
|
|
* Note : the spinlock is already grabbed for us.
|
|
*/
|
|
static void wv_receive(struct net_device * dev)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv;
|
|
fd_t fd;
|
|
rbd_t rbd;
|
|
int nreaped = 0;
|
|
|
|
#ifdef DEBUG_RX_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
|
|
#endif
|
|
|
|
/* Loop on each received packet. */
|
|
for (;;) {
|
|
obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
|
|
sizeof(fd));
|
|
|
|
/* Note about the status :
|
|
* It start up to be 0 (the value we set). Then, when the RU
|
|
* grab the buffer to prepare for reception, it sets the
|
|
* FD_STATUS_B flag. When the RU has finished receiving the
|
|
* frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
|
|
* completion and set the other flags to indicate the eventual
|
|
* errors. FD_STATUS_OK indicates that the reception was OK.
|
|
*/
|
|
|
|
/* If the current frame is not complete, we have reached the end. */
|
|
if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
|
|
break; /* This is how we exit the loop. */
|
|
|
|
nreaped++;
|
|
|
|
/* Check whether frame was correctly received. */
|
|
if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
|
|
/* Does the frame contain a pointer to the data? Let's check. */
|
|
if (fd.fd_rbd_offset != I82586NULL) {
|
|
/* Read the receive buffer descriptor */
|
|
obram_read(ioaddr, fd.fd_rbd_offset,
|
|
(unsigned char *) &rbd,
|
|
sizeof(rbd));
|
|
|
|
#ifdef DEBUG_RX_ERROR
|
|
if ((rbd.rbd_status & RBD_STATUS_EOF) !=
|
|
RBD_STATUS_EOF) printk(KERN_INFO
|
|
"%s: wv_receive(): missing EOF flag.\n",
|
|
dev->name);
|
|
|
|
if ((rbd.rbd_status & RBD_STATUS_F) !=
|
|
RBD_STATUS_F) printk(KERN_INFO
|
|
"%s: wv_receive(): missing F flag.\n",
|
|
dev->name);
|
|
#endif /* DEBUG_RX_ERROR */
|
|
|
|
/* Read the packet and transmit to Linux */
|
|
wv_packet_read(dev, rbd.rbd_bufl,
|
|
rbd.
|
|
rbd_status &
|
|
RBD_STATUS_ACNT);
|
|
}
|
|
#ifdef DEBUG_RX_ERROR
|
|
else /* if frame has no data */
|
|
printk(KERN_INFO
|
|
"%s: wv_receive(): frame has no data.\n",
|
|
dev->name);
|
|
#endif
|
|
} else { /* If reception was no successful */
|
|
|
|
lp->stats.rx_errors++;
|
|
|
|
#ifdef DEBUG_RX_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wv_receive(): frame not received successfully (%X).\n",
|
|
dev->name, fd.fd_status);
|
|
#endif
|
|
|
|
#ifdef DEBUG_RX_ERROR
|
|
if ((fd.fd_status & FD_STATUS_S6) != 0)
|
|
printk(KERN_INFO
|
|
"%s: wv_receive(): no EOF flag.\n",
|
|
dev->name);
|
|
#endif
|
|
|
|
if ((fd.fd_status & FD_STATUS_S7) != 0) {
|
|
lp->stats.rx_length_errors++;
|
|
#ifdef DEBUG_RX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_receive(): frame too short.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
|
|
if ((fd.fd_status & FD_STATUS_S8) != 0) {
|
|
lp->stats.rx_over_errors++;
|
|
#ifdef DEBUG_RX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_receive(): rx DMA overrun.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
|
|
if ((fd.fd_status & FD_STATUS_S9) != 0) {
|
|
lp->stats.rx_fifo_errors++;
|
|
#ifdef DEBUG_RX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_receive(): ran out of resources.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
|
|
if ((fd.fd_status & FD_STATUS_S10) != 0) {
|
|
lp->stats.rx_frame_errors++;
|
|
#ifdef DEBUG_RX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_receive(): alignment error.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
|
|
if ((fd.fd_status & FD_STATUS_S11) != 0) {
|
|
lp->stats.rx_crc_errors++;
|
|
#ifdef DEBUG_RX_FAIL
|
|
printk(KERN_DEBUG
|
|
"%s: wv_receive(): CRC error.\n",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
fd.fd_status = 0;
|
|
obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
|
|
(unsigned char *) &fd.fd_status,
|
|
sizeof(fd.fd_status));
|
|
|
|
fd.fd_command = FD_COMMAND_EL;
|
|
obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
|
|
(unsigned char *) &fd.fd_command,
|
|
sizeof(fd.fd_command));
|
|
|
|
fd.fd_command = 0;
|
|
obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
|
|
(unsigned char *) &fd.fd_command,
|
|
sizeof(fd.fd_command));
|
|
|
|
lp->rx_last = lp->rx_head;
|
|
lp->rx_head = fd.fd_link_offset;
|
|
} /* for(;;) -> loop on all frames */
|
|
|
|
#ifdef DEBUG_RX_INFO
|
|
if (nreaped > 1)
|
|
printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
|
|
dev->name, nreaped);
|
|
#endif
|
|
#ifdef DEBUG_RX_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
|
|
#endif
|
|
}
|
|
|
|
/*********************** PACKET TRANSMISSION ***********************/
|
|
/*
|
|
* This part deals with sending packets through the WaveLAN.
|
|
*
|
|
*/
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This routine fills in the appropriate registers and memory
|
|
* locations on the WaveLAN card and starts the card off on
|
|
* the transmit.
|
|
*
|
|
* The principle:
|
|
* Each block contains a transmit command, a NOP command,
|
|
* a transmit block descriptor and a buffer.
|
|
* The CU read the transmit block which point to the tbd,
|
|
* read the tbd and the content of the buffer.
|
|
* When it has finish with it, it goes to the next command
|
|
* which in our case is the NOP. The NOP points on itself,
|
|
* so the CU stop here.
|
|
* When we add the next block, we modify the previous nop
|
|
* to make it point on the new tx command.
|
|
* Simple, isn't it ?
