2991 строка
85 KiB
C
2991 строка
85 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright Linus Torvalds 1999
|
|
* (C) Copyright Johannes Erdfelt 1999-2001
|
|
* (C) Copyright Andreas Gal 1999
|
|
* (C) Copyright Gregory P. Smith 1999
|
|
* (C) Copyright Deti Fliegl 1999
|
|
* (C) Copyright Randy Dunlap 2000
|
|
* (C) Copyright David Brownell 2000-2002
|
|
*/
|
|
|
|
#include <linux/bcd.h>
|
|
#include <linux/module.h>
|
|
#include <linux/version.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/io.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/mutex.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/unaligned.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/types.h>
|
|
#include <linux/genalloc.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kcov.h>
|
|
|
|
#include <linux/phy/phy.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/usb/hcd.h>
|
|
#include <linux/usb/otg.h>
|
|
|
|
#include "usb.h"
|
|
#include "phy.h"
|
|
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* USB Host Controller Driver framework
|
|
*
|
|
* Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
|
|
* HCD-specific behaviors/bugs.
|
|
*
|
|
* This does error checks, tracks devices and urbs, and delegates to a
|
|
* "hc_driver" only for code (and data) that really needs to know about
|
|
* hardware differences. That includes root hub registers, i/o queues,
|
|
* and so on ... but as little else as possible.
|
|
*
|
|
* Shared code includes most of the "root hub" code (these are emulated,
|
|
* though each HC's hardware works differently) and PCI glue, plus request
|
|
* tracking overhead. The HCD code should only block on spinlocks or on
|
|
* hardware handshaking; blocking on software events (such as other kernel
|
|
* threads releasing resources, or completing actions) is all generic.
|
|
*
|
|
* Happens the USB 2.0 spec says this would be invisible inside the "USBD",
|
|
* and includes mostly a "HCDI" (HCD Interface) along with some APIs used
|
|
* only by the hub driver ... and that neither should be seen or used by
|
|
* usb client device drivers.
|
|
*
|
|
* Contributors of ideas or unattributed patches include: David Brownell,
|
|
* Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
|
|
*
|
|
* HISTORY:
|
|
* 2002-02-21 Pull in most of the usb_bus support from usb.c; some
|
|
* associated cleanup. "usb_hcd" still != "usb_bus".
|
|
* 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Keep track of which host controller drivers are loaded */
|
|
unsigned long usb_hcds_loaded;
|
|
EXPORT_SYMBOL_GPL(usb_hcds_loaded);
|
|
|
|
/* host controllers we manage */
|
|
DEFINE_IDR (usb_bus_idr);
|
|
EXPORT_SYMBOL_GPL (usb_bus_idr);
|
|
|
|
/* used when allocating bus numbers */
|
|
#define USB_MAXBUS 64
|
|
|
|
/* used when updating list of hcds */
|
|
DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
|
|
EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
|
|
|
|
/* used for controlling access to virtual root hubs */
|
|
static DEFINE_SPINLOCK(hcd_root_hub_lock);
|
|
|
|
/* used when updating an endpoint's URB list */
|
|
static DEFINE_SPINLOCK(hcd_urb_list_lock);
|
|
|
|
/* used to protect against unlinking URBs after the device is gone */
|
|
static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
|
|
|
|
/* wait queue for synchronous unlinks */
|
|
DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Sharable chunks of root hub code.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
|
|
#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
|
|
|
|
/* usb 3.1 root hub device descriptor */
|
|
static const u8 usb31_rh_dev_descriptor[18] = {
|
|
0x12, /* __u8 bLength; */
|
|
USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
|
|
0x10, 0x03, /* __le16 bcdUSB; v3.1 */
|
|
|
|
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 bDeviceSubClass; */
|
|
0x03, /* __u8 bDeviceProtocol; USB 3 hub */
|
|
0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
|
|
|
|
0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
|
|
0x03, 0x00, /* __le16 idProduct; device 0x0003 */
|
|
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
|
|
|
|
0x03, /* __u8 iManufacturer; */
|
|
0x02, /* __u8 iProduct; */
|
|
0x01, /* __u8 iSerialNumber; */
|
|
0x01 /* __u8 bNumConfigurations; */
|
|
};
|
|
|
|
/* usb 3.0 root hub device descriptor */
|
|
static const u8 usb3_rh_dev_descriptor[18] = {
|
|
0x12, /* __u8 bLength; */
|
|
USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
|
|
0x00, 0x03, /* __le16 bcdUSB; v3.0 */
|
|
|
|
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 bDeviceSubClass; */
|
|
0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
|
|
0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
|
|
|
|
0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
|
|
0x03, 0x00, /* __le16 idProduct; device 0x0003 */
|
|
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
|
|
|
|
0x03, /* __u8 iManufacturer; */
|
|
0x02, /* __u8 iProduct; */
|
|
0x01, /* __u8 iSerialNumber; */
|
|
0x01 /* __u8 bNumConfigurations; */
|
|
};
|
|
|
|
/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
|
|
static const u8 usb25_rh_dev_descriptor[18] = {
|
|
0x12, /* __u8 bLength; */
|
|
USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
|
|
0x50, 0x02, /* __le16 bcdUSB; v2.5 */
|
|
|
|
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 bDeviceSubClass; */
|
|
0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
|
|
0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
|
|
|
|
0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
|
|
0x02, 0x00, /* __le16 idProduct; device 0x0002 */
|
|
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
|
|
|
|
0x03, /* __u8 iManufacturer; */
|
|
0x02, /* __u8 iProduct; */
|
|
0x01, /* __u8 iSerialNumber; */
|
|
0x01 /* __u8 bNumConfigurations; */
|
|
};
|
|
|
|
/* usb 2.0 root hub device descriptor */
|
|
static const u8 usb2_rh_dev_descriptor[18] = {
|
|
0x12, /* __u8 bLength; */
|
|
USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
|
|
0x00, 0x02, /* __le16 bcdUSB; v2.0 */
|
|
|
|
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 bDeviceSubClass; */
|
|
0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
|
|
0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
|
|
|
|
0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
|
|
0x02, 0x00, /* __le16 idProduct; device 0x0002 */
|
|
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
|
|
|
|
0x03, /* __u8 iManufacturer; */
|
|
0x02, /* __u8 iProduct; */
|
|
0x01, /* __u8 iSerialNumber; */
|
|
0x01 /* __u8 bNumConfigurations; */
|
|
};
|
|
|
|
/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
|
|
|
|
/* usb 1.1 root hub device descriptor */
|
|
static const u8 usb11_rh_dev_descriptor[18] = {
|
|
0x12, /* __u8 bLength; */
|
|
USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
|
|
0x10, 0x01, /* __le16 bcdUSB; v1.1 */
|
|
|
|
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 bDeviceSubClass; */
|
|
0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
|
|
0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
|
|
|
|
0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
|
|
0x01, 0x00, /* __le16 idProduct; device 0x0001 */
|
|
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
|
|
|
|
0x03, /* __u8 iManufacturer; */
|
|
0x02, /* __u8 iProduct; */
|
|
0x01, /* __u8 iSerialNumber; */
|
|
0x01 /* __u8 bNumConfigurations; */
|
|
};
|
|
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Configuration descriptors for our root hubs */
|
|
|
|
static const u8 fs_rh_config_descriptor[] = {
|
|
|
|
/* one configuration */
|
|
0x09, /* __u8 bLength; */
|
|
USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
|
|
0x19, 0x00, /* __le16 wTotalLength; */
|
|
0x01, /* __u8 bNumInterfaces; (1) */
|
|
0x01, /* __u8 bConfigurationValue; */
|
|
0x00, /* __u8 iConfiguration; */
|
|
0xc0, /* __u8 bmAttributes;
|
|
Bit 7: must be set,
|
|
6: Self-powered,
|
|
5: Remote wakeup,
|
|
4..0: resvd */
|
|
0x00, /* __u8 MaxPower; */
|
|
|
|
/* USB 1.1:
|
|
* USB 2.0, single TT organization (mandatory):
|
|
* one interface, protocol 0
|
|
*
|
|
* USB 2.0, multiple TT organization (optional):
|
|
* two interfaces, protocols 1 (like single TT)
|
|
* and 2 (multiple TT mode) ... config is
|
|
* sometimes settable
|
|
* NOT IMPLEMENTED
|
|
*/
|
|
|
|
/* one interface */
|
|
0x09, /* __u8 if_bLength; */
|
|
USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
|
|
0x00, /* __u8 if_bInterfaceNumber; */
|
|
0x00, /* __u8 if_bAlternateSetting; */
|
|
0x01, /* __u8 if_bNumEndpoints; */
|
|
0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 if_bInterfaceSubClass; */
|
|
0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
|
|
0x00, /* __u8 if_iInterface; */
|
|
|
|
/* one endpoint (status change endpoint) */
|
|
0x07, /* __u8 ep_bLength; */
|
|
USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
|
|
0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
|
|
0x03, /* __u8 ep_bmAttributes; Interrupt */
|
|
0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
|
|
0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
|
|
};
|
|
|
|
static const u8 hs_rh_config_descriptor[] = {
|
|
|
|
/* one configuration */
|
|
0x09, /* __u8 bLength; */
|
|
USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
|
|
0x19, 0x00, /* __le16 wTotalLength; */
|
|
0x01, /* __u8 bNumInterfaces; (1) */
|
|
0x01, /* __u8 bConfigurationValue; */
|
|
0x00, /* __u8 iConfiguration; */
|
|
0xc0, /* __u8 bmAttributes;
|
|
Bit 7: must be set,
|
|
6: Self-powered,
|
|
5: Remote wakeup,
|
|
4..0: resvd */
|
|
0x00, /* __u8 MaxPower; */
|
|
|
|
/* USB 1.1:
|
|
* USB 2.0, single TT organization (mandatory):
|
|
* one interface, protocol 0
|
|
*
|
|
* USB 2.0, multiple TT organization (optional):
|
|
* two interfaces, protocols 1 (like single TT)
|
|
* and 2 (multiple TT mode) ... config is
|
|
* sometimes settable
|
|
* NOT IMPLEMENTED
|
|
*/
|
|
|
|
/* one interface */
|
|
0x09, /* __u8 if_bLength; */
|
|
USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
|
|
0x00, /* __u8 if_bInterfaceNumber; */
|
|
0x00, /* __u8 if_bAlternateSetting; */
|
|
0x01, /* __u8 if_bNumEndpoints; */
|
|
0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 if_bInterfaceSubClass; */
|
|
0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
|
|
0x00, /* __u8 if_iInterface; */
|
|
|
|
/* one endpoint (status change endpoint) */
|
|
0x07, /* __u8 ep_bLength; */
|
|
USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
|
|
0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
|
|
0x03, /* __u8 ep_bmAttributes; Interrupt */
|
|
/* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
|
|
* see hub.c:hub_configure() for details. */
|
|
(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
|
|
0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
|
|
};
|
|
|
|
static const u8 ss_rh_config_descriptor[] = {
|
|
/* one configuration */
|
|
0x09, /* __u8 bLength; */
|
|
USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
|
|
0x1f, 0x00, /* __le16 wTotalLength; */
|
|
0x01, /* __u8 bNumInterfaces; (1) */
|
|
0x01, /* __u8 bConfigurationValue; */
|
|
0x00, /* __u8 iConfiguration; */
|
|
0xc0, /* __u8 bmAttributes;
|
|
Bit 7: must be set,
|
|
6: Self-powered,
|
|
5: Remote wakeup,
|
|
4..0: resvd */
|
|
0x00, /* __u8 MaxPower; */
|
|
|
|
/* one interface */
|
|
0x09, /* __u8 if_bLength; */
|
|
USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
|
|
0x00, /* __u8 if_bInterfaceNumber; */
|
|
0x00, /* __u8 if_bAlternateSetting; */
|
|
0x01, /* __u8 if_bNumEndpoints; */
|
|
0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 if_bInterfaceSubClass; */
|
|
0x00, /* __u8 if_bInterfaceProtocol; */
|
|
0x00, /* __u8 if_iInterface; */
|
|
|
|
/* one endpoint (status change endpoint) */
|
|
0x07, /* __u8 ep_bLength; */
|
|
USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
|
|
0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
|
|
0x03, /* __u8 ep_bmAttributes; Interrupt */
|
|
/* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
|
|
* see hub.c:hub_configure() for details. */
|
|
(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
|
|
0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
|
|
|
|
/* one SuperSpeed endpoint companion descriptor */
|
|
0x06, /* __u8 ss_bLength */
|
|
USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
|
|
/* Companion */
|
|
0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
|
|
0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
|
|
0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
|
|
};
|
|
|
|
/* authorized_default behaviour:
|
|
* -1 is authorized for all devices except wireless (old behaviour)
|
|
* 0 is unauthorized for all devices
|
|
* 1 is authorized for all devices
|
|
* 2 is authorized for internal devices
|
|
*/
|
|
#define USB_AUTHORIZE_WIRED -1
|
|
#define USB_AUTHORIZE_NONE 0
|
|
#define USB_AUTHORIZE_ALL 1
|
|
#define USB_AUTHORIZE_INTERNAL 2
|
|
|
|
static int authorized_default = USB_AUTHORIZE_WIRED;
|
|
module_param(authorized_default, int, S_IRUGO|S_IWUSR);
|
|
MODULE_PARM_DESC(authorized_default,
|
|
"Default USB device authorization: 0 is not authorized, 1 is "
|
|
"authorized, 2 is authorized for internal devices, -1 is "
|
|
"authorized except for wireless USB (default, old behaviour)");
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* ascii2desc() - Helper routine for producing UTF-16LE string descriptors
|
|
* @s: Null-terminated ASCII (actually ISO-8859-1) string
|
|
* @buf: Buffer for USB string descriptor (header + UTF-16LE)
|
|
* @len: Length (in bytes; may be odd) of descriptor buffer.
