978 строки
23 KiB
C
978 строки
23 KiB
C
/*
|
|
* linux/arch/arm/kernel/ptrace.c
|
|
*
|
|
* By Ross Biro 1/23/92
|
|
* edited by Linus Torvalds
|
|
* ARM modifications Copyright (C) 2000 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/user.h>
|
|
#include <linux/security.h>
|
|
#include <linux/init.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/regset.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/unistd.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/traps.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/syscalls.h>
|
|
|
|
#define REG_PC 15
|
|
#define REG_PSR 16
|
|
/*
|
|
* does not yet catch signals sent when the child dies.
|
|
* in exit.c or in signal.c.
|
|
*/
|
|
|
|
#if 0
|
|
/*
|
|
* Breakpoint SWI instruction: SWI &9F0001
|
|
*/
|
|
#define BREAKINST_ARM 0xef9f0001
|
|
#define BREAKINST_THUMB 0xdf00 /* fill this in later */
|
|
#else
|
|
/*
|
|
* New breakpoints - use an undefined instruction. The ARM architecture
|
|
* reference manual guarantees that the following instruction space
|
|
* will produce an undefined instruction exception on all CPUs:
|
|
*
|
|
* ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
|
|
* Thumb: 1101 1110 xxxx xxxx
|
|
*/
|
|
#define BREAKINST_ARM 0xe7f001f0
|
|
#define BREAKINST_THUMB 0xde01
|
|
#endif
|
|
|
|
struct pt_regs_offset {
|
|
const char *name;
|
|
int offset;
|
|
};
|
|
|
|
#define REG_OFFSET_NAME(r) \
|
|
{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
|
|
#define REG_OFFSET_END {.name = NULL, .offset = 0}
|
|
|
|
static const struct pt_regs_offset regoffset_table[] = {
|
|
REG_OFFSET_NAME(r0),
|
|
REG_OFFSET_NAME(r1),
|
|
REG_OFFSET_NAME(r2),
|
|
REG_OFFSET_NAME(r3),
|
|
REG_OFFSET_NAME(r4),
|
|
REG_OFFSET_NAME(r5),
|
|
REG_OFFSET_NAME(r6),
|
|
REG_OFFSET_NAME(r7),
|
|
REG_OFFSET_NAME(r8),
|
|
REG_OFFSET_NAME(r9),
|
|
REG_OFFSET_NAME(r10),
|
|
REG_OFFSET_NAME(fp),
|
|
REG_OFFSET_NAME(ip),
|
|
REG_OFFSET_NAME(sp),
|
|
REG_OFFSET_NAME(lr),
|
|
REG_OFFSET_NAME(pc),
|
|
REG_OFFSET_NAME(cpsr),
|
|
REG_OFFSET_NAME(ORIG_r0),
|
|
REG_OFFSET_END,
|
|
};
|
|
|
|
/**
|
|
* regs_query_register_offset() - query register offset from its name
|
|
* @name: the name of a register
|
|
*
|
|
* regs_query_register_offset() returns the offset of a register in struct
|
|
* pt_regs from its name. If the name is invalid, this returns -EINVAL;
|
|
*/
|
|
int regs_query_register_offset(const char *name)
|
|
{
|
|
const struct pt_regs_offset *roff;
|
|
for (roff = regoffset_table; roff->name != NULL; roff++)
|
|
if (!strcmp(roff->name, name))
|
|
return roff->offset;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* regs_query_register_name() - query register name from its offset
|
|
* @offset: the offset of a register in struct pt_regs.
|
|
*
|
|
* regs_query_register_name() returns the name of a register from its
|
|
* offset in struct pt_regs. If the @offset is invalid, this returns NULL;
|
|
*/
|
|
const char *regs_query_register_name(unsigned int offset)
|
|
{
|
|
const struct pt_regs_offset *roff;
|
|
for (roff = regoffset_table; roff->name != NULL; roff++)
|
|
if (roff->offset == offset)
|
|
return roff->name;
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* regs_within_kernel_stack() - check the address in the stack
|
|
* @regs: pt_regs which contains kernel stack pointer.