|
|
*
|
|
* (called in wavelan_packet_xmit())
|
|
*/
|
|
static int wv_packet_write(struct net_device * dev, void *buf, short length)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
unsigned short txblock;
|
|
unsigned short txpred;
|
|
unsigned short tx_addr;
|
|
unsigned short nop_addr;
|
|
unsigned short tbd_addr;
|
|
unsigned short buf_addr;
|
|
ac_tx_t tx;
|
|
ac_nop_t nop;
|
|
tbd_t tbd;
|
|
int clen = length;
|
|
unsigned long flags;
|
|
|
|
#ifdef DEBUG_TX_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
|
|
length);
|
|
#endif
|
|
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Check nothing bad has happened */
|
|
if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
|
|
#ifdef DEBUG_TX_ERROR
|
|
printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
|
|
dev->name);
|
|
#endif
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
return 1;
|
|
}
|
|
|
|
/* Calculate addresses of next block and previous block. */
|
|
txblock = lp->tx_first_free;
|
|
txpred = txblock - TXBLOCKZ;
|
|
if (txpred < OFFSET_CU)
|
|
txpred += NTXBLOCKS * TXBLOCKZ;
|
|
lp->tx_first_free += TXBLOCKZ;
|
|
if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
|
|
lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
|
|
|
|
lp->tx_n_in_use++;
|
|
|
|
/* Calculate addresses of the different parts of the block. */
|
|
tx_addr = txblock;
|
|
nop_addr = tx_addr + sizeof(tx);
|
|
tbd_addr = nop_addr + sizeof(nop);
|
|
buf_addr = tbd_addr + sizeof(tbd);
|
|
|
|
/*
|
|
* Transmit command
|
|
*/
|
|
tx.tx_h.ac_status = 0;
|
|
obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
|
|
(unsigned char *) &tx.tx_h.ac_status,
|
|
sizeof(tx.tx_h.ac_status));
|
|
|
|
/*
|
|
* NOP command
|
|
*/
|
|
nop.nop_h.ac_status = 0;
|
|
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
|
|
(unsigned char *) &nop.nop_h.ac_status,
|
|
sizeof(nop.nop_h.ac_status));
|
|
nop.nop_h.ac_link = nop_addr;
|
|
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
|
|
(unsigned char *) &nop.nop_h.ac_link,
|
|
sizeof(nop.nop_h.ac_link));
|
|
|
|
/*
|
|
* Transmit buffer descriptor
|
|
*/
|
|
tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
|
|
tbd.tbd_next_bd_offset = I82586NULL;
|
|
tbd.tbd_bufl = buf_addr;
|
|
tbd.tbd_bufh = 0;
|
|
obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
|
|
|
|
/*
|
|
* Data
|
|
*/
|
|
obram_write(ioaddr, buf_addr, buf, length);
|
|
|
|
/*
|
|
* Overwrite the predecessor NOP link
|
|
* so that it points to this txblock.
|
|
*/
|
|
nop_addr = txpred + sizeof(tx);
|
|
nop.nop_h.ac_status = 0;
|
|
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
|
|
(unsigned char *) &nop.nop_h.ac_status,
|
|
sizeof(nop.nop_h.ac_status));
|
|
nop.nop_h.ac_link = txblock;
|
|
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
|
|
(unsigned char *) &nop.nop_h.ac_link,
|
|
sizeof(nop.nop_h.ac_link));
|
|
|
|
/* Make sure the watchdog will keep quiet for a while */
|
|
dev->trans_start = jiffies;
|
|
|
|
/* Keep stats up to date. */
|
|
lp->stats.tx_bytes += length;
|
|
|
|
if (lp->tx_first_in_use == I82586NULL)
|
|
lp->tx_first_in_use = txblock;
|
|
|
|
if (lp->tx_n_in_use < NTXBLOCKS - 1)
|
|
netif_wake_queue(dev);
|
|
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
#ifdef DEBUG_TX_INFO
|
|
wv_packet_info((u8 *) buf, length, dev->name,
|
|
"wv_packet_write");
|
|
#endif /* DEBUG_TX_INFO */
|
|
|
|
#ifdef DEBUG_TX_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This routine is called when we want to send a packet (NET3 callback)
|
|
* In this routine, we check if the harware is ready to accept
|
|
* the packet. We also prevent reentrance. Then we call the function
|
|
* to send the packet.
|
|
*/
|
|
static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long flags;
|
|
char data[ETH_ZLEN];
|
|
|
|
#ifdef DEBUG_TX_TRACE
|
|
printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
|
|
(unsigned) skb);
|
|
#endif
|
|
|
|
/*
|
|
* Block a timer-based transmit from overlapping.
|
|
* In other words, prevent reentering this routine.
|
|
*/
|
|
netif_stop_queue(dev);
|
|
|
|
/* If somebody has asked to reconfigure the controller,
|
|
* we can do it now.
|
|
*/
|
|
if (lp->reconfig_82586) {
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
wv_82586_config(dev);
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
/* Check that we can continue */
|
|
if (lp->tx_n_in_use == (NTXBLOCKS - 1))
|
|
return 1;
|
|
}
|
|
#ifdef DEBUG_TX_ERROR
|
|
if (skb->next)
|
|
printk(KERN_INFO "skb has next\n");
|
|
#endif
|
|
|
|
/* Do we need some padding? */
|
|
/* Note : on wireless the propagation time is in the order of 1us,
|
|
* and we don't have the Ethernet specific requirement of beeing
|
|
* able to detect collisions, therefore in theory we don't really
|
|
* need to pad. Jean II */
|
|
if (skb->len < ETH_ZLEN) {
|
|
memset(data, 0, ETH_ZLEN);
|
|
skb_copy_from_linear_data(skb, data, skb->len);
|
|
/* Write packet on the card */
|
|
if(wv_packet_write(dev, data, ETH_ZLEN))
|
|
return 1; /* We failed */
|
|
}
|
|
else if(wv_packet_write(dev, skb->data, skb->len))
|
|
return 1; /* We failed */
|
|
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
#ifdef DEBUG_TX_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*********************** HARDWARE CONFIGURATION ***********************/
|
|
/*
|
|
* This part does the real job of starting and configuring the hardware.
|
|
*/
|
|
|
|
/*--------------------------------------------------------------------*/
|
|
/*
|
|
* Routine to initialize the Modem Management Controller.
|
|
* (called by wv_hw_reset())
|
|
*/
|
|
static int wv_mmc_init(struct net_device * dev)
|
|
{
|
|
unsigned long ioaddr = dev->base_addr;
|
|
net_local *lp = (net_local *) dev->priv;
|
|
psa_t psa;
|
|
mmw_t m;
|
|
int configured;
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
|
|
#endif
|
|
|
|
/* Read the parameter storage area. */
|
|
psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
|
|
|
|
#ifdef USE_PSA_CONFIG
|
|
configured = psa.psa_conf_status & 1;
|
|
#else
|
|
configured = 0;
|
|
#endif
|
|
|
|
/* Is the PSA is not configured */
|
|
if (!configured) {
|
|
/* User will be able to configure NWID later (with iwconfig). */
|
|
psa.psa_nwid[0] = 0;
|
|
psa.psa_nwid[1] = 0;
|
|
|
|
/* no NWID checking since NWID is not set */
|
|
psa.psa_nwid_select = 0;
|
|
|
|
/* Disable encryption */
|
|
psa.psa_encryption_select = 0;
|
|
|
|
/* Set to standard values:
|
|
* 0x04 for AT,
|
|
* 0x01 for MCA,
|
|
* 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
|
|
*/
|
|
if (psa.psa_comp_number & 1)
|
|
psa.psa_thr_pre_set = 0x01;
|
|
else
|
|
psa.psa_thr_pre_set = 0x04;
|
|
psa.psa_quality_thr = 0x03;
|
|
|
|
/* It is configured */
|
|
psa.psa_conf_status |= 1;
|
|
|
|
#ifdef USE_PSA_CONFIG
|
|
/* Write the psa. */
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) psa.psa_nwid - (char *) &psa,
|
|
(unsigned char *) psa.psa_nwid, 4);
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_thr_pre_set - (char *) &psa,
|
|
(unsigned char *) &psa.psa_thr_pre_set, 1);
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_quality_thr - (char *) &psa,
|
|
(unsigned char *) &psa.psa_quality_thr, 1);
|
|
psa_write(ioaddr, lp->hacr,
|
|
(char *) &psa.psa_conf_status - (char *) &psa,
|
|
(unsigned char *) &psa.psa_conf_status, 1);
|
|
/* update the Wavelan checksum */
|
|
update_psa_checksum(dev, ioaddr, lp->hacr);
|
|
#endif
|
|
}
|
|
|
|
/* Zero the mmc structure. */
|
|
memset(&m, 0x00, sizeof(m));
|
|
|
|
/* Copy PSA info to the mmc. */
|
|
m.mmw_netw_id_l = psa.psa_nwid[1];
|
|
m.mmw_netw_id_h = psa.psa_nwid[0];
|
|
|
|
if (psa.psa_nwid_select & 1)
|
|
m.mmw_loopt_sel = 0x00;
|
|
else
|
|
m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
|
|
|
|
memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
|
|
sizeof(m.mmw_encr_key));
|
|
|
|
if (psa.psa_encryption_select)
|
|
m.mmw_encr_enable =
|
|
MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
|
|
else
|
|
m.mmw_encr_enable = 0;
|
|
|
|
m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
|
|
m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
|
|
|
|
/*
|
|
* Set default modem control parameters.