|
|
*
|
|
* Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
|
|
* whichever is less.
|
|
*
|
|
* Note:
|
|
* USB String descriptors can contain at most 126 characters; input
|
|
* strings longer than that are truncated.
|
|
*/
|
|
static unsigned
|
|
ascii2desc(char const *s, u8 *buf, unsigned len)
|
|
{
|
|
unsigned n, t = 2 + 2*strlen(s);
|
|
|
|
if (t > 254)
|
|
t = 254; /* Longest possible UTF string descriptor */
|
|
if (len > t)
|
|
len = t;
|
|
|
|
t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
|
|
|
|
n = len;
|
|
while (n--) {
|
|
*buf++ = t;
|
|
if (!n--)
|
|
break;
|
|
*buf++ = t >> 8;
|
|
t = (unsigned char)*s++;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* rh_string() - provides string descriptors for root hub
|
|
* @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
|
|
* @hcd: the host controller for this root hub
|
|
* @data: buffer for output packet
|
|
* @len: length of the provided buffer
|
|
*
|
|
* Produces either a manufacturer, product or serial number string for the
|
|
* virtual root hub device.
|
|
*
|
|
* Return: The number of bytes filled in: the length of the descriptor or
|
|
* of the provided buffer, whichever is less.
|
|
*/
|
|
static unsigned
|
|
rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
|
|
{
|
|
char buf[100];
|
|
char const *s;
|
|
static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
|
|
|
|
/* language ids */
|
|
switch (id) {
|
|
case 0:
|
|
/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
|
|
/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
|
|
if (len > 4)
|
|
len = 4;
|
|
memcpy(data, langids, len);
|
|
return len;
|
|
case 1:
|
|
/* Serial number */
|
|
s = hcd->self.bus_name;
|
|
break;
|
|
case 2:
|
|
/* Product name */
|
|
s = hcd->product_desc;
|
|
break;
|
|
case 3:
|
|
/* Manufacturer */
|
|
snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
|
|
init_utsname()->release, hcd->driver->description);
|
|
s = buf;
|
|
break;
|
|
default:
|
|
/* Can't happen; caller guarantees it */
|
|
return 0;
|
|
}
|
|
|
|
return ascii2desc(s, data, len);
|
|
}
|
|
|
|
|
|
/* Root hub control transfers execute synchronously */
|
|
static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
struct usb_ctrlrequest *cmd;
|
|
u16 typeReq, wValue, wIndex, wLength;
|
|
u8 *ubuf = urb->transfer_buffer;
|
|
unsigned len = 0;
|
|
int status;
|
|
u8 patch_wakeup = 0;
|
|
u8 patch_protocol = 0;
|
|
u16 tbuf_size;
|
|
u8 *tbuf = NULL;
|
|
const u8 *bufp;
|
|
|
|
might_sleep();
|
|
|
|
spin_lock_irq(&hcd_root_hub_lock);
|
|
status = usb_hcd_link_urb_to_ep(hcd, urb);
|
|
spin_unlock_irq(&hcd_root_hub_lock);
|
|
if (status)
|
|
return status;
|
|
urb->hcpriv = hcd; /* Indicate it's queued */
|
|
|
|
cmd = (struct usb_ctrlrequest *) urb->setup_packet;
|
|
typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
|
|
wValue = le16_to_cpu (cmd->wValue);
|
|
wIndex = le16_to_cpu (cmd->wIndex);
|
|
wLength = le16_to_cpu (cmd->wLength);
|
|
|
|
if (wLength > urb->transfer_buffer_length)
|
|
goto error;
|
|
|
|
/*
|
|
* tbuf should be at least as big as the
|
|
* USB hub descriptor.
|
|
*/
|
|
tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
|
|
tbuf = kzalloc(tbuf_size, GFP_KERNEL);
|
|
if (!tbuf) {
|
|
status = -ENOMEM;
|
|
goto err_alloc;
|
|
}
|
|
|
|
bufp = tbuf;
|
|
|
|
|
|
urb->actual_length = 0;
|
|
switch (typeReq) {
|
|
|
|
/* DEVICE REQUESTS */
|
|
|
|
/* The root hub's remote wakeup enable bit is implemented using
|
|
* driver model wakeup flags. If this system supports wakeup
|
|
* through USB, userspace may change the default "allow wakeup"
|
|
* policy through sysfs or these calls.
|
|
*
|
|
* Most root hubs support wakeup from downstream devices, for
|
|
* runtime power management (disabling USB clocks and reducing
|
|
* VBUS power usage). However, not all of them do so; silicon,
|
|
* board, and BIOS bugs here are not uncommon, so these can't
|
|
* be treated quite like external hubs.
|
|
*
|
|
* Likewise, not all root hubs will pass wakeup events upstream,
|
|
* to wake up the whole system. So don't assume root hub and
|
|
* controller capabilities are identical.
|
|
*/
|
|
|
|
case DeviceRequest | USB_REQ_GET_STATUS:
|
|
tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
|
|
<< USB_DEVICE_REMOTE_WAKEUP)
|
|
| (1 << USB_DEVICE_SELF_POWERED);
|
|
tbuf[1] = 0;
|
|
len = 2;
|
|
break;
|
|
case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
|
|
if (wValue == USB_DEVICE_REMOTE_WAKEUP)
|
|
device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
|
|
else
|
|
goto error;
|
|
break;
|
|
case DeviceOutRequest | USB_REQ_SET_FEATURE:
|
|
if (device_can_wakeup(&hcd->self.root_hub->dev)
|
|
&& wValue == USB_DEVICE_REMOTE_WAKEUP)
|
|
device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
|
|
else
|
|
goto error;
|
|
break;
|
|
case DeviceRequest | USB_REQ_GET_CONFIGURATION:
|
|
tbuf[0] = 1;
|
|
len = 1;
|
|
fallthrough;
|
|
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
|
|
break;
|
|
case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
|
|
switch (wValue & 0xff00) {
|
|
case USB_DT_DEVICE << 8:
|
|
switch (hcd->speed) {
|
|
case HCD_USB32:
|
|
case HCD_USB31:
|
|
bufp = usb31_rh_dev_descriptor;
|
|
break;
|
|
case HCD_USB3:
|
|
bufp = usb3_rh_dev_descriptor;
|
|
break;
|
|
case HCD_USB25:
|
|
bufp = usb25_rh_dev_descriptor;
|
|
break;
|
|
case HCD_USB2:
|
|
bufp = usb2_rh_dev_descriptor;
|
|
break;
|
|
case HCD_USB11:
|
|
bufp = usb11_rh_dev_descriptor;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
len = 18;
|
|
if (hcd->has_tt)
|
|
patch_protocol = 1;
|
|
break;
|
|
case USB_DT_CONFIG << 8:
|
|
switch (hcd->speed) {
|
|
case HCD_USB32:
|
|
case HCD_USB31:
|
|
case HCD_USB3:
|
|
bufp = ss_rh_config_descriptor;
|
|
len = sizeof ss_rh_config_descriptor;
|
|
break;
|
|
case HCD_USB25:
|
|
case HCD_USB2:
|
|
bufp = hs_rh_config_descriptor;
|
|
len = sizeof hs_rh_config_descriptor;
|
|
break;
|
|
case HCD_USB11:
|
|
bufp = fs_rh_config_descriptor;
|
|
len = sizeof fs_rh_config_descriptor;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
if (device_can_wakeup(&hcd->self.root_hub->dev))
|
|
patch_wakeup = 1;
|
|
break;
|
|
case USB_DT_STRING << 8:
|
|
if ((wValue & 0xff) < 4)
|
|
urb->actual_length = rh_string(wValue & 0xff,
|
|
hcd, ubuf, wLength);
|
|
else /* unsupported IDs --> "protocol stall" */
|
|
goto error;
|
|
break;
|
|
case USB_DT_BOS << 8:
|
|
goto nongeneric;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case DeviceRequest | USB_REQ_GET_INTERFACE:
|
|
tbuf[0] = 0;
|
|
len = 1;
|
|
fallthrough;
|
|
case DeviceOutRequest | USB_REQ_SET_INTERFACE:
|
|
break;
|
|
case DeviceOutRequest | USB_REQ_SET_ADDRESS:
|
|
/* wValue == urb->dev->devaddr */
|
|
dev_dbg (hcd->self.controller, "root hub device address %d\n",
|
|
wValue);
|
|
break;
|
|
|
|
/* INTERFACE REQUESTS (no defined feature/status flags) */
|
|
|
|
/* ENDPOINT REQUESTS */
|
|
|
|
case EndpointRequest | USB_REQ_GET_STATUS:
|
|
/* ENDPOINT_HALT flag */
|
|
tbuf[0] = 0;
|
|
tbuf[1] = 0;
|
|
len = 2;
|
|
fallthrough;
|
|
case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
|
|
case EndpointOutRequest | USB_REQ_SET_FEATURE:
|
|
dev_dbg (hcd->self.controller, "no endpoint features yet\n");
|
|
break;
|
|
|
|
/* CLASS REQUESTS (and errors) */
|
|
|
|
default:
|
|
nongeneric:
|
|
/* non-generic request */
|
|
switch (typeReq) {
|
|
case GetHubStatus:
|
|
len = 4;
|
|
break;
|
|
case GetPortStatus:
|
|
if (wValue == HUB_PORT_STATUS)
|
|
len = 4;
|
|
else
|
|
/* other port status types return 8 bytes */
|
|
len = 8;
|
|
break;
|
|
case GetHubDescriptor:
|
|
len = sizeof (struct usb_hub_descriptor);
|
|
break;
|
|
case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
|
|
/* len is returned by hub_control */
|
|
break;
|
|
}
|
|
status = hcd->driver->hub_control (hcd,
|
|
typeReq, wValue, wIndex,
|
|
tbuf, wLength);
|
|
|
|
if (typeReq == GetHubDescriptor)
|
|
usb_hub_adjust_deviceremovable(hcd->self.root_hub,
|
|
(struct usb_hub_descriptor *)tbuf);
|
|
break;
|
|
error:
|
|
/* "protocol stall" on error */
|
|
status = -EPIPE;
|
|
}
|
|
|
|
if (status < 0) {
|
|
len = 0;
|
|
if (status != -EPIPE) {
|
|
dev_dbg (hcd->self.controller,
|
|
"CTRL: TypeReq=0x%x val=0x%x "
|
|
"idx=0x%x len=%d ==> %d\n",
|
|
typeReq, wValue, wIndex,
|
|
wLength, status);
|
|
}
|
|
} else if (status > 0) {
|
|
/* hub_control may return the length of data copied. */
|
|
len = status;
|
|
status = 0;
|
|
}
|
|
if (len) {
|
|
if (urb->transfer_buffer_length < len)
|
|
len = urb->transfer_buffer_length;
|
|
urb->actual_length = len;
|
|
/* always USB_DIR_IN, toward host */
|
|
memcpy (ubuf, bufp, len);
|
|
|
|
/* report whether RH hardware supports remote wakeup */
|
|
if (patch_wakeup &&
|
|
len > offsetof (struct usb_config_descriptor,
|
|
bmAttributes))
|
|
((struct usb_config_descriptor *)ubuf)->bmAttributes
|
|
|= USB_CONFIG_ATT_WAKEUP;
|
|
|
|
/* report whether RH hardware has an integrated TT */
|
|
if (patch_protocol &&
|
|
len > offsetof(struct usb_device_descriptor,
|
|
bDeviceProtocol))
|
|
((struct usb_device_descriptor *) ubuf)->
|
|
bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
|
|
}
|
|
|
|
kfree(tbuf);
|
|
err_alloc:
|
|
|
|
/* any errors get returned through the urb completion */
|
|
spin_lock_irq(&hcd_root_hub_lock);
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
usb_hcd_giveback_urb(hcd, urb, status);
|
|
spin_unlock_irq(&hcd_root_hub_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Root Hub interrupt transfers are polled using a timer if the
|
|
* driver requests it; otherwise the driver is responsible for
|
|
* calling usb_hcd_poll_rh_status() when an event occurs.