|
|
* @addr: address which is checked.
|
|
*
|
|
* regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
|
|
* If @addr is within the kernel stack, it returns true. If not, returns false.
|
|
*/
|
|
bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
|
|
{
|
|
return ((addr & ~(THREAD_SIZE - 1)) ==
|
|
(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
|
|
}
|
|
|
|
/**
|
|
* regs_get_kernel_stack_nth() - get Nth entry of the stack
|
|
* @regs: pt_regs which contains kernel stack pointer.
|
|
* @n: stack entry number.
|
|
*
|
|
* regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
|
|
* is specified by @regs. If the @n th entry is NOT in the kernel stack,
|
|
* this returns 0.
|
|
*/
|
|
unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
|
|
{
|
|
unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
|
|
addr += n;
|
|
if (regs_within_kernel_stack(regs, (unsigned long)addr))
|
|
return *addr;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this routine will get a word off of the processes privileged stack.
|
|
* the offset is how far from the base addr as stored in the THREAD.
|
|
* this routine assumes that all the privileged stacks are in our
|
|
* data space.
|
|
*/
|
|
static inline long get_user_reg(struct task_struct *task, int offset)
|
|
{
|
|
return task_pt_regs(task)->uregs[offset];
|
|
}
|
|
|
|
/*
|
|
* this routine will put a word on the processes privileged stack.
|
|
* the offset is how far from the base addr as stored in the THREAD.
|
|
* this routine assumes that all the privileged stacks are in our
|
|
* data space.
|
|
*/
|
|
static inline int
|
|
put_user_reg(struct task_struct *task, int offset, long data)
|
|
{
|
|
struct pt_regs newregs, *regs = task_pt_regs(task);
|
|
int ret = -EINVAL;
|
|
|
|
newregs = *regs;
|
|
newregs.uregs[offset] = data;
|
|
|
|
if (valid_user_regs(&newregs)) {
|
|
regs->uregs[offset] = data;
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called by kernel/ptrace.c when detaching..
|
|
*/
|
|
void ptrace_disable(struct task_struct *child)
|
|
{
|
|
/* Nothing to do. */
|
|
}
|
|
|
|
/*
|
|
* Handle hitting a breakpoint.
|
|
*/
|
|
void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = 0;
|
|
info.si_code = TRAP_BRKPT;
|
|
info.si_addr = (void __user *)instruction_pointer(regs);
|
|
|
|
force_sig_info(SIGTRAP, &info, tsk);
|
|
}
|
|
|
|
static int break_trap(struct pt_regs *regs, unsigned int instr)
|
|
{
|
|
ptrace_break(current, regs);
|
|
return 0;
|
|
}
|
|
|
|
static struct undef_hook arm_break_hook = {
|
|
.instr_mask = 0x0fffffff,
|
|
.instr_val = 0x07f001f0,
|
|
.cpsr_mask = PSR_T_BIT,
|
|
.cpsr_val = 0,
|
|
.fn = break_trap,
|
|
};
|
|
|
|
static struct undef_hook thumb_break_hook = {
|
|
.instr_mask = 0xffff,
|
|
.instr_val = 0xde01,
|
|
.cpsr_mask = PSR_T_BIT,
|
|
.cpsr_val = PSR_T_BIT,
|
|
.fn = break_trap,
|
|
};
|
|
|
|
static struct undef_hook thumb2_break_hook = {
|
|
.instr_mask = 0xffffffff,
|
|
.instr_val = 0xf7f0a000,
|
|
.cpsr_mask = PSR_T_BIT,
|
|
.cpsr_val = PSR_T_BIT,
|
|
.fn = break_trap,
|
|
};
|
|
|
|
static int __init ptrace_break_init(void)
|
|
{
|
|
register_undef_hook(&arm_break_hook);
|
|
register_undef_hook(&thumb_break_hook);
|
|
register_undef_hook(&thumb2_break_hook);
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(ptrace_break_init);
|
|
|
|
/*
|
|
* Read the word at offset "off" into the "struct user". We
|
|
* actually access the pt_regs stored on the kernel stack.