|
|
* See NCR document 407-0024326 Rev. A.
|
|
*/
|
|
m.mmw_jabber_enable = 0x01;
|
|
m.mmw_freeze = 0;
|
|
m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
|
|
m.mmw_ifs = 0x20;
|
|
m.mmw_mod_delay = 0x04;
|
|
m.mmw_jam_time = 0x38;
|
|
|
|
m.mmw_des_io_invert = 0;
|
|
m.mmw_decay_prm = 0;
|
|
m.mmw_decay_updat_prm = 0;
|
|
|
|
/* Write all info to MMC. */
|
|
mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
|
|
|
|
/* The following code starts the modem of the 2.00 frequency
|
|
* selectable cards at power on. It's not strictly needed for the
|
|
* following boots.
|
|
* The original patch was by Joe Finney for the PCMCIA driver, but
|
|
* I've cleaned it up a bit and added documentation.
|
|
* Thanks to Loeke Brederveld from Lucent for the info.
|
|
*/
|
|
|
|
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
|
|
* Does it work for everybody, especially old cards? */
|
|
/* Note: WFREQSEL verifies that it is able to read a sensible
|
|
* frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
|
|
* is 0xA (Xilinx version) or 0xB (Ariadne version).
|
|
* My test is more crude but does work. */
|
|
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
|
|
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
|
|
/* We must download the frequency parameters to the
|
|
* synthesizers (from the EEPROM - area 1)
|
|
* Note: as the EEPROM is automatically decremented, we set the end
|
|
* if the area... */
|
|
m.mmw_fee_addr = 0x0F;
|
|
m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
|
|
mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
|
|
(unsigned char *) &m.mmw_fee_ctrl, 2);
|
|
|
|
/* Wait until the download is finished. */
|
|
fee_wait(ioaddr, 100, 100);
|
|
|
|
#ifdef DEBUG_CONFIG_INFO
|
|
/* The frequency was in the last word downloaded. */
|
|
mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
|
|
(unsigned char *) &m.mmw_fee_data_l, 2);
|
|
|
|
/* Print some info for the user. */
|
|
printk(KERN_DEBUG
|
|
"%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
|
|
dev->name,
|
|
((m.
|
|
mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
|
|
5 / 2 + 24000L);
|
|
#endif
|
|
|
|
/* We must now download the power adjust value (gain) to
|
|
* the synthesizers (from the EEPROM - area 7 - DAC). */
|
|
m.mmw_fee_addr = 0x61;
|
|
m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
|
|
mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
|
|
(unsigned char *) &m.mmw_fee_ctrl, 2);
|
|
|
|
/* Wait until the download is finished. */
|
|
}
|
|
/* if 2.00 card */
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Construct the fd and rbd structures.
|
|
* Start the receive unit.
|
|
* (called by wv_hw_reset())
|
|
*/
|
|
static int wv_ru_start(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
u16 scb_cs;
|
|
fd_t fd;
|
|
rbd_t rbd;
|
|
u16 rx;
|
|
u16 rx_next;
|
|
int i;
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
|
|
#endif
|
|
|
|
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
|
|
(unsigned char *) &scb_cs, sizeof(scb_cs));
|
|
if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
|
|
return 0;
|
|
|
|
lp->rx_head = OFFSET_RU;
|
|
|
|
for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
|
|
rx_next =
|
|
(i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
|
|
|
|
fd.fd_status = 0;
|
|
fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
|
|
fd.fd_link_offset = rx_next;
|
|
fd.fd_rbd_offset = rx + sizeof(fd);
|
|
obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
|
|
|
|
rbd.rbd_status = 0;
|
|
rbd.rbd_next_rbd_offset = I82586NULL;
|
|
rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
|
|
rbd.rbd_bufh = 0;
|
|
rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
|
|
obram_write(ioaddr, rx + sizeof(fd),
|
|
(unsigned char *) &rbd, sizeof(rbd));
|
|
|
|
lp->rx_last = rx;
|
|
}
|
|
|
|
obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
|
|
(unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
|
|
|
|
scb_cs = SCB_CMD_RUC_GO;
|
|
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &scb_cs, sizeof(scb_cs));
|
|
|
|
set_chan_attn(ioaddr, lp->hacr);
|
|
|
|
for (i = 1000; i > 0; i--) {
|
|
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &scb_cs, sizeof(scb_cs));
|
|
if (scb_cs == 0)
|
|
break;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
if (i <= 0) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_ru_start(): board not accepting command.\n",
|
|
dev->name);
|
|
#endif
|
|
return -1;
|
|
}
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Initialise the transmit blocks.
|
|
* Start the command unit executing the NOP
|
|
* self-loop of the first transmit block.
|
|
*
|
|
* Here we create the list of send buffers used to transmit packets
|
|
* between the PC and the command unit. For each buffer, we create a
|
|
* buffer descriptor (pointing on the buffer), a transmit command
|
|
* (pointing to the buffer descriptor) and a NOP command.
|
|
* The transmit command is linked to the NOP, and the NOP to itself.
|
|
* When we will have finished executing the transmit command, we will
|
|
* then loop on the NOP. By releasing the NOP link to a new command,
|
|
* we may send another buffer.