|
|
*
|
|
* Completions are called in_interrupt(), but they may or may not
|
|
* be in_irq().
|
|
*/
|
|
void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
|
|
{
|
|
struct urb *urb;
|
|
int length;
|
|
unsigned long flags;
|
|
char buffer[6]; /* Any root hubs with > 31 ports? */
|
|
|
|
if (unlikely(!hcd->rh_pollable))
|
|
return;
|
|
if (!hcd->uses_new_polling && !hcd->status_urb)
|
|
return;
|
|
|
|
length = hcd->driver->hub_status_data(hcd, buffer);
|
|
if (length > 0) {
|
|
|
|
/* try to complete the status urb */
|
|
spin_lock_irqsave(&hcd_root_hub_lock, flags);
|
|
urb = hcd->status_urb;
|
|
if (urb) {
|
|
clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
|
|
hcd->status_urb = NULL;
|
|
urb->actual_length = length;
|
|
memcpy(urb->transfer_buffer, buffer, length);
|
|
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
usb_hcd_giveback_urb(hcd, urb, 0);
|
|
} else {
|
|
length = 0;
|
|
set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
|
|
}
|
|
spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
|
|
}
|
|
|
|
/* The USB 2.0 spec says 256 ms. This is close enough and won't
|
|
* exceed that limit if HZ is 100. The math is more clunky than
|
|
* maybe expected, this is to make sure that all timers for USB devices
|
|
* fire at the same time to give the CPU a break in between */
|
|
if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
|
|
(length == 0 && hcd->status_urb != NULL))
|
|
mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
|
|
|
|
/* timer callback */
|
|
static void rh_timer_func (struct timer_list *t)
|
|
{
|
|
struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
|
|
|
|
usb_hcd_poll_rh_status(_hcd);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
unsigned len = 1 + (urb->dev->maxchild / 8);
|
|
|
|
spin_lock_irqsave (&hcd_root_hub_lock, flags);
|
|
if (hcd->status_urb || urb->transfer_buffer_length < len) {
|
|
dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
|
|
retval = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
retval = usb_hcd_link_urb_to_ep(hcd, urb);
|
|
if (retval)
|
|
goto done;
|
|
|
|
hcd->status_urb = urb;
|
|
urb->hcpriv = hcd; /* indicate it's queued */
|
|
if (!hcd->uses_new_polling)
|
|
mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
|
|
|
|
/* If a status change has already occurred, report it ASAP */
|
|
else if (HCD_POLL_PENDING(hcd))
|
|
mod_timer(&hcd->rh_timer, jiffies);
|
|
retval = 0;
|
|
done:
|
|
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
if (usb_endpoint_xfer_int(&urb->ep->desc))
|
|
return rh_queue_status (hcd, urb);
|
|
if (usb_endpoint_xfer_control(&urb->ep->desc))
|
|
return rh_call_control (hcd, urb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Unlinks of root-hub control URBs are legal, but they don't do anything
|
|
* since these URBs always execute synchronously.
|
|
*/
|
|
static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
|
|
{
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(&hcd_root_hub_lock, flags);
|
|
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
|
|
if (rc)
|
|
goto done;
|
|
|
|
if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
|
|
; /* Do nothing */
|
|
|
|
} else { /* Status URB */
|
|
if (!hcd->uses_new_polling)
|
|
del_timer (&hcd->rh_timer);
|
|
if (urb == hcd->status_urb) {
|
|
hcd->status_urb = NULL;
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
usb_hcd_giveback_urb(hcd, urb, status);
|
|
}
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_bus_init - shared initialization code
|
|
* @bus: the bus structure being initialized
|
|
*
|
|
* This code is used to initialize a usb_bus structure, memory for which is
|
|
* separately managed.
|
|
*/
|
|
static void usb_bus_init (struct usb_bus *bus)
|
|
{
|
|
memset (&bus->devmap, 0, sizeof(struct usb_devmap));
|
|
|
|
bus->devnum_next = 1;
|
|
|
|
bus->root_hub = NULL;
|
|
bus->busnum = -1;
|
|
bus->bandwidth_allocated = 0;
|
|
bus->bandwidth_int_reqs = 0;
|
|
bus->bandwidth_isoc_reqs = 0;
|
|
mutex_init(&bus->devnum_next_mutex);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_register_bus - registers the USB host controller with the usb core
|
|
* @bus: pointer to the bus to register
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Assigns a bus number, and links the controller into usbcore data
|
|
* structures so that it can be seen by scanning the bus list.
|
|
*
|
|
* Return: 0 if successful. A negative error code otherwise.
|
|
*/
|
|
static int usb_register_bus(struct usb_bus *bus)
|
|
{
|
|
int result = -E2BIG;
|
|
int busnum;
|
|
|
|
mutex_lock(&usb_bus_idr_lock);
|
|
busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
|
|
if (busnum < 0) {
|
|
pr_err("%s: failed to get bus number\n", usbcore_name);
|
|
goto error_find_busnum;
|
|
}
|
|
bus->busnum = busnum;
|
|
mutex_unlock(&usb_bus_idr_lock);
|
|
|
|
usb_notify_add_bus(bus);
|
|
|
|
dev_info (bus->controller, "new USB bus registered, assigned bus "
|
|
"number %d\n", bus->busnum);
|
|
return 0;
|
|
|
|
error_find_busnum:
|
|
mutex_unlock(&usb_bus_idr_lock);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* usb_deregister_bus - deregisters the USB host controller
|
|
* @bus: pointer to the bus to deregister
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Recycles the bus number, and unlinks the controller from usbcore data
|
|
* structures so that it won't be seen by scanning the bus list.
|
|
*/
|
|
static void usb_deregister_bus (struct usb_bus *bus)
|
|
{
|
|
dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
|
|
|
|
/*
|
|
* NOTE: make sure that all the devices are removed by the
|
|
* controller code, as well as having it call this when cleaning
|
|
* itself up
|
|
*/
|
|
mutex_lock(&usb_bus_idr_lock);
|
|
idr_remove(&usb_bus_idr, bus->busnum);
|
|
mutex_unlock(&usb_bus_idr_lock);
|
|
|
|
usb_notify_remove_bus(bus);
|
|
}
|
|
|
|
/**
|
|
* register_root_hub - called by usb_add_hcd() to register a root hub
|
|
* @hcd: host controller for this root hub
|
|
*
|
|
* This function registers the root hub with the USB subsystem. It sets up
|
|
* the device properly in the device tree and then calls usb_new_device()
|
|
* to register the usb device. It also assigns the root hub's USB address
|
|
* (always 1).
|
|
*
|
|
* Return: 0 if successful. A negative error code otherwise.
|
|
*/
|
|
static int register_root_hub(struct usb_hcd *hcd)
|
|
{
|
|
struct device *parent_dev = hcd->self.controller;
|
|
struct usb_device *usb_dev = hcd->self.root_hub;
|
|
const int devnum = 1;
|
|
int retval;
|
|
|
|
usb_dev->devnum = devnum;
|
|
usb_dev->bus->devnum_next = devnum + 1;
|
|
set_bit (devnum, usb_dev->bus->devmap.devicemap);
|
|
usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
|
|
|
|
mutex_lock(&usb_bus_idr_lock);
|
|
|
|
usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
|
|
retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
|
|
if (retval != sizeof usb_dev->descriptor) {
|
|
mutex_unlock(&usb_bus_idr_lock);
|
|
dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
|
|
dev_name(&usb_dev->dev), retval);
|
|
return (retval < 0) ? retval : -EMSGSIZE;
|
|
}
|
|
|
|
if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
|
|
retval = usb_get_bos_descriptor(usb_dev);
|
|
if (!retval) {
|
|
usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
|
|
} else if (usb_dev->speed >= USB_SPEED_SUPER) {
|
|
mutex_unlock(&usb_bus_idr_lock);
|
|
dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
|
|
dev_name(&usb_dev->dev), retval);
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
retval = usb_new_device (usb_dev);
|
|
if (retval) {
|
|
dev_err (parent_dev, "can't register root hub for %s, %d\n",
|
|
dev_name(&usb_dev->dev), retval);
|
|
} else {
|
|
spin_lock_irq (&hcd_root_hub_lock);
|
|
hcd->rh_registered = 1;
|
|
spin_unlock_irq (&hcd_root_hub_lock);
|
|
|
|
/* Did the HC die before the root hub was registered? */
|
|
if (HCD_DEAD(hcd))
|
|
usb_hc_died (hcd); /* This time clean up */
|
|
}
|
|
mutex_unlock(&usb_bus_idr_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* usb_hcd_start_port_resume - a root-hub port is sending a resume signal
|
|
* @bus: the bus which the root hub belongs to
|
|
* @portnum: the port which is being resumed
|
|
*
|
|
* HCDs should call this function when they know that a resume signal is
|
|
* being sent to a root-hub port. The root hub will be prevented from
|
|
* going into autosuspend until usb_hcd_end_port_resume() is called.
|
|
*
|
|
* The bus's private lock must be held by the caller.
|
|
*/
|
|
void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
|
|
{
|
|
unsigned bit = 1 << portnum;
|
|
|
|
if (!(bus->resuming_ports & bit)) {
|
|
bus->resuming_ports |= bit;
|
|
pm_runtime_get_noresume(&bus->root_hub->dev);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
|
|
|
|
/*
|
|
* usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
|
|
* @bus: the bus which the root hub belongs to
|
|
* @portnum: the port which is being resumed
|
|
*
|
|
* HCDs should call this function when they know that a resume signal has
|
|
* stopped being sent to a root-hub port. The root hub will be allowed to
|
|
* autosuspend again.
|
|
*
|
|
* The bus's private lock must be held by the caller.
|
|
*/
|
|
void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
|
|
{
|
|
unsigned bit = 1 << portnum;
|
|
|
|
if (bus->resuming_ports & bit) {
|
|
bus->resuming_ports &= ~bit;
|
|
pm_runtime_put_noidle(&bus->root_hub->dev);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_calc_bus_time - approximate periodic transaction time in nanoseconds
|
|
* @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
|
|
* @is_input: true iff the transaction sends data to the host
|
|
* @isoc: true for isochronous transactions, false for interrupt ones
|
|
* @bytecount: how many bytes in the transaction.
|
|
*
|
|
* Return: Approximate bus time in nanoseconds for a periodic transaction.
|
|
*
|
|
* Note:
|
|
* See USB 2.0 spec section 5.11.3; only periodic transfers need to be
|
|
* scheduled in software, this function is only used for such scheduling.
|
|
*/
|
|
long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
switch (speed) {
|
|
case USB_SPEED_LOW: /* INTR only */
|
|
if (is_input) {
|
|
tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
|
|
return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
|
|
} else {
|
|
tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
|
|
return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
|
|
}
|
|
case USB_SPEED_FULL: /* ISOC or INTR */
|
|
if (isoc) {
|
|
tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
|
|
return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
|
|
} else {
|
|
tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
|
|
return 9107L + BW_HOST_DELAY + tmp;
|
|
}
|
|
case USB_SPEED_HIGH: /* ISOC or INTR */
|
|
/* FIXME adjust for input vs output */
|
|
if (isoc)
|
|
tmp = HS_NSECS_ISO (bytecount);
|
|
else
|
|
tmp = HS_NSECS (bytecount);
|
|
return tmp;
|
|
default:
|
|
pr_debug ("%s: bogus device speed!\n", usbcore_name);
|
|
return -1;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_calc_bus_time);
|
|
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Generic HC operations.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
|
|
* @hcd: host controller to which @urb was submitted
|
|
* @urb: URB being submitted
|
|
*
|
|
* Host controller drivers should call this routine in their enqueue()
|
|
* method. The HCD's private spinlock must be held and interrupts must
|
|
* be disabled. The actions carried out here are required for URB
|
|
* submission, as well as for endpoint shutdown and for usb_kill_urb.