|
|
*/
|
|
static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
|
|
unsigned long __user *ret)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
if (off & 3)
|
|
return -EIO;
|
|
|
|
tmp = 0;
|
|
if (off == PT_TEXT_ADDR)
|
|
tmp = tsk->mm->start_code;
|
|
else if (off == PT_DATA_ADDR)
|
|
tmp = tsk->mm->start_data;
|
|
else if (off == PT_TEXT_END_ADDR)
|
|
tmp = tsk->mm->end_code;
|
|
else if (off < sizeof(struct pt_regs))
|
|
tmp = get_user_reg(tsk, off >> 2);
|
|
else if (off >= sizeof(struct user))
|
|
return -EIO;
|
|
|
|
return put_user(tmp, ret);
|
|
}
|
|
|
|
/*
|
|
* Write the word at offset "off" into "struct user". We
|
|
* actually access the pt_regs stored on the kernel stack.
|
|
*/
|
|
static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
|
|
unsigned long val)
|
|
{
|
|
if (off & 3 || off >= sizeof(struct user))
|
|
return -EIO;
|
|
|
|
if (off >= sizeof(struct pt_regs))
|
|
return 0;
|
|
|
|
return put_user_reg(tsk, off >> 2, val);
|
|
}
|
|
|
|
#ifdef CONFIG_IWMMXT
|
|
|
|
/*
|
|
* Get the child iWMMXt state.
|
|
*/
|
|
static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
|
|
if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
|
|
return -ENODATA;
|
|
iwmmxt_task_disable(thread); /* force it to ram */
|
|
return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
|
|
? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Set the child iWMMXt state.
|
|
*/
|
|
static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
|
|
if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
|
|
return -EACCES;
|
|
iwmmxt_task_release(thread); /* force a reload */
|
|
return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
|
|
? -EFAULT : 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_CRUNCH
|
|
/*
|
|
* Get the child Crunch state.
|
|
*/
|
|
static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
|
|
crunch_task_disable(thread); /* force it to ram */
|
|
return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
|
|
? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Set the child Crunch state.
|
|
*/
|
|
static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
|
|
crunch_task_release(thread); /* force a reload */
|
|
return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
|
|
? -EFAULT : 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
/*
|
|
* Convert a virtual register number into an index for a thread_info
|
|
* breakpoint array. Breakpoints are identified using positive numbers
|
|
* whilst watchpoints are negative. The registers are laid out as pairs
|
|
* of (address, control), each pair mapping to a unique hw_breakpoint struct.
|
|
* Register 0 is reserved for describing resource information.
|
|
*/
|
|
static int ptrace_hbp_num_to_idx(long num)
|
|
{
|
|
if (num < 0)
|
|
num = (ARM_MAX_BRP << 1) - num;
|
|
return (num - 1) >> 1;
|
|
}
|
|
|
|
/*
|
|
* Returns the virtual register number for the address of the
|
|
* breakpoint at index idx.
|
|
*/
|
|
static long ptrace_hbp_idx_to_num(int idx)
|
|
{
|
|
long mid = ARM_MAX_BRP << 1;
|
|
long num = (idx << 1) + 1;
|
|
return num > mid ? mid - num : num;
|
|
}
|
|
|
|
/*
|
|
* Handle hitting a HW-breakpoint.
|
|
*/
|
|
static void ptrace_hbptriggered(struct perf_event *bp,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
|
|
long num;
|
|
int i;
|
|
siginfo_t info;
|
|
|
|
for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
|
|
if (current->thread.debug.hbp[i] == bp)
|
|
break;
|
|
|
|
num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
|
|
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = (int)num;
|
|
info.si_code = TRAP_HWBKPT;
|
|
info.si_addr = (void __user *)(bkpt->trigger);
|
|
|
|
force_sig_info(SIGTRAP, &info, current);
|
|
}
|
|
|
|
/*
|
|
* Set ptrace breakpoint pointers to zero for this task.
|
|
* This is required in order to prevent child processes from unregistering
|
|
* breakpoints held by their parent.