|
|
*
|
|
* (called by wv_hw_reset())
|
|
*/
|
|
static int wv_cu_start(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
int i;
|
|
u16 txblock;
|
|
u16 first_nop;
|
|
u16 scb_cs;
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
|
|
#endif
|
|
|
|
lp->tx_first_free = OFFSET_CU;
|
|
lp->tx_first_in_use = I82586NULL;
|
|
|
|
for (i = 0, txblock = OFFSET_CU;
|
|
i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
|
|
ac_tx_t tx;
|
|
ac_nop_t nop;
|
|
tbd_t tbd;
|
|
unsigned short tx_addr;
|
|
unsigned short nop_addr;
|
|
unsigned short tbd_addr;
|
|
unsigned short buf_addr;
|
|
|
|
tx_addr = txblock;
|
|
nop_addr = tx_addr + sizeof(tx);
|
|
tbd_addr = nop_addr + sizeof(nop);
|
|
buf_addr = tbd_addr + sizeof(tbd);
|
|
|
|
tx.tx_h.ac_status = 0;
|
|
tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
|
|
tx.tx_h.ac_link = nop_addr;
|
|
tx.tx_tbd_offset = tbd_addr;
|
|
obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
|
|
sizeof(tx));
|
|
|
|
nop.nop_h.ac_status = 0;
|
|
nop.nop_h.ac_command = acmd_nop;
|
|
nop.nop_h.ac_link = nop_addr;
|
|
obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
|
|
sizeof(nop));
|
|
|
|
tbd.tbd_status = TBD_STATUS_EOF;
|
|
tbd.tbd_next_bd_offset = I82586NULL;
|
|
tbd.tbd_bufl = buf_addr;
|
|
tbd.tbd_bufh = 0;
|
|
obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
|
|
sizeof(tbd));
|
|
}
|
|
|
|
first_nop =
|
|
OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
|
|
obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
|
|
(unsigned char *) &first_nop, sizeof(first_nop));
|
|
|
|
scb_cs = SCB_CMD_CUC_GO;
|
|
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &scb_cs, sizeof(scb_cs));
|
|
|
|
set_chan_attn(ioaddr, lp->hacr);
|
|
|
|
for (i = 1000; i > 0; i--) {
|
|
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &scb_cs, sizeof(scb_cs));
|
|
if (scb_cs == 0)
|
|
break;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
if (i <= 0) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_cu_start(): board not accepting command.\n",
|
|
dev->name);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
lp->tx_n_in_use = 0;
|
|
netif_start_queue(dev);
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This routine does a standard configuration of the WaveLAN
|
|
* controller (i82586).
|
|
*
|
|
* It initialises the scp, iscp and scb structure
|
|
* The first two are just pointers to the next.
|
|
* The last one is used for basic configuration and for basic
|
|
* communication (interrupt status).
|
|
*
|
|
* (called by wv_hw_reset())
|
|
*/
|
|
static int wv_82586_start(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
scp_t scp; /* system configuration pointer */
|
|
iscp_t iscp; /* intermediate scp */
|
|
scb_t scb; /* system control block */
|
|
ach_t cb; /* Action command header */
|
|
u8 zeroes[512];
|
|
int i;
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
|
|
#endif
|
|
|
|
/*
|
|
* Clear the onboard RAM.
|
|
*/
|
|
memset(&zeroes[0], 0x00, sizeof(zeroes));
|
|
for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
|
|
obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
|
|
|
|
/*
|
|
* Construct the command unit structures:
|
|
* scp, iscp, scb, cb.
|
|
*/
|
|
memset(&scp, 0x00, sizeof(scp));
|
|
scp.scp_sysbus = SCP_SY_16BBUS;
|
|
scp.scp_iscpl = OFFSET_ISCP;
|
|
obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
|
|
sizeof(scp));
|
|
|
|
memset(&iscp, 0x00, sizeof(iscp));
|
|
iscp.iscp_busy = 1;
|
|
iscp.iscp_offset = OFFSET_SCB;
|
|
obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
|
|
sizeof(iscp));
|
|
|
|
/* Our first command is to reset the i82586. */
|
|
memset(&scb, 0x00, sizeof(scb));
|
|
scb.scb_command = SCB_CMD_RESET;
|
|
scb.scb_cbl_offset = OFFSET_CU;
|
|
scb.scb_rfa_offset = OFFSET_RU;
|
|
obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
|
|
sizeof(scb));
|
|
|
|
set_chan_attn(ioaddr, lp->hacr);
|
|
|
|
/* Wait for command to finish. */
|
|
for (i = 1000; i > 0; i--) {
|
|
obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
|
|
sizeof(iscp));
|
|
|
|
if (iscp.iscp_busy == (unsigned short) 0)
|
|
break;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
if (i <= 0) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wv_82586_start(): iscp_busy timeout.\n",
|
|
dev->name);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
/* Check command completion. */
|
|
for (i = 15; i > 0; i--) {
|
|
obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
|
|
sizeof(scb));
|
|
|
|
if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
|
|
break;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
if (i <= 0) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
|
|
dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
wv_ack(dev);
|
|
|
|
/* Set the action command header. */
|
|
memset(&cb, 0x00, sizeof(cb));
|
|
cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
|
|
cb.ac_link = OFFSET_CU;
|
|
obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
|
|
|
|
if (wv_synchronous_cmd(dev, "diag()") == -1)
|
|
return -1;
|
|
|
|
obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
|
|
if (cb.ac_status & AC_SFLD_FAIL) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wv_82586_start(): i82586 Self Test failed.\n",
|
|
dev->name);
|
|
#endif
|
|
return -1;
|
|
}
|
|
#ifdef DEBUG_I82586_SHOW
|
|
wv_scb_show(ioaddr);
|
|
#endif
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This routine does a standard configuration of the WaveLAN
|
|
* controller (i82586).
|
|
*
|
|
* This routine is a violent hack. We use the first free transmit block
|
|
* to make our configuration. In the buffer area, we create the three
|
|
* configuration commands (linked). We make the previous NOP point to
|
|
* the beginning of the buffer instead of the tx command. After, we go
|
|
* as usual to the NOP command.
|
|
* Note that only the last command (mc_set) will generate an interrupt.
|
|
*
|
|
* (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
|
|
*/
|
|
static void wv_82586_config(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
unsigned short txblock;
|
|
unsigned short txpred;
|
|
unsigned short tx_addr;
|
|
unsigned short nop_addr;
|
|
unsigned short tbd_addr;
|
|
unsigned short cfg_addr;
|
|
unsigned short ias_addr;
|
|
unsigned short mcs_addr;
|
|
ac_tx_t tx;
|
|
ac_nop_t nop;
|
|
ac_cfg_t cfg; /* Configure action */
|
|
ac_ias_t ias; /* IA-setup action */
|
|
ac_mcs_t mcs; /* Multicast setup */
|
|
struct dev_mc_list *dmi;
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
|
|
#endif
|
|
|
|
/* Check nothing bad has happened */
|
|
if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
|
|
dev->name);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/* Calculate addresses of next block and previous block. */
|
|
txblock = lp->tx_first_free;
|
|
txpred = txblock - TXBLOCKZ;
|
|
if (txpred < OFFSET_CU)
|
|
txpred += NTXBLOCKS * TXBLOCKZ;
|
|
lp->tx_first_free += TXBLOCKZ;
|
|
if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
|
|
lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
|
|
|
|
lp->tx_n_in_use++;
|
|
|
|
/* Calculate addresses of the different parts of the block. */
|
|
tx_addr = txblock;
|
|
nop_addr = tx_addr + sizeof(tx);
|
|
tbd_addr = nop_addr + sizeof(nop);
|
|
cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
|
|
ias_addr = cfg_addr + sizeof(cfg);
|
|
mcs_addr = ias_addr + sizeof(ias);
|
|
|
|
/*
|
|
* Transmit command
|
|
*/
|
|
tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
|
|
obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
|
|
(unsigned char *) &tx.tx_h.ac_status,
|
|
sizeof(tx.tx_h.ac_status));
|
|
|
|
/*
|
|
* NOP command
|
|
*/
|
|
nop.nop_h.ac_status = 0;
|
|
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
|
|
(unsigned char *) &nop.nop_h.ac_status,
|
|
sizeof(nop.nop_h.ac_status));
|
|
nop.nop_h.ac_link = nop_addr;
|
|
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
|
|
(unsigned char *) &nop.nop_h.ac_link,
|
|
sizeof(nop.nop_h.ac_link));
|
|
|
|
/* Create a configure action. */
|
|
memset(&cfg, 0x00, sizeof(cfg));
|
|
|
|
/*
|
|
* For Linux we invert AC_CFG_ALOC() so as to conform
|
|
* to the way that net packets reach us from above.