|
|
*
|
|
* Return: 0 for no error, otherwise a negative error code (in which case
|
|
* the enqueue() method must fail). If no error occurs but enqueue() fails
|
|
* anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
|
|
* the private spinlock and returning.
|
|
*/
|
|
int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
int rc = 0;
|
|
|
|
spin_lock(&hcd_urb_list_lock);
|
|
|
|
/* Check that the URB isn't being killed */
|
|
if (unlikely(atomic_read(&urb->reject))) {
|
|
rc = -EPERM;
|
|
goto done;
|
|
}
|
|
|
|
if (unlikely(!urb->ep->enabled)) {
|
|
rc = -ENOENT;
|
|
goto done;
|
|
}
|
|
|
|
if (unlikely(!urb->dev->can_submit)) {
|
|
rc = -EHOSTUNREACH;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Check the host controller's state and add the URB to the
|
|
* endpoint's queue.
|
|
*/
|
|
if (HCD_RH_RUNNING(hcd)) {
|
|
urb->unlinked = 0;
|
|
list_add_tail(&urb->urb_list, &urb->ep->urb_list);
|
|
} else {
|
|
rc = -ESHUTDOWN;
|
|
goto done;
|
|
}
|
|
done:
|
|
spin_unlock(&hcd_urb_list_lock);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
|
|
|
|
/**
|
|
* usb_hcd_check_unlink_urb - check whether an URB may be unlinked
|
|
* @hcd: host controller to which @urb was submitted
|
|
* @urb: URB being checked for unlinkability
|
|
* @status: error code to store in @urb if the unlink succeeds
|
|
*
|
|
* Host controller drivers should call this routine in their dequeue()
|
|
* method. The HCD's private spinlock must be held and interrupts must
|
|
* be disabled. The actions carried out here are required for making
|
|
* sure than an unlink is valid.
|
|
*
|
|
* Return: 0 for no error, otherwise a negative error code (in which case
|
|
* the dequeue() method must fail). The possible error codes are:
|
|
*
|
|
* -EIDRM: @urb was not submitted or has already completed.
|
|
* The completion function may not have been called yet.
|
|
*
|
|
* -EBUSY: @urb has already been unlinked.
|
|
*/
|
|
int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
|
|
int status)
|
|
{
|
|
struct list_head *tmp;
|
|
|
|
/* insist the urb is still queued */
|
|
list_for_each(tmp, &urb->ep->urb_list) {
|
|
if (tmp == &urb->urb_list)
|
|
break;
|
|
}
|
|
if (tmp != &urb->urb_list)
|
|
return -EIDRM;
|
|
|
|
/* Any status except -EINPROGRESS means something already started to
|
|
* unlink this URB from the hardware. So there's no more work to do.
|
|
*/
|
|
if (urb->unlinked)
|
|
return -EBUSY;
|
|
urb->unlinked = status;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
|
|
|
|
/**
|
|
* usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
|
|
* @hcd: host controller to which @urb was submitted
|
|
* @urb: URB being unlinked
|
|
*
|
|
* Host controller drivers should call this routine before calling
|
|
* usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
|
|
* interrupts must be disabled. The actions carried out here are required
|
|
* for URB completion.
|
|
*/
|
|
void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
/* clear all state linking urb to this dev (and hcd) */
|
|
spin_lock(&hcd_urb_list_lock);
|
|
list_del_init(&urb->urb_list);
|
|
spin_unlock(&hcd_urb_list_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
|
|
|
|
/*
|
|
* Some usb host controllers can only perform dma using a small SRAM area.
|
|
* The usb core itself is however optimized for host controllers that can dma
|
|
* using regular system memory - like pci devices doing bus mastering.
|
|
*
|
|
* To support host controllers with limited dma capabilities we provide dma
|
|
* bounce buffers. This feature can be enabled by initializing
|
|
* hcd->localmem_pool using usb_hcd_setup_local_mem().
|
|
*
|
|
* The initialized hcd->localmem_pool then tells the usb code to allocate all
|
|
* data for dma using the genalloc API.
|
|
*
|
|
* So, to summarize...
|
|
*
|
|
* - We need "local" memory, canonical example being
|
|
* a small SRAM on a discrete controller being the
|
|
* only memory that the controller can read ...
|
|
* (a) "normal" kernel memory is no good, and
|
|
* (b) there's not enough to share
|
|
*
|
|
* - So we use that, even though the primary requirement
|
|
* is that the memory be "local" (hence addressable
|
|
* by that device), not "coherent".
|
|
*
|
|
*/
|
|
|
|
static int hcd_alloc_coherent(struct usb_bus *bus,
|
|
gfp_t mem_flags, dma_addr_t *dma_handle,
|
|
void **vaddr_handle, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned char *vaddr;
|
|
|
|
if (*vaddr_handle == NULL) {
|
|
WARN_ON_ONCE(1);
|
|
return -EFAULT;
|
|
}
|
|
|
|
vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
|
|
mem_flags, dma_handle);
|
|
if (!vaddr)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Store the virtual address of the buffer at the end
|
|
* of the allocated dma buffer. The size of the buffer
|
|
* may be uneven so use unaligned functions instead
|
|
* of just rounding up. It makes sense to optimize for
|
|
* memory footprint over access speed since the amount
|
|
* of memory available for dma may be limited.
|
|
*/
|
|
put_unaligned((unsigned long)*vaddr_handle,
|
|
(unsigned long *)(vaddr + size));
|
|
|
|
if (dir == DMA_TO_DEVICE)
|
|
memcpy(vaddr, *vaddr_handle, size);
|
|
|
|
*vaddr_handle = vaddr;
|
|
return 0;
|
|
}
|
|
|
|
static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
|
|
void **vaddr_handle, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned char *vaddr = *vaddr_handle;
|
|
|
|
vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
|
|
|
|
if (dir == DMA_FROM_DEVICE)
|
|
memcpy(vaddr, *vaddr_handle, size);
|
|
|
|
hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
|
|
|
|
*vaddr_handle = vaddr;
|
|
*dma_handle = 0;
|
|
}
|
|
|
|
void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
if (IS_ENABLED(CONFIG_HAS_DMA) &&
|
|
(urb->transfer_flags & URB_SETUP_MAP_SINGLE))
|
|
dma_unmap_single(hcd->self.sysdev,
|
|
urb->setup_dma,
|
|
sizeof(struct usb_ctrlrequest),
|
|
DMA_TO_DEVICE);
|
|
else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
|
|
hcd_free_coherent(urb->dev->bus,
|
|
&urb->setup_dma,
|
|
(void **) &urb->setup_packet,
|
|
sizeof(struct usb_ctrlrequest),
|
|
DMA_TO_DEVICE);
|
|
|
|
/* Make it safe to call this routine more than once */
|
|
urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
|
|
|
|
static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
if (hcd->driver->unmap_urb_for_dma)
|
|
hcd->driver->unmap_urb_for_dma(hcd, urb);
|
|
else
|
|
usb_hcd_unmap_urb_for_dma(hcd, urb);
|
|
}
|
|
|
|
void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
enum dma_data_direction dir;
|
|
|
|
usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
|
|
|
|
dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
|
|
if (IS_ENABLED(CONFIG_HAS_DMA) &&
|
|
(urb->transfer_flags & URB_DMA_MAP_SG))
|
|
dma_unmap_sg(hcd->self.sysdev,
|
|
urb->sg,
|
|
urb->num_sgs,
|
|
dir);
|
|
else if (IS_ENABLED(CONFIG_HAS_DMA) &&
|
|
(urb->transfer_flags & URB_DMA_MAP_PAGE))
|
|
dma_unmap_page(hcd->self.sysdev,
|
|
urb->transfer_dma,
|
|
urb->transfer_buffer_length,
|
|
dir);
|
|
else if (IS_ENABLED(CONFIG_HAS_DMA) &&
|
|
(urb->transfer_flags & URB_DMA_MAP_SINGLE))
|
|
dma_unmap_single(hcd->self.sysdev,
|
|
urb->transfer_dma,
|
|
urb->transfer_buffer_length,
|
|
dir);
|
|
else if (urb->transfer_flags & URB_MAP_LOCAL)
|
|
hcd_free_coherent(urb->dev->bus,
|
|
&urb->transfer_dma,
|
|
&urb->transfer_buffer,
|
|
urb->transfer_buffer_length,
|
|
dir);
|
|
|
|
/* Make it safe to call this routine more than once */
|
|
urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
|
|
URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
|
|
|
|
static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
|
|
gfp_t mem_flags)
|
|
{
|
|
if (hcd->driver->map_urb_for_dma)
|
|
return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
|
|
else
|
|
return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
|
|
}
|
|
|
|
int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
|
|
gfp_t mem_flags)
|
|
{
|
|
enum dma_data_direction dir;
|
|
int ret = 0;
|
|
|
|
/* Map the URB's buffers for DMA access.
|
|
* Lower level HCD code should use *_dma exclusively,
|
|
* unless it uses pio or talks to another transport,
|
|
* or uses the provided scatter gather list for bulk.
|
|
*/
|
|
|
|
if (usb_endpoint_xfer_control(&urb->ep->desc)) {
|
|
if (hcd->self.uses_pio_for_control)
|
|
return ret;
|
|
if (hcd->localmem_pool) {
|
|
ret = hcd_alloc_coherent(
|
|
urb->dev->bus, mem_flags,
|
|
&urb->setup_dma,
|
|
(void **)&urb->setup_packet,
|
|
sizeof(struct usb_ctrlrequest),
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
|
|
} else if (hcd_uses_dma(hcd)) {
|
|
if (object_is_on_stack(urb->setup_packet)) {
|
|
WARN_ONCE(1, "setup packet is on stack\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
urb->setup_dma = dma_map_single(
|
|
hcd->self.sysdev,
|
|
urb->setup_packet,
|
|
sizeof(struct usb_ctrlrequest),
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(hcd->self.sysdev,
|
|
urb->setup_dma))
|
|
return -EAGAIN;
|
|
urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
|
|
}
|
|
}
|
|
|
|
dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
|
|
if (urb->transfer_buffer_length != 0
|
|
&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
|
|
if (hcd->localmem_pool) {
|
|
ret = hcd_alloc_coherent(
|
|
urb->dev->bus, mem_flags,
|
|
&urb->transfer_dma,
|
|
&urb->transfer_buffer,
|
|
urb->transfer_buffer_length,
|
|
dir);
|
|
if (ret == 0)
|
|
urb->transfer_flags |= URB_MAP_LOCAL;
|
|
} else if (hcd_uses_dma(hcd)) {
|
|
if (urb->num_sgs) {
|
|
int n;
|
|
|
|
/* We don't support sg for isoc transfers ! */
|
|
if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
n = dma_map_sg(
|
|
hcd->self.sysdev,
|
|
urb->sg,
|
|
urb->num_sgs,
|
|
dir);
|
|
if (n <= 0)
|
|
ret = -EAGAIN;
|
|
else
|
|
urb->transfer_flags |= URB_DMA_MAP_SG;
|
|
urb->num_mapped_sgs = n;
|
|
if (n != urb->num_sgs)
|
|
urb->transfer_flags |=
|
|
URB_DMA_SG_COMBINED;
|
|
} else if (urb->sg) {
|
|
struct scatterlist *sg = urb->sg;
|
|
urb->transfer_dma = dma_map_page(
|
|
hcd->self.sysdev,
|
|
sg_page(sg),
|
|
sg->offset,
|
|
urb->transfer_buffer_length,
|
|
dir);
|
|
if (dma_mapping_error(hcd->self.sysdev,
|
|
urb->transfer_dma))
|
|
ret = -EAGAIN;
|
|
else
|
|
urb->transfer_flags |= URB_DMA_MAP_PAGE;
|
|
} else if (object_is_on_stack(urb->transfer_buffer)) {
|
|
WARN_ONCE(1, "transfer buffer is on stack\n");
|
|
ret = -EAGAIN;
|
|
} else {
|
|
urb->transfer_dma = dma_map_single(
|
|
hcd->self.sysdev,
|
|
urb->transfer_buffer,
|
|
urb->transfer_buffer_length,
|
|
dir);
|
|
if (dma_mapping_error(hcd->self.sysdev,
|
|
urb->transfer_dma))
|
|
ret = -EAGAIN;
|
|
else
|
|
urb->transfer_flags |= URB_DMA_MAP_SINGLE;
|
|
}
|
|
}
|
|
if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
|
|
URB_SETUP_MAP_LOCAL)))
|
|
usb_hcd_unmap_urb_for_dma(hcd, urb);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* may be called in any context with a valid urb->dev usecount
|
|
* caller surrenders "ownership" of urb
|
|
* expects usb_submit_urb() to have sanity checked and conditioned all
|
|
* inputs in the urb
|
|
*/
|
|
int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
|
|
{
|
|
int status;
|
|
struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
|
|
|
|
/* increment urb's reference count as part of giving it to the HCD
|
|
* (which will control it). HCD guarantees that it either returns
|
|
* an error or calls giveback(), but not both.