|
|
*/
|
|
void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
|
|
{
|
|
memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
|
|
}
|
|
|
|
/*
|
|
* Unregister breakpoints from this task and reset the pointers in
|
|
* the thread_struct.
|
|
*/
|
|
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
|
|
{
|
|
int i;
|
|
struct thread_struct *t = &tsk->thread;
|
|
|
|
for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
|
|
if (t->debug.hbp[i]) {
|
|
unregister_hw_breakpoint(t->debug.hbp[i]);
|
|
t->debug.hbp[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static u32 ptrace_get_hbp_resource_info(void)
|
|
{
|
|
u8 num_brps, num_wrps, debug_arch, wp_len;
|
|
u32 reg = 0;
|
|
|
|
num_brps = hw_breakpoint_slots(TYPE_INST);
|
|
num_wrps = hw_breakpoint_slots(TYPE_DATA);
|
|
debug_arch = arch_get_debug_arch();
|
|
wp_len = arch_get_max_wp_len();
|
|
|
|
reg |= debug_arch;
|
|
reg <<= 8;
|
|
reg |= wp_len;
|
|
reg <<= 8;
|
|
reg |= num_wrps;
|
|
reg <<= 8;
|
|
reg |= num_brps;
|
|
|
|
return reg;
|
|
}
|
|
|
|
static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
|
|
{
|
|
struct perf_event_attr attr;
|
|
|
|
ptrace_breakpoint_init(&attr);
|
|
|
|
/* Initialise fields to sane defaults. */
|
|
attr.bp_addr = 0;
|
|
attr.bp_len = HW_BREAKPOINT_LEN_4;
|
|
attr.bp_type = type;
|
|
attr.disabled = 1;
|
|
|
|
return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
|
|
tsk);
|
|
}
|
|
|
|
static int ptrace_gethbpregs(struct task_struct *tsk, long num,
|
|
unsigned long __user *data)
|
|
{
|
|
u32 reg;
|
|
int idx, ret = 0;
|
|
struct perf_event *bp;
|
|
struct arch_hw_breakpoint_ctrl arch_ctrl;
|
|
|
|
if (num == 0) {
|
|
reg = ptrace_get_hbp_resource_info();
|
|
} else {
|
|
idx = ptrace_hbp_num_to_idx(num);
|
|
if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
bp = tsk->thread.debug.hbp[idx];
|
|
if (!bp) {
|
|
reg = 0;
|
|
goto put;
|
|
}
|
|
|
|
arch_ctrl = counter_arch_bp(bp)->ctrl;
|
|
|
|
/*
|
|
* Fix up the len because we may have adjusted it
|
|
* to compensate for an unaligned address.
|
|
*/
|
|
while (!(arch_ctrl.len & 0x1))
|
|
arch_ctrl.len >>= 1;
|
|
|
|
if (num & 0x1)
|
|
reg = bp->attr.bp_addr;
|
|
else
|
|
reg = encode_ctrl_reg(arch_ctrl);
|
|
}
|
|
|
|
put:
|
|
if (put_user(reg, data))
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int ptrace_sethbpregs(struct task_struct *tsk, long num,
|
|
unsigned long __user *data)
|
|
{
|
|
int idx, gen_len, gen_type, implied_type, ret = 0;
|
|
u32 user_val;
|
|
struct perf_event *bp;
|
|
struct arch_hw_breakpoint_ctrl ctrl;
|
|
struct perf_event_attr attr;
|
|
|
|
if (num == 0)
|
|
goto out;
|
|
else if (num < 0)
|
|
implied_type = HW_BREAKPOINT_RW;
|
|
else
|
|
implied_type = HW_BREAKPOINT_X;
|
|
|
|
idx = ptrace_hbp_num_to_idx(num);
|
|
if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (get_user(user_val, data)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
bp = tsk->thread.debug.hbp[idx];
|
|
if (!bp) {
|
|
bp = ptrace_hbp_create(tsk, implied_type);
|
|
if (IS_ERR(bp)) {
|
|
ret = PTR_ERR(bp);
|
|
goto out;
|
|
}
|
|
tsk->thread.debug.hbp[idx] = bp;
|
|
}
|
|
|
|
attr = bp->attr;
|
|
|
|
if (num & 0x1) {
|
|
/* Address */
|
|
attr.bp_addr = user_val;
|
|
} else {
|
|
/* Control */
|
|