|
|
* (See also ac_tx_t.)
|
|
*
|
|
* Updated from Wavelan Manual WCIN085B
|
|
*/
|
|
cfg.cfg_byte_cnt =
|
|
AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
|
|
cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
|
|
cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
|
|
cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
|
|
AC_CFG_ILPBCK(0) |
|
|
AC_CFG_PRELEN(AC_CFG_PLEN_2) |
|
|
AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
|
|
cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
|
|
AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
|
|
cfg.cfg_ifs = 0x20;
|
|
cfg.cfg_slotl = 0x0C;
|
|
cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
|
|
cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
|
|
AC_CFG_BTSTF(0) |
|
|
AC_CFG_CRC16(0) |
|
|
AC_CFG_NCRC(0) |
|
|
AC_CFG_TNCRS(1) |
|
|
AC_CFG_MANCH(0) |
|
|
AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
|
|
cfg.cfg_byte15 = AC_CFG_ICDS(0) |
|
|
AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
|
|
/*
|
|
cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
|
|
*/
|
|
cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
|
|
|
|
cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
|
|
cfg.cfg_h.ac_link = ias_addr;
|
|
obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
|
|
|
|
/* Set up the MAC address */
|
|
memset(&ias, 0x00, sizeof(ias));
|
|
ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
|
|
ias.ias_h.ac_link = mcs_addr;
|
|
memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
|
|
sizeof(ias.ias_addr));
|
|
obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
|
|
|
|
/* Initialize adapter's Ethernet multicast addresses */
|
|
memset(&mcs, 0x00, sizeof(mcs));
|
|
mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
|
|
mcs.mcs_h.ac_link = nop_addr;
|
|
mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
|
|
obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
|
|
|
|
/* Any address to set? */
|
|
if (lp->mc_count) {
|
|
for (dmi = dev->mc_list; dmi; dmi = dmi->next)
|
|
outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
|
|
WAVELAN_ADDR_SIZE >> 1);
|
|
|
|
#ifdef DEBUG_CONFIG_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wv_82586_config(): set %d multicast addresses:\n",
|
|
dev->name, lp->mc_count);
|
|
for (dmi = dev->mc_list; dmi; dmi = dmi->next)
|
|
printk(KERN_DEBUG
|
|
" %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
dmi->dmi_addr[0], dmi->dmi_addr[1],
|
|
dmi->dmi_addr[2], dmi->dmi_addr[3],
|
|
dmi->dmi_addr[4], dmi->dmi_addr[5]);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Overwrite the predecessor NOP link
|
|
* so that it points to the configure action.
|
|
*/
|
|
nop_addr = txpred + sizeof(tx);
|
|
nop.nop_h.ac_status = 0;
|
|
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
|
|
(unsigned char *) &nop.nop_h.ac_status,
|
|
sizeof(nop.nop_h.ac_status));
|
|
nop.nop_h.ac_link = cfg_addr;
|
|
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
|
|
(unsigned char *) &nop.nop_h.ac_link,
|
|
sizeof(nop.nop_h.ac_link));
|
|
|
|
/* Job done, clear the flag */
|
|
lp->reconfig_82586 = 0;
|
|
|
|
if (lp->tx_first_in_use == I82586NULL)
|
|
lp->tx_first_in_use = txblock;
|
|
|
|
if (lp->tx_n_in_use == (NTXBLOCKS - 1))
|
|
netif_stop_queue(dev);
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
|
|
#endif
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* This routine, called by wavelan_close(), gracefully stops the
|
|
* WaveLAN controller (i82586).
|
|
* (called by wavelan_close())
|
|
*/
|
|
static void wv_82586_stop(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
u16 scb_cmd;
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
|
|
#endif
|
|
|
|
/* Suspend both command unit and receive unit. */
|
|
scb_cmd =
|
|
(SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
|
|
SCB_CMD_RUC_SUS);
|
|
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &scb_cmd, sizeof(scb_cmd));
|
|
set_chan_attn(ioaddr, lp->hacr);
|
|
|
|
/* No more interrupts */
|
|
wv_ints_off(dev);
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
|
|
#endif
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Totally reset the WaveLAN and restart it.
|
|
* Performs the following actions:
|
|
* 1. A power reset (reset DMA)
|
|
* 2. Initialize the radio modem (using wv_mmc_init)
|
|
* 3. Reset & Configure LAN controller (using wv_82586_start)
|
|
* 4. Start the LAN controller's command unit
|
|
* 5. Start the LAN controller's receive unit
|
|
* (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
|
|
*/
|
|
static int wv_hw_reset(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long ioaddr = dev->base_addr;
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
|
|
(unsigned int) dev);
|
|
#endif
|
|
|
|
/* Increase the number of resets done. */
|
|
lp->nresets++;
|
|
|
|
wv_hacr_reset(ioaddr);
|
|
lp->hacr = HACR_DEFAULT;
|
|
|
|
if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
|
|
return -1;
|
|
|
|
/* Enable the card to send interrupts. */
|
|
wv_ints_on(dev);
|
|
|
|
/* Start card functions */
|
|
if (wv_cu_start(dev) < 0)
|
|
return -1;
|
|
|
|
/* Setup the controller and parameters */
|
|
wv_82586_config(dev);
|
|
|
|
/* Finish configuration with the receive unit */
|
|
if (wv_ru_start(dev) < 0)
|
|
return -1;
|
|
|
|
#ifdef DEBUG_CONFIG_TRACE
|
|
printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Check if there is a WaveLAN at the specific base address.
|
|
* As a side effect, this reads the MAC address.
|
|
* (called in wavelan_probe() and init_module())
|
|
*/
|
|
static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
|
|
{
|
|
int i; /* Loop counter */
|
|
|
|
/* Check if the base address if available. */
|
|
if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
|
|
return -EBUSY; /* ioaddr already used */
|
|
|
|
/* Reset host interface */
|
|
wv_hacr_reset(ioaddr);
|
|
|
|
/* Read the MAC address from the parameter storage area. */
|
|
psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
|
|
mac, 6);
|
|
|
|
release_region(ioaddr, sizeof(ha_t));
|
|
|
|
/*
|
|
* Check the first three octets of the address for the manufacturer's code.
|
|
* Note: if this can't find your WaveLAN card, you've got a
|
|
* non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
|
|
* how to configure your card.