|
|
*/
|
|
usb_get_urb(urb);
|
|
atomic_inc(&urb->use_count);
|
|
atomic_inc(&urb->dev->urbnum);
|
|
usbmon_urb_submit(&hcd->self, urb);
|
|
|
|
/* NOTE requirements on root-hub callers (usbfs and the hub
|
|
* driver, for now): URBs' urb->transfer_buffer must be
|
|
* valid and usb_buffer_{sync,unmap}() not be needed, since
|
|
* they could clobber root hub response data. Also, control
|
|
* URBs must be submitted in process context with interrupts
|
|
* enabled.
|
|
*/
|
|
|
|
if (is_root_hub(urb->dev)) {
|
|
status = rh_urb_enqueue(hcd, urb);
|
|
} else {
|
|
status = map_urb_for_dma(hcd, urb, mem_flags);
|
|
if (likely(status == 0)) {
|
|
status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
|
|
if (unlikely(status))
|
|
unmap_urb_for_dma(hcd, urb);
|
|
}
|
|
}
|
|
|
|
if (unlikely(status)) {
|
|
usbmon_urb_submit_error(&hcd->self, urb, status);
|
|
urb->hcpriv = NULL;
|
|
INIT_LIST_HEAD(&urb->urb_list);
|
|
atomic_dec(&urb->use_count);
|
|
atomic_dec(&urb->dev->urbnum);
|
|
if (atomic_read(&urb->reject))
|
|
wake_up(&usb_kill_urb_queue);
|
|
usb_put_urb(urb);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* this makes the hcd giveback() the urb more quickly, by kicking it
|
|
* off hardware queues (which may take a while) and returning it as
|
|
* soon as practical. we've already set up the urb's return status,
|
|
* but we can't know if the callback completed already.
|
|
*/
|
|
static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
|
|
{
|
|
int value;
|
|
|
|
if (is_root_hub(urb->dev))
|
|
value = usb_rh_urb_dequeue(hcd, urb, status);
|
|
else {
|
|
|
|
/* The only reason an HCD might fail this call is if
|
|
* it has not yet fully queued the urb to begin with.
|
|
* Such failures should be harmless. */
|
|
value = hcd->driver->urb_dequeue(hcd, urb, status);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* called in any context
|
|
*
|
|
* caller guarantees urb won't be recycled till both unlink()
|
|
* and the urb's completion function return
|
|
*/
|
|
int usb_hcd_unlink_urb (struct urb *urb, int status)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
struct usb_device *udev = urb->dev;
|
|
int retval = -EIDRM;
|
|
unsigned long flags;
|
|
|
|
/* Prevent the device and bus from going away while
|
|
* the unlink is carried out. If they are already gone
|
|
* then urb->use_count must be 0, since disconnected
|
|
* devices can't have any active URBs.
|
|
*/
|
|
spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
|
|
if (atomic_read(&urb->use_count) > 0) {
|
|
retval = 0;
|
|
usb_get_dev(udev);
|
|
}
|
|
spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
|
|
if (retval == 0) {
|
|
hcd = bus_to_hcd(urb->dev->bus);
|
|
retval = unlink1(hcd, urb, status);
|
|
if (retval == 0)
|
|
retval = -EINPROGRESS;
|
|
else if (retval != -EIDRM && retval != -EBUSY)
|
|
dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
|
|
urb, retval);
|
|
usb_put_dev(udev);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void __usb_hcd_giveback_urb(struct urb *urb)
|
|
{
|
|
struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
|
|
struct usb_anchor *anchor = urb->anchor;
|
|
int status = urb->unlinked;
|
|
|
|
urb->hcpriv = NULL;
|
|
if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
|
|
urb->actual_length < urb->transfer_buffer_length &&
|
|
!status))
|
|
status = -EREMOTEIO;
|
|
|
|
unmap_urb_for_dma(hcd, urb);
|
|
usbmon_urb_complete(&hcd->self, urb, status);
|
|
usb_anchor_suspend_wakeups(anchor);
|
|
usb_unanchor_urb(urb);
|
|
if (likely(status == 0))
|
|
usb_led_activity(USB_LED_EVENT_HOST);
|
|
|
|
/* pass ownership to the completion handler */
|
|
urb->status = status;
|
|
kcov_remote_start_usb((u64)urb->dev->bus->busnum);
|
|
urb->complete(urb);
|
|
kcov_remote_stop();
|
|
|
|
usb_anchor_resume_wakeups(anchor);
|
|
atomic_dec(&urb->use_count);
|
|
if (unlikely(atomic_read(&urb->reject)))
|
|
wake_up(&usb_kill_urb_queue);
|
|
usb_put_urb(urb);
|
|
}
|
|
|
|
static void usb_giveback_urb_bh(unsigned long param)
|
|
{
|
|
struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
|
|
struct list_head local_list;
|
|
|
|
spin_lock_irq(&bh->lock);
|
|
bh->running = true;
|
|
restart:
|
|
list_replace_init(&bh->head, &local_list);
|
|
spin_unlock_irq(&bh->lock);
|
|
|
|
while (!list_empty(&local_list)) {
|
|
struct urb *urb;
|
|
|
|
urb = list_entry(local_list.next, struct urb, urb_list);
|
|
list_del_init(&urb->urb_list);
|
|
bh->completing_ep = urb->ep;
|
|
__usb_hcd_giveback_urb(urb);
|
|
bh->completing_ep = NULL;
|
|
}
|
|
|
|
/* check if there are new URBs to giveback */
|
|
spin_lock_irq(&bh->lock);
|
|
if (!list_empty(&bh->head))
|
|
goto restart;
|
|
bh->running = false;
|
|
spin_unlock_irq(&bh->lock);
|
|
}
|
|
|
|
/**
|
|
* usb_hcd_giveback_urb - return URB from HCD to device driver
|
|
* @hcd: host controller returning the URB
|
|
* @urb: urb being returned to the USB device driver.
|
|
* @status: completion status code for the URB.
|
|
* Context: in_interrupt()
|
|
*
|
|
* This hands the URB from HCD to its USB device driver, using its
|
|
* completion function. The HCD has freed all per-urb resources
|
|
* (and is done using urb->hcpriv). It also released all HCD locks;
|
|
* the device driver won't cause problems if it frees, modifies,
|
|
* or resubmits this URB.
|
|
*
|
|
* If @urb was unlinked, the value of @status will be overridden by
|
|
* @urb->unlinked. Erroneous short transfers are detected in case
|
|
* the HCD hasn't checked for them.
|
|
*/
|
|
void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
|
|
{
|
|
struct giveback_urb_bh *bh;
|
|
bool running, high_prio_bh;
|
|
|
|
/* pass status to tasklet via unlinked */
|
|
if (likely(!urb->unlinked))
|
|
urb->unlinked = status;
|
|
|
|
if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
|
|
__usb_hcd_giveback_urb(urb);
|
|
return;
|
|
}
|
|
|
|
if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
|
|
bh = &hcd->high_prio_bh;
|
|
high_prio_bh = true;
|
|
} else {
|
|
bh = &hcd->low_prio_bh;
|
|
high_prio_bh = false;
|
|
}
|
|
|
|
spin_lock(&bh->lock);
|
|
list_add_tail(&urb->urb_list, &bh->head);
|
|
running = bh->running;
|
|
spin_unlock(&bh->lock);
|
|
|
|
if (running)
|
|
;
|
|
else if (high_prio_bh)
|
|
tasklet_hi_schedule(&bh->bh);
|
|
else
|
|
tasklet_schedule(&bh->bh);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Cancel all URBs pending on this endpoint and wait for the endpoint's
|
|
* queue to drain completely. The caller must first insure that no more
|
|
* URBs can be submitted for this endpoint.
|
|
*/
|
|
void usb_hcd_flush_endpoint(struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
struct urb *urb;
|
|
|
|
if (!ep)
|
|
return;
|
|
might_sleep();
|
|
hcd = bus_to_hcd(udev->bus);
|
|
|
|
/* No more submits can occur */
|
|
spin_lock_irq(&hcd_urb_list_lock);
|
|
rescan:
|
|
list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
|
|
int is_in;
|
|
|
|
if (urb->unlinked)
|
|
continue;
|
|
usb_get_urb (urb);
|
|
is_in = usb_urb_dir_in(urb);
|
|
spin_unlock(&hcd_urb_list_lock);
|
|
|
|
/* kick hcd */
|
|
unlink1(hcd, urb, -ESHUTDOWN);
|
|
dev_dbg (hcd->self.controller,
|
|
"shutdown urb %pK ep%d%s-%s\n",
|
|
urb, usb_endpoint_num(&ep->desc),
|
|
is_in ? "in" : "out",
|
|
usb_ep_type_string(usb_endpoint_type(&ep->desc)));
|
|
usb_put_urb (urb);
|
|
|
|
/* list contents may have changed */
|
|
spin_lock(&hcd_urb_list_lock);
|
|
goto rescan;
|
|
}
|
|
spin_unlock_irq(&hcd_urb_list_lock);
|
|
|
|
/* Wait until the endpoint queue is completely empty */
|
|
while (!list_empty (&ep->urb_list)) {
|
|
spin_lock_irq(&hcd_urb_list_lock);
|
|
|
|
/* The list may have changed while we acquired the spinlock */
|
|
urb = NULL;
|
|
if (!list_empty (&ep->urb_list)) {
|
|
urb = list_entry (ep->urb_list.prev, struct urb,
|
|
urb_list);
|
|
usb_get_urb (urb);
|
|
}
|
|
spin_unlock_irq(&hcd_urb_list_lock);
|
|
|
|
if (urb) {
|
|
usb_kill_urb (urb);
|
|
usb_put_urb (urb);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
|
|
* the bus bandwidth
|
|
* @udev: target &usb_device
|
|
* @new_config: new configuration to install
|
|
* @cur_alt: the current alternate interface setting
|
|
* @new_alt: alternate interface setting that is being installed
|
|
*
|
|
* To change configurations, pass in the new configuration in new_config,
|
|
* and pass NULL for cur_alt and new_alt.
|
|
*
|
|
* To reset a device's configuration (put the device in the ADDRESSED state),
|
|
* pass in NULL for new_config, cur_alt, and new_alt.
|
|
*
|
|
* To change alternate interface settings, pass in NULL for new_config,
|
|
* pass in the current alternate interface setting in cur_alt,
|
|
* and pass in the new alternate interface setting in new_alt.
|
|
*
|
|
* Return: An error if the requested bandwidth change exceeds the
|
|
* bus bandwidth or host controller internal resources.
|
|
*/
|
|
int usb_hcd_alloc_bandwidth(struct usb_device *udev,
|
|
struct usb_host_config *new_config,
|
|
struct usb_host_interface *cur_alt,
|
|
struct usb_host_interface *new_alt)
|
|
{
|
|
int num_intfs, i, j;
|
|
struct usb_host_interface *alt = NULL;
|
|
int ret = 0;
|
|
struct usb_hcd *hcd;
|
|
struct usb_host_endpoint *ep;
|
|
|
|
hcd = bus_to_hcd(udev->bus);
|
|
if (!hcd->driver->check_bandwidth)
|
|
return 0;
|
|
|
|
/* Configuration is being removed - set configuration 0 */
|
|
if (!new_config && !cur_alt) {
|
|
for (i = 1; i < 16; ++i) {
|
|
ep = udev->ep_out[i];
|
|
if (ep)
|
|
hcd->driver->drop_endpoint(hcd, udev, ep);
|
|
ep = udev->ep_in[i];
|
|
if (ep)
|
|
hcd->driver->drop_endpoint(hcd, udev, ep);
|
|
}
|
|
hcd->driver->check_bandwidth(hcd, udev);
|
|
return 0;
|
|
}
|
|
/* Check if the HCD says there's enough bandwidth. Enable all endpoints
|
|
* each interface's alt setting 0 and ask the HCD to check the bandwidth
|
|
* of the bus. There will always be bandwidth for endpoint 0, so it's
|
|
* ok to exclude it.