decode_ctrl_reg(user_val, &ctrl);
|
|
ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if ((gen_type & implied_type) != gen_type) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
attr.bp_len = gen_len;
|
|
attr.bp_type = gen_type;
|
|
attr.disabled = !ctrl.enabled;
|
|
}
|
|
|
|
ret = modify_user_hw_breakpoint(bp, &attr);
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* regset get/set implementations */
|
|
|
|
static int gpr_get(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(target);
|
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
regs,
|
|
0, sizeof(*regs));
|
|
}
|
|
|
|
static int gpr_set(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
int ret;
|
|
struct pt_regs newregs;
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&newregs,
|
|
0, sizeof(newregs));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!valid_user_regs(&newregs))
|
|
return -EINVAL;
|
|
|
|
*task_pt_regs(target) = newregs;
|
|
return 0;
|
|
}
|
|
|
|
static int fpa_get(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&task_thread_info(target)->fpstate,
|
|
0, sizeof(struct user_fp));
|
|
}
|
|
|
|
static int fpa_set(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct thread_info *thread = task_thread_info(target);
|
|
|
|
thread->used_cp[1] = thread->used_cp[2] = 1;
|
|
|
|
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&thread->fpstate,
|
|
0, sizeof(struct user_fp));
|
|
}
|
|
|
|
#ifdef CONFIG_VFP
|
|
/*
|
|
* VFP register get/set implementations.
|
|
*
|
|
* With respect to the kernel, struct user_fp is divided into three chunks:
|
|
* 16 or 32 real VFP registers (d0-d15 or d0-31)
|
|
* These are transferred to/from the real registers in the task's
|
|
* vfp_hard_struct. The number of registers depends on the kernel
|
|
* configuration.
|
|
*
|
|
* 16 or 0 fake VFP registers (d16-d31 or empty)
|
|
* i.e., the user_vfp structure has space for 32 registers even if
|
|
* the kernel doesn't have them all.
|
|
*
|
|
* vfp_get() reads this chunk as zero where applicable
|
|
* vfp_set() ignores this chunk
|
|
*
|
|
* 1 word for the FPSCR
|
|
*
|
|
* The bounds-checking logic built into user_regset_copyout and friends
|
|
* means that we can make a simple sequence of calls to map the relevant data
|
|
* to/from the specified slice of the user regset structure.
|
|
*/
|
|
static int vfp_get(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
int ret;
|
|
struct thread_info *thread = task_thread_info(target);
|
|
struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
|
|
const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
|
|
const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
|
|
|
|
vfp_sync_hwstate(thread);
|
|
|
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&vfp->fpregs,
|
|
user_fpregs_offset,
|
|
user_fpregs_offset + sizeof(vfp->fpregs));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
|
|
user_fpregs_offset + sizeof(vfp->fpregs),
|
|
user_fpscr_offset);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&vfp->fpscr,
|
|
user_fpscr_offset,
|
|
user_fpscr_offset + sizeof(vfp->fpscr));
|
|
}
|
|
|
|
/*
|
|
* For vfp_set() a read-modify-write is done on the VFP registers,
|
|
* in order to avoid writing back a half-modified set of registers on
|
|
* failure.