|
|
*/
|
|
for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
|
|
if ((mac[0] == MAC_ADDRESSES[i][0]) &&
|
|
(mac[1] == MAC_ADDRESSES[i][1]) &&
|
|
(mac[2] == MAC_ADDRESSES[i][2]))
|
|
return 0;
|
|
|
|
#ifdef DEBUG_CONFIG_INFO
|
|
printk(KERN_WARNING
|
|
"WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
|
|
ioaddr, mac[0], mac[1], mac[2]);
|
|
#endif
|
|
return -ENODEV;
|
|
}
|
|
|
|
/************************ INTERRUPT HANDLING ************************/
|
|
|
|
/*
|
|
* This function is the interrupt handler for the WaveLAN card. This
|
|
* routine will be called whenever:
|
|
*/
|
|
static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct net_device *dev;
|
|
unsigned long ioaddr;
|
|
net_local *lp;
|
|
u16 hasr;
|
|
u16 status;
|
|
u16 ack_cmd;
|
|
|
|
dev = dev_id;
|
|
|
|
#ifdef DEBUG_INTERRUPT_TRACE
|
|
printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
|
|
#endif
|
|
|
|
lp = (net_local *) dev->priv;
|
|
ioaddr = dev->base_addr;
|
|
|
|
#ifdef DEBUG_INTERRUPT_INFO
|
|
/* Check state of our spinlock */
|
|
if(spin_is_locked(&lp->spinlock))
|
|
printk(KERN_DEBUG
|
|
"%s: wavelan_interrupt(): spinlock is already locked !!!\n",
|
|
dev->name);
|
|
#endif
|
|
|
|
/* Prevent reentrancy. We need to do that because we may have
|
|
* multiple interrupt handler running concurrently.
|
|
* It is safe because interrupts are disabled before acquiring
|
|
* the spinlock. */
|
|
spin_lock(&lp->spinlock);
|
|
|
|
/* We always had spurious interrupts at startup, but lately I
|
|
* saw them comming *between* the request_irq() and the
|
|
* spin_lock_irqsave() in wavelan_open(), so the spinlock
|
|
* protection is no enough.
|
|
* So, we also check lp->hacr that will tell us is we enabled
|
|
* irqs or not (see wv_ints_on()).
|
|
* We can't use netif_running(dev) because we depend on the
|
|
* proper processing of the irq generated during the config. */
|
|
|
|
/* Which interrupt it is ? */
|
|
hasr = hasr_read(ioaddr);
|
|
|
|
#ifdef DEBUG_INTERRUPT_INFO
|
|
printk(KERN_INFO
|
|
"%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
|
|
dev->name, hasr, lp->hacr);
|
|
#endif
|
|
|
|
/* Check modem interrupt */
|
|
if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
|
|
u8 dce_status;
|
|
|
|
/*
|
|
* Interrupt from the modem management controller.
|
|
* This will clear it -- ignored for now.
|
|
*/
|
|
mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
|
|
sizeof(dce_status));
|
|
|
|
#ifdef DEBUG_INTERRUPT_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
|
|
dev->name, dce_status);
|
|
#endif
|
|
}
|
|
|
|
/* Check if not controller interrupt */
|
|
if (((hasr & HASR_82586_INTR) == 0) ||
|
|
((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
|
|
#ifdef DEBUG_INTERRUPT_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
|
|
dev->name, hasr);
|
|
#endif
|
|
spin_unlock (&lp->spinlock);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* Read interrupt data. */
|
|
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
|
|
(unsigned char *) &status, sizeof(status));
|
|
|
|
/*
|
|
* Acknowledge the interrupt(s).
|
|
*/
|
|
ack_cmd = status & SCB_ST_INT;
|
|
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
|
|
(unsigned char *) &ack_cmd, sizeof(ack_cmd));
|
|
set_chan_attn(ioaddr, lp->hacr);
|
|
|
|
#ifdef DEBUG_INTERRUPT_INFO
|
|
printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
|
|
dev->name, status);
|
|
#endif
|
|
|
|
/* Command completed. */
|
|
if ((status & SCB_ST_CX) == SCB_ST_CX) {
|
|
#ifdef DEBUG_INTERRUPT_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wavelan_interrupt(): command completed.\n",
|
|
dev->name);
|
|
#endif
|
|
wv_complete(dev, ioaddr, lp);
|
|
}
|
|
|
|
/* Frame received. */
|
|
if ((status & SCB_ST_FR) == SCB_ST_FR) {
|
|
#ifdef DEBUG_INTERRUPT_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wavelan_interrupt(): received packet.\n",
|
|
dev->name);
|
|
#endif
|
|
wv_receive(dev);
|
|
}
|
|
|
|
/* Check the state of the command unit. */
|
|
if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
|
|
(((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
|
|
(netif_running(dev)))) {
|
|
#ifdef DEBUG_INTERRUPT_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_interrupt(): CU inactive -- restarting\n",
|
|
dev->name);
|
|
#endif
|
|
wv_hw_reset(dev);
|
|
}
|
|
|
|
/* Check the state of the command unit. */
|
|
if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
|
|
(((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
|
|
(netif_running(dev)))) {
|
|
#ifdef DEBUG_INTERRUPT_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_interrupt(): RU not ready -- restarting\n",
|
|
dev->name);
|
|
#endif
|
|
wv_hw_reset(dev);
|
|
}
|
|
|
|
/* Release spinlock */
|
|
spin_unlock (&lp->spinlock);
|
|
|
|
#ifdef DEBUG_INTERRUPT_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
|
|
#endif
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Watchdog: when we start a transmission, a timer is set for us in the
|
|
* kernel. If the transmission completes, this timer is disabled. If
|
|
* the timer expires, we are called and we try to unlock the hardware.
|
|
*/
|
|
static void wavelan_watchdog(struct net_device * dev)
|
|
{
|
|
net_local * lp = (net_local *)dev->priv;
|
|
u_long ioaddr = dev->base_addr;
|
|
unsigned long flags;
|
|
unsigned int nreaped;
|
|
|
|
#ifdef DEBUG_INTERRUPT_TRACE
|
|
printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
|
|
#endif
|
|
|
|
#ifdef DEBUG_INTERRUPT_ERROR
|
|
printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
|
|
dev->name);
|
|
#endif
|
|
|
|
/* Check that we came here for something */
|
|
if (lp->tx_n_in_use <= 0) {
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
/* Try to see if some buffers are not free (in case we missed
|
|
* an interrupt */
|
|
nreaped = wv_complete(dev, ioaddr, lp);
|
|
|
|
#ifdef DEBUG_INTERRUPT_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wavelan_watchdog(): %d reaped, %d remain.\n",
|
|
dev->name, nreaped, lp->tx_n_in_use);
|
|
#endif
|
|
|
|
#ifdef DEBUG_PSA_SHOW
|
|
{
|
|
psa_t psa;
|
|
psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
|
|
wv_psa_show(&psa);
|
|
}
|
|
#endif
|
|
#ifdef DEBUG_MMC_SHOW
|
|
wv_mmc_show(dev);
|
|
#endif
|
|
#ifdef DEBUG_I82586_SHOW
|
|
wv_cu_show(dev);
|
|
#endif
|
|
|
|
/* If no buffer has been freed */
|
|
if (nreaped == 0) {
|
|
#ifdef DEBUG_INTERRUPT_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_watchdog(): cleanup failed, trying reset\n",
|
|
dev->name);
|
|
#endif
|
|
wv_hw_reset(dev);
|
|
}
|
|
|
|
/* At this point, we should have some free Tx buffer ;-) */
|
|
if (lp->tx_n_in_use < NTXBLOCKS - 1)
|
|
netif_wake_queue(dev);
|
|
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
#ifdef DEBUG_INTERRUPT_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
|
|
#endif
|
|
}
|
|
|
|
/********************* CONFIGURATION CALLBACKS *********************/
|
|
/*
|
|
* Here are the functions called by the Linux networking code (NET3)
|
|
* for initialization, configuration and deinstallations of the
|
|
* WaveLAN ISA hardware.
