WSL2-Linux-Kernel/tools/include/linux/compiler.h

202 строки
5.6 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _TOOLS_LINUX_COMPILER_H_
#define _TOOLS_LINUX_COMPILER_H_
#include <linux/compiler_types.h>
#ifndef __compiletime_error
# define __compiletime_error(message)
#endif
#ifdef __OPTIMIZE__
# define __compiletime_assert(condition, msg, prefix, suffix) \
do { \
extern void prefix ## suffix(void) __compiletime_error(msg); \
if (!(condition)) \
prefix ## suffix(); \
} while (0)
#else
# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
#endif
#define _compiletime_assert(condition, msg, prefix, suffix) \
__compiletime_assert(condition, msg, prefix, suffix)
/**
* compiletime_assert - break build and emit msg if condition is false
* @condition: a compile-time constant condition to check
* @msg: a message to emit if condition is false
*
* In tradition of POSIX assert, this macro will break the build if the
* supplied condition is *false*, emitting the supplied error message if the
* compiler has support to do so.
*/
#define compiletime_assert(condition, msg) \
_compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
/* Optimization barrier */
/* The "volatile" is due to gcc bugs */
#define barrier() __asm__ __volatile__("": : :"memory")
#ifndef __always_inline
# define __always_inline inline __attribute__((always_inline))
#endif
#ifndef noinline
#define noinline
#endif
/* Are two types/vars the same type (ignoring qualifiers)? */
#ifndef __same_type
# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
#endif
#ifdef __ANDROID__
/*
* FIXME: Big hammer to get rid of tons of:
* "warning: always_inline function might not be inlinable"
*
* At least on android-ndk-r12/platforms/android-24/arch-arm
*/
#undef __always_inline
#define __always_inline inline
#endif
#define __user
#define __rcu
#define __read_mostly
#ifndef __attribute_const__
# define __attribute_const__
#endif
#ifndef __maybe_unused
# define __maybe_unused __attribute__((unused))
#endif
#ifndef __used
# define __used __attribute__((__unused__))
#endif
#ifndef __packed
# define __packed __attribute__((__packed__))
#endif
#ifndef __force
# define __force
#endif
#ifndef __weak
# define __weak __attribute__((weak))
#endif
#ifndef likely
# define likely(x) __builtin_expect(!!(x), 1)
#endif
#ifndef unlikely
# define unlikely(x) __builtin_expect(!!(x), 0)
#endif
#ifndef __init
# define __init
#endif
#ifndef noinline
# define noinline
#endif
#include <linux/types.h>
/*
* Following functions are taken from kernel sources and
* break aliasing rules in their original form.
*
* While kernel is compiled with -fno-strict-aliasing,
* perf uses -Wstrict-aliasing=3 which makes build fail
* under gcc 4.4.
*
* Using extra __may_alias__ type to allow aliasing
* in this case.
*/
typedef __u8 __attribute__((__may_alias__)) __u8_alias_t;
typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
{
switch (size) {
case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break;
case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
default:
barrier();
__builtin_memcpy((void *)res, (const void *)p, size);
barrier();
}
}
static __always_inline void __write_once_size(volatile void *p, void *res, int size)
{
switch (size) {
case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break;
case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
default:
barrier();
__builtin_memcpy((void *)p, (const void *)res, size);
barrier();
}
}
/*
* Prevent the compiler from merging or refetching reads or writes. The
* compiler is also forbidden from reordering successive instances of
* READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
* particular ordering. One way to make the compiler aware of ordering is to
* put the two invocations of READ_ONCE or WRITE_ONCE in different C
* statements.
*
* These two macros will also work on aggregate data types like structs or
* unions. If the size of the accessed data type exceeds the word size of
* the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
* fall back to memcpy and print a compile-time warning.
*
* Their two major use cases are: (1) Mediating communication between
* process-level code and irq/NMI handlers, all running on the same CPU,
* and (2) Ensuring that the compiler does not fold, spindle, or otherwise
* mutilate accesses that either do not require ordering or that interact
* with an explicit memory barrier or atomic instruction that provides the
* required ordering.
*/
#define READ_ONCE(x) \
({ \
union { typeof(x) __val; char __c[1]; } __u = \
{ .__c = { 0 } }; \
__read_once_size(&(x), __u.__c, sizeof(x)); \
__u.__val; \
})
#define WRITE_ONCE(x, val) \
({ \
union { typeof(x) __val; char __c[1]; } __u = \
{ .__val = (val) }; \
__write_once_size(&(x), __u.__c, sizeof(x)); \
__u.__val; \
})
#ifndef __fallthrough
# define __fallthrough
#endif
/* Indirect macros required for expanded argument pasting, eg. __LINE__. */
#define ___PASTE(a, b) a##b
#define __PASTE(a, b) ___PASTE(a, b)
#endif /* _TOOLS_LINUX_COMPILER_H */