|
|
*/
|
|
static int vfp_set(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
int ret;
|
|
struct thread_info *thread = task_thread_info(target);
|
|
struct vfp_hard_struct new_vfp;
|
|
const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
|
|
const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
|
|
|
|
vfp_sync_hwstate(thread);
|
|
new_vfp = thread->vfpstate.hard;
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&new_vfp.fpregs,
|
|
user_fpregs_offset,
|
|
user_fpregs_offset + sizeof(new_vfp.fpregs));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
|
|
user_fpregs_offset + sizeof(new_vfp.fpregs),
|
|
user_fpscr_offset);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&new_vfp.fpscr,
|
|
user_fpscr_offset,
|
|
user_fpscr_offset + sizeof(new_vfp.fpscr));
|
|
if (ret)
|
|
return ret;
|
|
|
|
vfp_flush_hwstate(thread);
|
|
thread->vfpstate.hard = new_vfp;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_VFP */
|
|
|
|
enum arm_regset {
|
|
REGSET_GPR,
|
|
REGSET_FPR,
|
|
#ifdef CONFIG_VFP
|
|
REGSET_VFP,
|
|
#endif
|
|
};
|
|
|
|
static const struct user_regset arm_regsets[] = {
|
|
[REGSET_GPR] = {
|
|
.core_note_type = NT_PRSTATUS,
|
|
.n = ELF_NGREG,
|
|
.size = sizeof(u32),
|
|
.align = sizeof(u32),
|
|
.get = gpr_get,
|
|
.set = gpr_set
|
|
},
|
|
[REGSET_FPR] = {
|
|
/*
|
|
* For the FPA regs in fpstate, the real fields are a mixture
|
|
* of sizes, so pretend that the registers are word-sized:
|
|
*/
|
|
.core_note_type = NT_PRFPREG,
|
|
.n = sizeof(struct user_fp) / sizeof(u32),
|
|
.size = sizeof(u32),
|
|
.align = sizeof(u32),
|
|
.get = fpa_get,
|
|
.set = fpa_set
|
|
},
|
|
#ifdef CONFIG_VFP
|
|
[REGSET_VFP] = {
|
|
/*
|
|
* Pretend that the VFP regs are word-sized, since the FPSCR is
|
|
* a single word dangling at the end of struct user_vfp:
|
|
*/
|
|
.core_note_type = NT_ARM_VFP,
|
|
.n = ARM_VFPREGS_SIZE / sizeof(u32),
|
|
.size = sizeof(u32),
|
|
.align = sizeof(u32),
|
|
.get = vfp_get,
|
|
.set = vfp_set
|
|
},
|
|
#endif /* CONFIG_VFP */
|
|
};
|
|
|
|
static const struct user_regset_view user_arm_view = {
|
|
.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
|
|
.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
|
|
};
|
|
|
|
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
|
|
{
|
|
return &user_arm_view;
|
|
}
|
|
|
|
long arch_ptrace(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data)
|
|
{
|
|
int ret;
|
|
unsigned long __user *datap = (unsigned long __user *) data;
|
|
|
|
switch (request) {
|
|
case PTRACE_PEEKUSR:
|
|
ret = ptrace_read_user(child, addr, datap);
|
|
break;
|
|
|
|
case PTRACE_POKEUSR:
|
|
ret = ptrace_write_user(child, addr, data);
|
|
break;
|
|
|
|
case PTRACE_GETREGS:
|
|
ret = copy_regset_to_user(child,
|
|
&user_arm_view, REGSET_GPR,
|
|
0, sizeof(struct pt_regs),
|
|
datap);
|
|
break;
|
|
|
|
case PTRACE_SETREGS:
|
|
ret = copy_regset_from_user(child,
|
|
&user_arm_view, REGSET_GPR,
|
|
0, sizeof(struct pt_regs),
|
|
datap);
|
|
break;
|
|
|
|
case PTRACE_GETFPREGS:
|
|
ret = copy_regset_to_user(child,
|
|
&user_arm_view, REGSET_FPR,
|
|
0, sizeof(union fp_state),
|
|
datap);
|
|
break;
|
|
|
|
case PTRACE_SETFPREGS:
|
|
ret = copy_regset_from_user(child,
|
|
&user_arm_view, REGSET_FPR,
|
|
0, sizeof(union fp_state),
|
|
datap);
|
|
break;
|
|
|
|
#ifdef CONFIG_IWMMXT
|
|
case PTRACE_GETWMMXREGS:
|
|