|
|
*/
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Configure and start up the WaveLAN PCMCIA adaptor.
|
|
* Called by NET3 when it "opens" the device.
|
|
*/
|
|
static int wavelan_open(struct net_device * dev)
|
|
{
|
|
net_local * lp = (net_local *)dev->priv;
|
|
unsigned long flags;
|
|
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
|
|
(unsigned int) dev);
|
|
#endif
|
|
|
|
/* Check irq */
|
|
if (dev->irq == 0) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
|
|
dev->name);
|
|
#endif
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
|
|
{
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
|
|
dev->name);
|
|
#endif
|
|
return -EAGAIN;
|
|
}
|
|
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
|
|
if (wv_hw_reset(dev) != -1) {
|
|
netif_start_queue(dev);
|
|
} else {
|
|
free_irq(dev->irq, dev);
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_open(): impossible to start the card\n",
|
|
dev->name);
|
|
#endif
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
return -EAGAIN;
|
|
}
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Shut down the WaveLAN ISA card.
|
|
* Called by NET3 when it "closes" the device.
|
|
*/
|
|
static int wavelan_close(struct net_device * dev)
|
|
{
|
|
net_local *lp = (net_local *) dev->priv;
|
|
unsigned long flags;
|
|
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
|
|
(unsigned int) dev);
|
|
#endif
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
/*
|
|
* Flush the Tx and disable Rx.
|
|
*/
|
|
spin_lock_irqsave(&lp->spinlock, flags);
|
|
wv_82586_stop(dev);
|
|
spin_unlock_irqrestore(&lp->spinlock, flags);
|
|
|
|
free_irq(dev->irq, dev);
|
|
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Probe an I/O address, and if the WaveLAN is there configure the
|
|
* device structure
|
|
* (called by wavelan_probe() and via init_module()).
|
|
*/
|
|
static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
|
|
{
|
|
u8 irq_mask;
|
|
int irq;
|
|
net_local *lp;
|
|
mac_addr mac;
|
|
int err;
|
|
|
|
if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
|
|
return -EADDRINUSE;
|
|
|
|
err = wv_check_ioaddr(ioaddr, mac);
|
|
if (err)
|
|
goto out;
|
|
|
|
memcpy(dev->dev_addr, mac, 6);
|
|
|
|
dev->base_addr = ioaddr;
|
|
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
|
|
dev->name, (unsigned int) dev, ioaddr);
|
|
#endif
|
|
|
|
/* Check IRQ argument on command line. */
|
|
if (dev->irq != 0) {
|
|
irq_mask = wv_irq_to_psa(dev->irq);
|
|
|
|
if (irq_mask == 0) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_WARNING
|
|
"%s: wavelan_config(): invalid IRQ %d ignored.\n",
|
|
dev->name, dev->irq);
|
|
#endif
|
|
dev->irq = 0;
|
|
} else {
|
|
#ifdef DEBUG_CONFIG_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: wavelan_config(): changing IRQ to %d\n",
|
|
dev->name, dev->irq);
|
|
#endif
|
|
psa_write(ioaddr, HACR_DEFAULT,
|
|
psaoff(0, psa_int_req_no), &irq_mask, 1);
|
|
/* update the Wavelan checksum */
|
|
update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
|
|
wv_hacr_reset(ioaddr);
|
|
}
|
|
}
|
|
|
|
psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
|
|
&irq_mask, 1);
|
|
if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_INFO
|
|
"%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
|
|
dev->name, irq_mask);
|
|
#endif
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
dev->irq = irq;
|
|
|
|
dev->mem_start = 0x0000;
|
|
dev->mem_end = 0x0000;
|
|
dev->if_port = 0;
|
|
|
|
/* Initialize device structures */
|
|
memset(dev->priv, 0, sizeof(net_local));
|
|
lp = (net_local *) dev->priv;
|
|
|
|
/* Back link to the device structure. */
|
|
lp->dev = dev;
|
|
/* Add the device at the beginning of the linked list. */
|
|
lp->next = wavelan_list;
|
|
wavelan_list = lp;
|
|
|
|
lp->hacr = HACR_DEFAULT;
|
|
|
|
/* Multicast stuff */
|
|
lp->promiscuous = 0;
|
|
lp->mc_count = 0;
|
|
|
|
/* Init spinlock */
|
|
spin_lock_init(&lp->spinlock);
|
|
|
|
SET_MODULE_OWNER(dev);
|
|
dev->open = wavelan_open;
|
|
dev->stop = wavelan_close;
|
|
dev->hard_start_xmit = wavelan_packet_xmit;
|
|
dev->get_stats = wavelan_get_stats;
|
|
dev->set_multicast_list = &wavelan_set_multicast_list;
|
|
dev->tx_timeout = &wavelan_watchdog;
|
|
dev->watchdog_timeo = WATCHDOG_JIFFIES;
|
|
#ifdef SET_MAC_ADDRESS
|
|
dev->set_mac_address = &wavelan_set_mac_address;
|
|
#endif /* SET_MAC_ADDRESS */
|
|
|
|
dev->wireless_handlers = &wavelan_handler_def;
|
|
lp->wireless_data.spy_data = &lp->spy_data;
|
|
dev->wireless_data = &lp->wireless_data;
|
|
|
|
dev->mtu = WAVELAN_MTU;
|
|
|
|
/* Display nice information. */
|
|
wv_init_info(dev);
|
|
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
|
|
#endif
|
|
return 0;
|
|
out:
|
|
release_region(ioaddr, sizeof(ha_t));
|
|
return err;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Check for a network adaptor of this type. Return '0' iff one
|
|
* exists. There seem to be different interpretations of
|
|
* the initial value of dev->base_addr.
|
|
* We follow the example in drivers/net/ne.c.