|
|
*/
|
|
if (new_config) {
|
|
num_intfs = new_config->desc.bNumInterfaces;
|
|
/* Remove endpoints (except endpoint 0, which is always on the
|
|
* schedule) from the old config from the schedule
|
|
*/
|
|
for (i = 1; i < 16; ++i) {
|
|
ep = udev->ep_out[i];
|
|
if (ep) {
|
|
ret = hcd->driver->drop_endpoint(hcd, udev, ep);
|
|
if (ret < 0)
|
|
goto reset;
|
|
}
|
|
ep = udev->ep_in[i];
|
|
if (ep) {
|
|
ret = hcd->driver->drop_endpoint(hcd, udev, ep);
|
|
if (ret < 0)
|
|
goto reset;
|
|
}
|
|
}
|
|
for (i = 0; i < num_intfs; ++i) {
|
|
struct usb_host_interface *first_alt;
|
|
int iface_num;
|
|
|
|
first_alt = &new_config->intf_cache[i]->altsetting[0];
|
|
iface_num = first_alt->desc.bInterfaceNumber;
|
|
/* Set up endpoints for alternate interface setting 0 */
|
|
alt = usb_find_alt_setting(new_config, iface_num, 0);
|
|
if (!alt)
|
|
/* No alt setting 0? Pick the first setting. */
|
|
alt = first_alt;
|
|
|
|
for (j = 0; j < alt->desc.bNumEndpoints; j++) {
|
|
ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
|
|
if (ret < 0)
|
|
goto reset;
|
|
}
|
|
}
|
|
}
|
|
if (cur_alt && new_alt) {
|
|
struct usb_interface *iface = usb_ifnum_to_if(udev,
|
|
cur_alt->desc.bInterfaceNumber);
|
|
|
|
if (!iface)
|
|
return -EINVAL;
|
|
if (iface->resetting_device) {
|
|
/*
|
|
* The USB core just reset the device, so the xHCI host
|
|
* and the device will think alt setting 0 is installed.
|
|
* However, the USB core will pass in the alternate
|
|
* setting installed before the reset as cur_alt. Dig
|
|
* out the alternate setting 0 structure, or the first
|
|
* alternate setting if a broken device doesn't have alt
|
|
* setting 0.
|
|
*/
|
|
cur_alt = usb_altnum_to_altsetting(iface, 0);
|
|
if (!cur_alt)
|
|
cur_alt = &iface->altsetting[0];
|
|
}
|
|
|
|
/* Drop all the endpoints in the current alt setting */
|
|
for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
|
|
ret = hcd->driver->drop_endpoint(hcd, udev,
|
|
&cur_alt->endpoint[i]);
|
|
if (ret < 0)
|
|
goto reset;
|
|
}
|
|
/* Add all the endpoints in the new alt setting */
|
|
for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
|
|
ret = hcd->driver->add_endpoint(hcd, udev,
|
|
&new_alt->endpoint[i]);
|
|
if (ret < 0)
|
|
goto reset;
|
|
}
|
|
}
|
|
ret = hcd->driver->check_bandwidth(hcd, udev);
|
|
reset:
|
|
if (ret < 0)
|
|
hcd->driver->reset_bandwidth(hcd, udev);
|
|
return ret;
|
|
}
|
|
|
|
/* Disables the endpoint: synchronizes with the hcd to make sure all
|
|
* endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
|
|
* have been called previously. Use for set_configuration, set_interface,
|
|
* driver removal, physical disconnect.
|
|
*
|
|
* example: a qh stored in ep->hcpriv, holding state related to endpoint
|
|
* type, maxpacket size, toggle, halt status, and scheduling.
|
|
*/
|
|
void usb_hcd_disable_endpoint(struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
|
|
might_sleep();
|
|
hcd = bus_to_hcd(udev->bus);
|
|
if (hcd->driver->endpoint_disable)
|
|
hcd->driver->endpoint_disable(hcd, ep);
|
|
}
|
|
|
|
/**
|
|
* usb_hcd_reset_endpoint - reset host endpoint state
|
|
* @udev: USB device.
|
|
* @ep: the endpoint to reset.
|
|
*
|
|
* Resets any host endpoint state such as the toggle bit, sequence
|
|
* number and current window.
|
|
*/
|
|
void usb_hcd_reset_endpoint(struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct usb_hcd *hcd = bus_to_hcd(udev->bus);
|
|
|
|
if (hcd->driver->endpoint_reset)
|
|
hcd->driver->endpoint_reset(hcd, ep);
|
|
else {
|
|
int epnum = usb_endpoint_num(&ep->desc);
|
|
int is_out = usb_endpoint_dir_out(&ep->desc);
|
|
int is_control = usb_endpoint_xfer_control(&ep->desc);
|
|
|
|
usb_settoggle(udev, epnum, is_out, 0);
|
|
if (is_control)
|
|
usb_settoggle(udev, epnum, !is_out, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* usb_alloc_streams - allocate bulk endpoint stream IDs.
|
|
* @interface: alternate setting that includes all endpoints.
|
|
* @eps: array of endpoints that need streams.
|
|
* @num_eps: number of endpoints in the array.
|
|
* @num_streams: number of streams to allocate.
|
|
* @mem_flags: flags hcd should use to allocate memory.
|
|
*
|
|
* Sets up a group of bulk endpoints to have @num_streams stream IDs available.
|
|
* Drivers may queue multiple transfers to different stream IDs, which may
|
|
* complete in a different order than they were queued.
|
|
*
|
|
* Return: On success, the number of allocated streams. On failure, a negative
|
|
* error code.
|
|
*/
|
|
int usb_alloc_streams(struct usb_interface *interface,
|
|
struct usb_host_endpoint **eps, unsigned int num_eps,
|
|
unsigned int num_streams, gfp_t mem_flags)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
struct usb_device *dev;
|
|
int i, ret;
|
|
|
|
dev = interface_to_usbdev(interface);
|
|
hcd = bus_to_hcd(dev->bus);
|
|
if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
|
|
return -EINVAL;
|
|
if (dev->speed < USB_SPEED_SUPER)
|
|
return -EINVAL;
|
|
if (dev->state < USB_STATE_CONFIGURED)
|
|
return -ENODEV;
|
|
|
|
for (i = 0; i < num_eps; i++) {
|
|
/* Streams only apply to bulk endpoints. */
|
|
if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
|
|
return -EINVAL;
|
|
/* Re-alloc is not allowed */
|
|
if (eps[i]->streams)
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
|
|
num_streams, mem_flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < num_eps; i++)
|
|
eps[i]->streams = ret;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_alloc_streams);
|
|
|
|
/**
|
|
* usb_free_streams - free bulk endpoint stream IDs.
|
|
* @interface: alternate setting that includes all endpoints.
|
|
* @eps: array of endpoints to remove streams from.
|
|
* @num_eps: number of endpoints in the array.
|
|
* @mem_flags: flags hcd should use to allocate memory.
|
|
*
|
|
* Reverts a group of bulk endpoints back to not using stream IDs.
|
|
* Can fail if we are given bad arguments, or HCD is broken.
|
|
*
|
|
* Return: 0 on success. On failure, a negative error code.
|
|
*/
|
|
int usb_free_streams(struct usb_interface *interface,
|
|
struct usb_host_endpoint **eps, unsigned int num_eps,
|
|
gfp_t mem_flags)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
struct usb_device *dev;
|
|
int i, ret;
|
|
|
|
dev = interface_to_usbdev(interface);
|
|
hcd = bus_to_hcd(dev->bus);
|
|
if (dev->speed < USB_SPEED_SUPER)
|
|
return -EINVAL;
|
|
|
|
/* Double-free is not allowed */
|
|
for (i = 0; i < num_eps; i++)
|
|
if (!eps[i] || !eps[i]->streams)
|
|
return -EINVAL;
|
|
|
|
ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < num_eps; i++)
|
|
eps[i]->streams = 0;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_free_streams);
|
|
|
|
/* Protect against drivers that try to unlink URBs after the device
|
|
* is gone, by waiting until all unlinks for @udev are finished.
|
|
* Since we don't currently track URBs by device, simply wait until
|
|
* nothing is running in the locked region of usb_hcd_unlink_urb().
|
|
*/
|
|
void usb_hcd_synchronize_unlinks(struct usb_device *udev)
|
|
{
|
|
spin_lock_irq(&hcd_urb_unlink_lock);
|
|
spin_unlock_irq(&hcd_urb_unlink_lock);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* called in any context */
|
|
int usb_hcd_get_frame_number (struct usb_device *udev)
|
|
{
|
|
struct usb_hcd *hcd = bus_to_hcd(udev->bus);
|
|
|
|
if (!HCD_RH_RUNNING(hcd))
|
|
return -ESHUTDOWN;
|
|
return hcd->driver->get_frame_number (hcd);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
|
|
{
|
|
struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
|
|
int status;
|
|
int old_state = hcd->state;
|
|
|
|
dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
|
|
(PMSG_IS_AUTO(msg) ? "auto-" : ""),
|
|
rhdev->do_remote_wakeup);
|
|
if (HCD_DEAD(hcd)) {
|
|
dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
|
|
return 0;
|
|
}
|
|
|
|
if (!hcd->driver->bus_suspend) {
|
|
status = -ENOENT;
|
|
} else {
|
|
clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
|
|
hcd->state = HC_STATE_QUIESCING;
|
|
status = hcd->driver->bus_suspend(hcd);
|
|
}
|
|
if (status == 0) {
|
|
usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
|
|
hcd->state = HC_STATE_SUSPENDED;
|
|
|
|
if (!PMSG_IS_AUTO(msg))
|
|
usb_phy_roothub_suspend(hcd->self.sysdev,
|
|
hcd->phy_roothub);
|
|
|
|
/* Did we race with a root-hub wakeup event? */
|
|
if (rhdev->do_remote_wakeup) {
|
|
char buffer[6];
|
|
|
|
status = hcd->driver->hub_status_data(hcd, buffer);
|
|
if (status != 0) {
|
|
dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
|
|
hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
|
|
status = -EBUSY;
|
|
}
|
|
}
|
|
} else {
|
|
spin_lock_irq(&hcd_root_hub_lock);
|
|
if (!HCD_DEAD(hcd)) {
|
|
set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
|
|
hcd->state = old_state;
|
|
}
|
|
spin_unlock_irq(&hcd_root_hub_lock);
|
|
dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
|
|
"suspend", status);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
|
|
{
|
|
struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
|
|
int status;
|
|
int old_state = hcd->state;
|
|
|
|
dev_dbg(&rhdev->dev, "usb %sresume\n",
|
|
(PMSG_IS_AUTO(msg) ? "auto-" : ""));
|
|
if (HCD_DEAD(hcd)) {
|
|
dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
|
|
return 0;
|
|
}
|
|
|
|
if (!PMSG_IS_AUTO(msg)) {
|
|
status = usb_phy_roothub_resume(hcd->self.sysdev,
|
|
hcd->phy_roothub);
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
if (!hcd->driver->bus_resume)
|
|
return -ENOENT;
|
|
if (HCD_RH_RUNNING(hcd))
|
|
return 0;
|
|
|
|
hcd->state = HC_STATE_RESUMING;
|
|
status = hcd->driver->bus_resume(hcd);
|
|
clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
|
|
if (status == 0)
|
|
status = usb_phy_roothub_calibrate(hcd->phy_roothub);
|
|
|
|
if (status == 0) {
|
|
struct usb_device *udev;
|
|
int port1;
|
|
|
|
spin_lock_irq(&hcd_root_hub_lock);
|
|
if (!HCD_DEAD(hcd)) {
|
|
usb_set_device_state(rhdev, rhdev->actconfig
|
|
? USB_STATE_CONFIGURED
|
|
: USB_STATE_ADDRESS);
|
|
set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
|
|
hcd->state = HC_STATE_RUNNING;
|
|
}
|
|
spin_unlock_irq(&hcd_root_hub_lock);
|
|
|
|
/*
|
|
* Check whether any of the enabled ports on the root hub are
|
|
* unsuspended. If they are then a TRSMRCY delay is needed
|
|
* (this is what the USB-2 spec calls a "global resume").
|
|
* Otherwise we can skip the delay.
|
|
*/
|
|
usb_hub_for_each_child(rhdev, port1, udev) {
|
|
if (udev->state != USB_STATE_NOTATTACHED &&
|
|
!udev->port_is_suspended) {
|
|
usleep_range(10000, 11000); /* TRSMRCY */
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
hcd->state = old_state;
|
|
usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
|
|
dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
|
|
"resume", status);
|
|
if (status != -ESHUTDOWN)
|
|
usb_hc_died(hcd);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/* Workqueue routine for root-hub remote wakeup */
|
|
static void hcd_resume_work(struct work_struct *work)
|
|
{
|
|
struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
|
|
struct usb_device *udev = hcd->self.root_hub;
|
|
|
|
usb_remote_wakeup(udev);
|
|
}
|
|
|
|
/**
|
|
* usb_hcd_resume_root_hub - called by HCD to resume its root hub
|
|
* @hcd: host controller for this root hub
|
|
*
|
|
* The USB host controller calls this function when its root hub is
|
|
* suspended (with the remote wakeup feature enabled) and a remote
|
|
* wakeup request is received. The routine submits a workqueue request
|
|
* to resume the root hub (that is, manage its downstream ports again).