ret = ptrace_getwmmxregs(child, datap);
|
|
break;
|
|
|
|
case PTRACE_SETWMMXREGS:
|
|
ret = ptrace_setwmmxregs(child, datap);
|
|
break;
|
|
#endif
|
|
|
|
case PTRACE_GET_THREAD_AREA:
|
|
ret = put_user(task_thread_info(child)->tp_value[0],
|
|
datap);
|
|
break;
|
|
|
|
case PTRACE_SET_SYSCALL:
|
|
task_thread_info(child)->syscall = data;
|
|
ret = 0;
|
|
break;
|
|
|
|
#ifdef CONFIG_CRUNCH
|
|
case PTRACE_GETCRUNCHREGS:
|
|
ret = ptrace_getcrunchregs(child, datap);
|
|
break;
|
|
|
|
case PTRACE_SETCRUNCHREGS:
|
|
ret = ptrace_setcrunchregs(child, datap);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_VFP
|
|
case PTRACE_GETVFPREGS:
|
|
ret = copy_regset_to_user(child,
|
|
&user_arm_view, REGSET_VFP,
|
|
0, ARM_VFPREGS_SIZE,
|
|
datap);
|
|
break;
|
|
|
|
case PTRACE_SETVFPREGS:
|
|
ret = copy_regset_from_user(child,
|
|
&user_arm_view, REGSET_VFP,
|
|
0, ARM_VFPREGS_SIZE,
|
|
datap);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
case PTRACE_GETHBPREGS:
|
|
ret = ptrace_gethbpregs(child, addr,
|
|
(unsigned long __user *)data);
|
|
break;
|
|
case PTRACE_SETHBPREGS:
|
|
ret = ptrace_sethbpregs(child, addr,
|
|
(unsigned long __user *)data);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
ret = ptrace_request(child, request, addr, data);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
enum ptrace_syscall_dir {
|
|
PTRACE_SYSCALL_ENTER = 0,
|
|
PTRACE_SYSCALL_EXIT,
|
|
};
|
|
|
|
static void tracehook_report_syscall(struct pt_regs *regs,
|
|
enum ptrace_syscall_dir dir)
|
|
{
|
|
unsigned long ip;
|
|
|
|
/*
|
|
* IP is used to denote syscall entry/exit:
|
|
* IP = 0 -> entry, =1 -> exit
|
|
*/
|
|
ip = regs->ARM_ip;
|
|
regs->ARM_ip = dir;
|
|
|
|
if (dir == PTRACE_SYSCALL_EXIT)
|
|
tracehook_report_syscall_exit(regs, 0);
|
|
else if (tracehook_report_syscall_entry(regs))
|
|
current_thread_info()->syscall = -1;
|
|
|
|
regs->ARM_ip = ip;
|
|
}
|
|
|
|
asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
|
|
{
|
|
current_thread_info()->syscall = scno;
|
|
|
|
/* Do the secure computing check first; failures should be fast. */
|
|
#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
|
|
if (secure_computing() == -1)
|
|
return -1;
|
|
#else
|
|
/* XXX: remove this once OABI gets fixed */
|
|
secure_computing_strict(scno);
|
|
#endif
|
|
|
|
if (test_thread_flag(TIF_SYSCALL_TRACE))
|
|
tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
|
|
|
|
scno = current_thread_info()->syscall;
|
|
|
|
if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
|
|
trace_sys_enter(regs, scno);
|
|
|
|
audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
|
|
regs->ARM_r3);
|
|
|
|
return scno;
|
|
}
|
|
|
|
asmlinkage void syscall_trace_exit(struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* Audit the syscall before anything else, as a debugger may
|
|
* come in and change the current registers.
|
|
*/
|
|
audit_syscall_exit(regs);
|
|
|
|
/*
|
|
* Note that we haven't updated the ->syscall field for the
|
|
* current thread. This isn't a problem because it will have
|
|
* been set on syscall entry and there hasn't been an opportunity
|
|
* for a PTRACE_SET_SYSCALL since then.
|
|
*/
|
|
if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
|
|
trace_sys_exit(regs, regs_return_value(regs));
|
|
|
|
if (test_thread_flag(TIF_SYSCALL_TRACE))
|
|
tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
|
|
}
|