|
|
* (called in "Space.c")
|
|
*/
|
|
struct net_device * __init wavelan_probe(int unit)
|
|
{
|
|
struct net_device *dev;
|
|
short base_addr;
|
|
int def_irq;
|
|
int i;
|
|
int r = 0;
|
|
|
|
#ifdef STRUCT_CHECK
|
|
if (wv_struct_check() != (char *) NULL) {
|
|
printk(KERN_WARNING
|
|
"%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
|
|
dev->name, wv_struct_check());
|
|
return -ENODEV;
|
|
}
|
|
#endif /* STRUCT_CHECK */
|
|
|
|
dev = alloc_etherdev(sizeof(net_local));
|
|
if (!dev)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sprintf(dev->name, "eth%d", unit);
|
|
netdev_boot_setup_check(dev);
|
|
base_addr = dev->base_addr;
|
|
def_irq = dev->irq;
|
|
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG
|
|
"%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
|
|
dev->name, dev, (unsigned int) dev->base_addr);
|
|
#endif
|
|
|
|
/* Don't probe at all. */
|
|
if (base_addr < 0) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_WARNING
|
|
"%s: wavelan_probe(): invalid base address\n",
|
|
dev->name);
|
|
#endif
|
|
r = -ENXIO;
|
|
} else if (base_addr > 0x100) { /* Check a single specified location. */
|
|
r = wavelan_config(dev, base_addr);
|
|
#ifdef DEBUG_CONFIG_INFO
|
|
if (r != 0)
|
|
printk(KERN_DEBUG
|
|
"%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
|
|
dev->name, base_addr);
|
|
#endif
|
|
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
|
|
#endif
|
|
} else { /* Scan all possible addresses of the WaveLAN hardware. */
|
|
for (i = 0; i < ARRAY_SIZE(iobase); i++) {
|
|
dev->irq = def_irq;
|
|
if (wavelan_config(dev, iobase[i]) == 0) {
|
|
#ifdef DEBUG_CALLBACK_TRACE
|
|
printk(KERN_DEBUG
|
|
"%s: <-wavelan_probe()\n",
|
|
dev->name);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
if (i == ARRAY_SIZE(iobase))
|
|
r = -ENODEV;
|
|
}
|
|
if (r)
|
|
goto out;
|
|
r = register_netdev(dev);
|
|
if (r)
|
|
goto out1;
|
|
return dev;
|
|
out1:
|
|
release_region(dev->base_addr, sizeof(ha_t));
|
|
wavelan_list = wavelan_list->next;
|
|
out:
|
|
free_netdev(dev);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
/****************************** MODULE ******************************/
|
|
/*
|
|
* Module entry point: insertion and removal
|
|
*/
|
|
|
|
#ifdef MODULE
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Insertion of the module
|
|
* I'm now quite proud of the multi-device support.
|
|
*/
|
|
int __init init_module(void)
|
|
{
|
|
int ret = -EIO; /* Return error if no cards found */
|
|
int i;
|
|
|
|
#ifdef DEBUG_MODULE_TRACE
|
|
printk(KERN_DEBUG "-> init_module()\n");
|
|
#endif
|
|
|
|
/* If probing is asked */
|
|
if (io[0] == 0) {
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
printk(KERN_WARNING
|
|
"WaveLAN init_module(): doing device probing (bad !)\n");
|
|
printk(KERN_WARNING
|
|
"Specify base addresses while loading module to correct the problem\n");
|
|
#endif
|
|
|
|
/* Copy the basic set of address to be probed. */
|
|
for (i = 0; i < ARRAY_SIZE(iobase); i++)
|
|
io[i] = iobase[i];
|
|
}
|
|
|
|
|
|
/* Loop on all possible base addresses. */
|
|
i = -1;
|
|
while ((io[++i] != 0) && (i < ARRAY_SIZE(io))) {
|
|
struct net_device *dev = alloc_etherdev(sizeof(net_local));
|
|
if (!dev)
|
|
break;
|
|
if (name[i])
|
|
strcpy(dev->name, name[i]); /* Copy name */
|
|
dev->base_addr = io[i];
|
|
dev->irq = irq[i];
|
|
|
|
/* Check if there is something at this base address. */
|
|
if (wavelan_config(dev, io[i]) == 0) {
|
|
if (register_netdev(dev) != 0) {
|
|
release_region(dev->base_addr, sizeof(ha_t));
|
|
wavelan_list = wavelan_list->next;
|
|
} else {
|
|
ret = 0;
|
|
continue;
|
|
}
|
|
}
|
|
free_netdev(dev);
|
|
}
|
|
|
|
#ifdef DEBUG_CONFIG_ERROR
|
|
if (!wavelan_list)
|
|
printk(KERN_WARNING
|
|
"WaveLAN init_module(): no device found\n");
|
|
#endif
|
|
|
|
#ifdef DEBUG_MODULE_TRACE
|
|
printk(KERN_DEBUG "<- init_module()\n");
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/*
|
|
* Removal of the module
|
|
*/
|
|
void cleanup_module(void)
|
|
{
|
|
#ifdef DEBUG_MODULE_TRACE
|
|
printk(KERN_DEBUG "-> cleanup_module()\n");
|
|
#endif
|
|
|
|
/* Loop on all devices and release them. */
|
|
while (wavelan_list) {
|
|
struct net_device *dev = wavelan_list->dev;
|
|
|
|
#ifdef DEBUG_CONFIG_INFO
|
|
printk(KERN_DEBUG
|
|
"%s: cleanup_module(): removing device at 0x%x\n",
|
|
dev->name, (unsigned int) dev);
|
|
#endif
|
|
unregister_netdev(dev);
|
|
|
|
release_region(dev->base_addr, sizeof(ha_t));
|
|
wavelan_list = wavelan_list->next;
|
|
|
|
free_netdev(dev);
|
|
}
|
|
|
|
#ifdef DEBUG_MODULE_TRACE
|
|
printk(KERN_DEBUG "<- cleanup_module()\n");
|
|
#endif
|
|
}
|
|
#endif /* MODULE */
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/*
|
|
* This software may only be used and distributed
|
|
* according to the terms of the GNU General Public License.
|
|
*
|
|
* This software was developed as a component of the
|
|
* Linux operating system.
|
|
* It is based on other device drivers and information
|
|
* either written or supplied by:
|
|
* Ajay Bakre (bakre@paul.rutgers.edu),
|
|
* Donald Becker (becker@scyld.com),
|
|
* Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
|
|
* Anders Klemets (klemets@it.kth.se),
|
|
* Vladimir V. Kolpakov (w@stier.koenig.ru),
|
|
* Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
|
|
* Pauline Middelink (middelin@polyware.iaf.nl),
|
|
* Robert Morris (rtm@das.harvard.edu),
|
|
* Jean Tourrilhes (jt@hplb.hpl.hp.com),
|
|
* Girish Welling (welling@paul.rutgers.edu),
|
|
*
|
|
* Thanks go also to:
|
|
* James Ashton (jaa101@syseng.anu.edu.au),
|
|
* Alan Cox (alan@redhat.com),
|
|
* Allan Creighton (allanc@cs.usyd.edu.au),
|
|
* Matthew Geier (matthew@cs.usyd.edu.au),
|
|
* Remo di Giovanni (remo@cs.usyd.edu.au),
|
|
* Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
|
|
* Vipul Gupta (vgupta@cs.binghamton.edu),
|
|
* Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
|
|
* Tim Nicholson (tim@cs.usyd.edu.au),
|
|
* Ian Parkin (ian@cs.usyd.edu.au),
|
|
* John Rosenberg (johnr@cs.usyd.edu.au),
|
|
* George Rossi (george@phm.gov.au),
|
|
* Arthur Scott (arthur@cs.usyd.edu.au),
|
|
* Peter Storey,
|
|
* for their assistance and advice.
|
|
*
|
|
* Please send bug reports, updates, comments to:
|
|
*
|
|
* Bruce Janson Email: bruce@cs.usyd.edu.au
|
|
* Basser Department of Computer Science Phone: +61-2-9351-3423
|
|
* University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838
|
|
*/
|