|
|
*/
|
|
void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave (&hcd_root_hub_lock, flags);
|
|
if (hcd->rh_registered) {
|
|
pm_wakeup_event(&hcd->self.root_hub->dev, 0);
|
|
set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
|
|
queue_work(pm_wq, &hcd->wakeup_work);
|
|
}
|
|
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
|
|
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
#ifdef CONFIG_USB_OTG
|
|
|
|
/**
|
|
* usb_bus_start_enum - start immediate enumeration (for OTG)
|
|
* @bus: the bus (must use hcd framework)
|
|
* @port_num: 1-based number of port; usually bus->otg_port
|
|
* Context: in_interrupt()
|
|
*
|
|
* Starts enumeration, with an immediate reset followed later by
|
|
* hub_wq identifying and possibly configuring the device.
|
|
* This is needed by OTG controller drivers, where it helps meet
|
|
* HNP protocol timing requirements for starting a port reset.
|
|
*
|
|
* Return: 0 if successful.
|
|
*/
|
|
int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
int status = -EOPNOTSUPP;
|
|
|
|
/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
|
|
* boards with root hubs hooked up to internal devices (instead of
|
|
* just the OTG port) may need more attention to resetting...
|
|
*/
|
|
hcd = bus_to_hcd(bus);
|
|
if (port_num && hcd->driver->start_port_reset)
|
|
status = hcd->driver->start_port_reset(hcd, port_num);
|
|
|
|
/* allocate hub_wq shortly after (first) root port reset finishes;
|
|
* it may issue others, until at least 50 msecs have passed.
|
|
*/
|
|
if (status == 0)
|
|
mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_bus_start_enum);
|
|
|
|
#endif
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_hcd_irq - hook IRQs to HCD framework (bus glue)
|
|
* @irq: the IRQ being raised
|
|
* @__hcd: pointer to the HCD whose IRQ is being signaled
|
|
*
|
|
* If the controller isn't HALTed, calls the driver's irq handler.
|
|
* Checks whether the controller is now dead.
|
|
*
|
|
* Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
|
|
*/
|
|
irqreturn_t usb_hcd_irq (int irq, void *__hcd)
|
|
{
|
|
struct usb_hcd *hcd = __hcd;
|
|
irqreturn_t rc;
|
|
|
|
if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
|
|
rc = IRQ_NONE;
|
|
else if (hcd->driver->irq(hcd) == IRQ_NONE)
|
|
rc = IRQ_NONE;
|
|
else
|
|
rc = IRQ_HANDLED;
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_irq);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Workqueue routine for when the root-hub has died. */
|
|
static void hcd_died_work(struct work_struct *work)
|
|
{
|
|
struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
|
|
static char *env[] = {
|
|
"ERROR=DEAD",
|
|
NULL
|
|
};
|
|
|
|
/* Notify user space that the host controller has died */
|
|
kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
|
|
}
|
|
|
|
/**
|
|
* usb_hc_died - report abnormal shutdown of a host controller (bus glue)
|
|
* @hcd: pointer to the HCD representing the controller
|
|
*
|
|
* This is called by bus glue to report a USB host controller that died
|
|
* while operations may still have been pending. It's called automatically
|
|
* by the PCI glue, so only glue for non-PCI busses should need to call it.
|
|
*
|
|
* Only call this function with the primary HCD.
|
|
*/
|
|
void usb_hc_died (struct usb_hcd *hcd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
dev_err (hcd->self.controller, "HC died; cleaning up\n");
|
|
|
|
spin_lock_irqsave (&hcd_root_hub_lock, flags);
|
|
clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
|
|
set_bit(HCD_FLAG_DEAD, &hcd->flags);
|
|
if (hcd->rh_registered) {
|
|
clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
|
|
/* make hub_wq clean up old urbs and devices */
|
|
usb_set_device_state (hcd->self.root_hub,
|
|
USB_STATE_NOTATTACHED);
|
|
usb_kick_hub_wq(hcd->self.root_hub);
|
|
}
|
|
if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
|
|
hcd = hcd->shared_hcd;
|
|
clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
|
|
set_bit(HCD_FLAG_DEAD, &hcd->flags);
|
|
if (hcd->rh_registered) {
|
|
clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
|
|
/* make hub_wq clean up old urbs and devices */
|
|
usb_set_device_state(hcd->self.root_hub,
|
|
USB_STATE_NOTATTACHED);
|
|
usb_kick_hub_wq(hcd->self.root_hub);
|
|
}
|
|
}
|
|
|
|
/* Handle the case where this function gets called with a shared HCD */
|
|
if (usb_hcd_is_primary_hcd(hcd))
|
|
schedule_work(&hcd->died_work);
|
|
else
|
|
schedule_work(&hcd->primary_hcd->died_work);
|
|
|
|
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
|
|
/* Make sure that the other roothub is also deallocated. */
|
|
}
|
|
EXPORT_SYMBOL_GPL (usb_hc_died);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
|
|
{
|
|
|
|
spin_lock_init(&bh->lock);
|
|
INIT_LIST_HEAD(&bh->head);
|
|
tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
|
|
}
|
|
|
|
struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
|
|
struct device *sysdev, struct device *dev, const char *bus_name,
|
|
struct usb_hcd *primary_hcd)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
|
|
hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
|
|
if (!hcd)
|
|
return NULL;
|
|
if (primary_hcd == NULL) {
|
|
hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
|
|
GFP_KERNEL);
|
|
if (!hcd->address0_mutex) {
|
|
kfree(hcd);
|
|
dev_dbg(dev, "hcd address0 mutex alloc failed\n");
|
|
return NULL;
|
|
}
|
|
mutex_init(hcd->address0_mutex);
|
|
hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
|
|
GFP_KERNEL);
|
|
if (!hcd->bandwidth_mutex) {
|
|
kfree(hcd->address0_mutex);
|
|
kfree(hcd);
|
|
dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
|
|
return NULL;
|
|
}
|
|
mutex_init(hcd->bandwidth_mutex);
|
|
dev_set_drvdata(dev, hcd);
|
|
} else {
|
|
mutex_lock(&usb_port_peer_mutex);
|
|
hcd->address0_mutex = primary_hcd->address0_mutex;
|
|
hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
|
|
hcd->primary_hcd = primary_hcd;
|
|
primary_hcd->primary_hcd = primary_hcd;
|
|
hcd->shared_hcd = primary_hcd;
|
|
primary_hcd->shared_hcd = hcd;
|
|
mutex_unlock(&usb_port_peer_mutex);
|
|
}
|
|
|
|
kref_init(&hcd->kref);
|
|
|
|
usb_bus_init(&hcd->self);
|
|
hcd->self.controller = dev;
|
|
hcd->self.sysdev = sysdev;
|
|
hcd->self.bus_name = bus_name;
|
|
|
|
timer_setup(&hcd->rh_timer, rh_timer_func, 0);
|
|
#ifdef CONFIG_PM
|
|
INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
|
|
#endif
|
|
|
|
INIT_WORK(&hcd->died_work, hcd_died_work);
|
|
|
|
hcd->driver = driver;
|
|
hcd->speed = driver->flags & HCD_MASK;
|
|
hcd->product_desc = (driver->product_desc) ? driver->product_desc :
|
|
"USB Host Controller";
|
|
return hcd;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__usb_create_hcd);
|
|
|
|
/**
|
|
* usb_create_shared_hcd - create and initialize an HCD structure
|
|
* @driver: HC driver that will use this hcd
|
|
* @dev: device for this HC, stored in hcd->self.controller
|
|
* @bus_name: value to store in hcd->self.bus_name
|
|
* @primary_hcd: a pointer to the usb_hcd structure that is sharing the
|
|
* PCI device. Only allocate certain resources for the primary HCD
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Allocate a struct usb_hcd, with extra space at the end for the
|
|
* HC driver's private data. Initialize the generic members of the
|
|
* hcd structure.
|
|
*
|
|
* Return: On success, a pointer to the created and initialized HCD structure.
|
|
* On failure (e.g. if memory is unavailable), %NULL.
|
|
*/
|
|
struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
|
|
struct device *dev, const char *bus_name,
|
|
struct usb_hcd *primary_hcd)
|
|
{
|
|
return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
|
|
|
|
/**
|
|
* usb_create_hcd - create and initialize an HCD structure
|
|
* @driver: HC driver that will use this hcd
|
|
* @dev: device for this HC, stored in hcd->self.controller
|
|
* @bus_name: value to store in hcd->self.bus_name
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Allocate a struct usb_hcd, with extra space at the end for the
|
|
* HC driver's private data. Initialize the generic members of the
|
|
* hcd structure.
|
|
*
|
|
* Return: On success, a pointer to the created and initialized HCD
|
|
* structure. On failure (e.g. if memory is unavailable), %NULL.
|
|
*/
|
|
struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
|
|
struct device *dev, const char *bus_name)
|
|
{
|
|
return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_create_hcd);
|
|
|
|
/*
|
|
* Roothubs that share one PCI device must also share the bandwidth mutex.
|
|
* Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
|
|
* deallocated.
|
|
*
|
|
* Make sure to deallocate the bandwidth_mutex only when the last HCD is
|
|
* freed. When hcd_release() is called for either hcd in a peer set,
|
|
* invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
|
|
*/
|
|
static void hcd_release(struct kref *kref)
|
|
{
|
|
struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
|
|
|
|
mutex_lock(&usb_port_peer_mutex);
|
|
if (hcd->shared_hcd) {
|
|
struct usb_hcd *peer = hcd->shared_hcd;
|
|
|
|
peer->shared_hcd = NULL;
|
|
peer->primary_hcd = NULL;
|
|
} else {
|
|
kfree(hcd->address0_mutex);
|
|
kfree(hcd->bandwidth_mutex);
|
|
}
|
|
mutex_unlock(&usb_port_peer_mutex);
|
|
kfree(hcd);
|
|
}
|
|
|
|
struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
|
|
{
|
|
if (hcd)
|
|
kref_get (&hcd->kref);
|
|
return hcd;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_get_hcd);
|
|
|
|
void usb_put_hcd (struct usb_hcd *hcd)
|
|
{
|
|
if (hcd)
|
|
kref_put (&hcd->kref, hcd_release);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_put_hcd);
|
|
|
|
int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
|
|
{
|
|
if (!hcd->primary_hcd)
|
|
return 1;
|
|
return hcd == hcd->primary_hcd;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
|
|
|
|
int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
|
|
{
|
|
if (!hcd->driver->find_raw_port_number)
|
|
return port1;
|
|
|
|
return hcd->driver->find_raw_port_number(hcd, port1);
|
|
}
|
|
|
|
static int usb_hcd_request_irqs(struct usb_hcd *hcd,
|
|
unsigned int irqnum, unsigned long irqflags)
|
|
{
|
|
int retval;
|
|
|
|
if (hcd->driver->irq) {
|
|
|
|
snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
|
|
hcd->driver->description, hcd->self.busnum);
|
|
retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
|
|
hcd->irq_descr, hcd);
|
|
if (retval != 0) {
|
|
dev_err(hcd->self.controller,
|
|
"request interrupt %d failed\n",
|
|
irqnum);
|
|
return retval;
|
|
}
|
|
hcd->irq = irqnum;
|
|
dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
|
|
(hcd->driver->flags & HCD_MEMORY) ?
|
|
"io mem" : "io base",
|
|
(unsigned long long)hcd->rsrc_start);
|
|
} else {
|
|
hcd->irq = 0;
|
|
if (hcd->rsrc_start)
|
|
dev_info(hcd->self.controller, "%s 0x%08llx\n",
|
|
(hcd->driver->flags & HCD_MEMORY) ?
|
|
"io mem" : "io base",
|
|
(unsigned long long)hcd->rsrc_start);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Before we free this root hub, flush in-flight peering attempts
|
|
* and disable peer lookups
|
|
*/
|
|
static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
|
|
{
|
|
struct usb_device *rhdev;
|
|
|
|
mutex_lock(&usb_port_peer_mutex);
|
|
rhdev = hcd->self.root_hub;
|
|
hcd->self.root_hub = NULL;
|
|
mutex_unlock(&usb_port_peer_mutex);
|
|
usb_put_dev(rhdev);
|
|
}
|
|
|
|
/**
|
|
* usb_add_hcd - finish generic HCD structure initialization and register
|
|
* @hcd: the usb_hcd structure to initialize
|
|
* @irqnum: Interrupt line to allocate
|
|
* @irqflags: Interrupt type flags
|
|
*
|
|
* Finish the remaining parts of generic HCD initialization: allocate the
|
|
* buffers of consistent memory, register the bus, request the IRQ line,
|
|
* and call the driver's reset() and start() routines.
|
|
*/
|
|
int usb_add_hcd(struct usb_hcd *hcd,
|
|
unsigned int irqnum, unsigned long irqflags)
|
|
{
|
|
int retval;
|
|
struct usb_device *rhdev;
|
|
|
|
if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
|
|
hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
|
|
if (IS_ERR(hcd->phy_roothub))
|
|
return PTR_ERR(hcd->phy_roothub);
|
|
|
|
retval = usb_phy_roothub_init(hcd->phy_roothub);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
|
|
PHY_MODE_USB_HOST_SS);
|
|
if (retval)
|
|
retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
|
|
PHY_MODE_USB_HOST);
|
|
if (retval)
|
|
goto err_usb_phy_roothub_power_on;
|
|
|
|
retval = usb_phy_roothub_power_on(hcd->phy_roothub);
|
|
if (retval)
|
|
goto err_usb_phy_roothub_power_on;
|
|
}
|
|
|
|
dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
|
|
|
|
switch (authorized_default) {
|
|
case USB_AUTHORIZE_NONE:
|
|
hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
|
|
break;
|
|
|
|
case USB_AUTHORIZE_ALL:
|
|
hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
|
|
break;
|
|
|
|
case USB_AUTHORIZE_INTERNAL:
|
|
hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
|
|
break;
|
|
|
|
case USB_AUTHORIZE_WIRED:
|
|
default:
|
|
hcd->dev_policy = hcd->wireless ?
|
|
USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
|
|
break;
|
|
}
|
|
|
|
set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
|
|
|
|
/* per default all interfaces are authorized */
|
|
set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
|
|
|
|
/* HC is in reset state, but accessible. Now do the one-time init,
|
|
* bottom up so that hcds can customize the root hubs before hub_wq
|
|
* starts talking to them. (Note, bus id is assigned early too.)
|
|
*/
|
|
retval = hcd_buffer_create(hcd);
|
|
if (retval != 0) {
|
|
dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
|
|
goto err_create_buf;
|
|
}
|
|
|
|
retval = usb_register_bus(&hcd->self);
|
|
if (retval < 0)
|
|
goto err_register_bus;
|
|
|
|
rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
|
|
if (rhdev == NULL) {
|
|
dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
|
|
retval = -ENOMEM;
|
|
goto err_allocate_root_hub;
|
|
}
|
|
mutex_lock(&usb_port_peer_mutex);
|
|
hcd->self.root_hub = rhdev;
|
|
mutex_unlock(&usb_port_peer_mutex);
|
|
|
|
rhdev->rx_lanes = 1;
|
|
rhdev->tx_lanes = 1;
|
|
|
|
switch (hcd->speed) {
|
|
case HCD_USB11:
|
|
rhdev->speed = USB_SPEED_FULL;
|
|
break;
|
|
case HCD_USB2:
|
|
rhdev->speed = USB_SPEED_HIGH;
|
|
break;
|
|
case HCD_USB25:
|
|
rhdev->speed = USB_SPEED_WIRELESS;
|
|
break;
|
|
case HCD_USB3:
|
|
rhdev->speed = USB_SPEED_SUPER;
|
|
break;
|
|
case HCD_USB32:
|
|
rhdev->rx_lanes = 2;
|
|
rhdev->tx_lanes = 2;
|
|
fallthrough;
|
|
case HCD_USB31:
|
|
rhdev->speed = USB_SPEED_SUPER_PLUS;
|
|
break;
|
|
default:
|
|
retval = -EINVAL;
|
|
goto err_set_rh_speed;
|
|
}
|
|
|
|
/* wakeup flag init defaults to "everything works" for root hubs,
|
|
* but drivers can override it in reset() if needed, along with
|
|
* recording the overall controller's system wakeup capability.
|
|
*/
|
|
device_set_wakeup_capable(&rhdev->dev, 1);
|
|
|
|
/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
|
|
* registered. But since the controller can die at any time,
|
|
* let's initialize the flag before touching the hardware.
|
|
*/
|
|
set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
|
|
|
|
/* "reset" is misnamed; its role is now one-time init. the controller
|
|
* should already have been reset (and boot firmware kicked off etc).
|
|
*/
|
|
if (hcd->driver->reset) {
|
|
retval = hcd->driver->reset(hcd);
|
|
if (retval < 0) {
|
|
dev_err(hcd->self.controller, "can't setup: %d\n",
|
|
retval);
|
|
goto err_hcd_driver_setup;
|
|
}
|
|
}
|
|
hcd->rh_pollable = 1;
|
|
|
|
retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
|
|
if (retval)
|
|
goto err_hcd_driver_setup;
|
|
|
|
/* NOTE: root hub and controller capabilities may not be the same */
|
|
if (device_can_wakeup(hcd->self.controller)
|
|
&& device_can_wakeup(&hcd->self.root_hub->dev))
|
|
dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
|
|
|
|
/* initialize tasklets */
|
|
init_giveback_urb_bh(&hcd->high_prio_bh);
|
|
init_giveback_urb_bh(&hcd->low_prio_bh);
|
|
|
|
/* enable irqs just before we start the controller,
|
|
* if the BIOS provides legacy PCI irqs.
|
|
*/
|
|
if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
|
|
retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
|
|
if (retval)
|
|
goto err_request_irq;
|
|
}
|
|
|
|
hcd->state = HC_STATE_RUNNING;
|
|
retval = hcd->driver->start(hcd);
|
|
if (retval < 0) {
|
|
dev_err(hcd->self.controller, "startup error %d\n", retval);
|
|
goto err_hcd_driver_start;
|
|
}
|
|
|
|
/* starting here, usbcore will pay attention to this root hub */
|
|
retval = register_root_hub(hcd);
|
|
if (retval != 0)
|
|
goto err_register_root_hub;
|
|
|
|
if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
|
|
usb_hcd_poll_rh_status(hcd);
|
|
|
|
return retval;
|
|
|
|
err_register_root_hub:
|
|
hcd->rh_pollable = 0;
|
|
clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
del_timer_sync(&hcd->rh_timer);
|
|
hcd->driver->stop(hcd);
|
|
hcd->state = HC_STATE_HALT;
|
|
clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
del_timer_sync(&hcd->rh_timer);
|
|
err_hcd_driver_start:
|
|
if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
|
|
free_irq(irqnum, hcd);
|
|
err_request_irq:
|
|
err_hcd_driver_setup:
|
|
err_set_rh_speed:
|
|
usb_put_invalidate_rhdev(hcd);
|
|
err_allocate_root_hub:
|
|
usb_deregister_bus(&hcd->self);
|
|
err_register_bus:
|
|
hcd_buffer_destroy(hcd);
|
|
err_create_buf:
|
|
usb_phy_roothub_power_off(hcd->phy_roothub);
|
|
err_usb_phy_roothub_power_on:
|
|
usb_phy_roothub_exit(hcd->phy_roothub);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_add_hcd);
|
|
|
|
/**
|
|
* usb_remove_hcd - shutdown processing for generic HCDs
|
|
* @hcd: the usb_hcd structure to remove
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Disconnects the root hub, then reverses the effects of usb_add_hcd(),
|
|
* invoking the HCD's stop() method.
|
|
*/
|
|
void usb_remove_hcd(struct usb_hcd *hcd)
|
|
{
|
|
struct usb_device *rhdev = hcd->self.root_hub;
|
|
|
|
dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
|
|
|
|
usb_get_dev(rhdev);
|
|
clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
|
|
if (HC_IS_RUNNING (hcd->state))
|
|
hcd->state = HC_STATE_QUIESCING;
|
|
|
|
dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
|
|
spin_lock_irq (&hcd_root_hub_lock);
|
|
hcd->rh_registered = 0;
|
|
spin_unlock_irq (&hcd_root_hub_lock);
|
|
|
|
#ifdef CONFIG_PM
|
|
cancel_work_sync(&hcd->wakeup_work);
|
|
#endif
|
|
cancel_work_sync(&hcd->died_work);
|
|
|
|
mutex_lock(&usb_bus_idr_lock);
|
|
usb_disconnect(&rhdev); /* Sets rhdev to NULL */
|
|
mutex_unlock(&usb_bus_idr_lock);
|
|
|
|
/*
|
|
* tasklet_kill() isn't needed here because:
|
|
* - driver's disconnect() called from usb_disconnect() should
|
|
* make sure its URBs are completed during the disconnect()
|
|
* callback
|
|
*
|
|
* - it is too late to run complete() here since driver may have
|
|
* been removed already now
|
|
*/
|
|
|
|
/* Prevent any more root-hub status calls from the timer.
|
|
* The HCD might still restart the timer (if a port status change
|
|
* interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
|
|
* the hub_status_data() callback.
|
|
*/
|
|
hcd->rh_pollable = 0;
|
|
clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
del_timer_sync(&hcd->rh_timer);
|
|
|
|
hcd->driver->stop(hcd);
|
|
hcd->state = HC_STATE_HALT;
|
|
|
|
/* In case the HCD restarted the timer, stop it again. */
|
|
clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
del_timer_sync(&hcd->rh_timer);
|
|
|
|
if (usb_hcd_is_primary_hcd(hcd)) {
|
|
if (hcd->irq > 0)
|
|
free_irq(hcd->irq, hcd);
|
|
}
|
|
|
|
usb_deregister_bus(&hcd->self);
|
|
hcd_buffer_destroy(hcd);
|
|
|
|
usb_phy_roothub_power_off(hcd->phy_roothub);
|
|
usb_phy_roothub_exit(hcd->phy_roothub);
|
|
|
|
usb_put_invalidate_rhdev(hcd);
|
|
hcd->flags = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_remove_hcd);
|
|
|
|
void
|
|
usb_hcd_platform_shutdown(struct platform_device *dev)
|
|
{
|
|
struct usb_hcd *hcd = platform_get_drvdata(dev);
|
|
|
|
/* No need for pm_runtime_put(), we're shutting down */
|
|
pm_runtime_get_sync(&dev->dev);
|
|
|
|
if (hcd->driver->shutdown)
|
|
hcd->driver->shutdown(hcd);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
|
|
|
|
int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
|
|
dma_addr_t dma, size_t size)
|
|
{
|
|
int err;
|
|
void *local_mem;
|
|
|
|
hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
|
|
dev_to_node(hcd->self.sysdev),
|
|
dev_name(hcd->self.sysdev));
|
|
if (IS_ERR(hcd->localmem_pool))
|
|
return PTR_ERR(hcd->localmem_pool);
|
|
|
|
local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
|
|
size, MEMREMAP_WC);
|
|
if (IS_ERR(local_mem))
|
|
return PTR_ERR(local_mem);
|
|
|
|
/*
|
|
* Here we pass a dma_addr_t but the arg type is a phys_addr_t.
|
|
* It's not backed by system memory and thus there's no kernel mapping
|
|
* for it.
|
|
*/
|
|
err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
|
|
dma, size, dev_to_node(hcd->self.sysdev));
|
|
if (err < 0) {
|
|
dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
#if IS_ENABLED(CONFIG_USB_MON)
|
|
|
|
const struct usb_mon_operations *mon_ops;
|
|
|
|
/*
|
|
* The registration is unlocked.
|
|
* We do it this way because we do not want to lock in hot paths.
|
|
*
|
|
* Notice that the code is minimally error-proof. Because usbmon needs
|
|
* symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
|
|
*/
|
|
|
|
int usb_mon_register(const struct usb_mon_operations *ops)
|
|
{
|
|
|
|
if (mon_ops)
|
|
return -EBUSY;
|
|
|
|
mon_ops = ops;
|
|
mb();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL (usb_mon_register);
|
|
|
|
void usb_mon_deregister (void)
|
|
{
|
|
|
|
if (mon_ops == NULL) {
|
|
printk(KERN_ERR "USB: monitor was not registered\n");
|
|
return;
|
|
}
|
|
mon_ops = NULL;
|
|
mb();
|
|
}
|
|
EXPORT_SYMBOL_GPL (usb_mon_deregister);
|
|
|
|
#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
|