1677 строки
45 KiB
C
1677 строки
45 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* fs/dax.c - Direct Access filesystem code
|
|
* Copyright (c) 2013-2014 Intel Corporation
|
|
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
|
|
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
|
|
*/
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/iomap.h>
|
|
#include <linux/rmap.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/fs_dax.h>
|
|
|
|
static inline unsigned int pe_order(enum page_entry_size pe_size)
|
|
{
|
|
if (pe_size == PE_SIZE_PTE)
|
|
return PAGE_SHIFT - PAGE_SHIFT;
|
|
if (pe_size == PE_SIZE_PMD)
|
|
return PMD_SHIFT - PAGE_SHIFT;
|
|
if (pe_size == PE_SIZE_PUD)
|
|
return PUD_SHIFT - PAGE_SHIFT;
|
|
return ~0;
|
|
}
|
|
|
|
/* We choose 4096 entries - same as per-zone page wait tables */
|
|
#define DAX_WAIT_TABLE_BITS 12
|
|
#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
|
|
|
|
/* The 'colour' (ie low bits) within a PMD of a page offset. */
|
|
#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
|
|
#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
|
|
|
|
/* The order of a PMD entry */
|
|
#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
|
|
|
|
static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
|
|
|
|
static int __init init_dax_wait_table(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
|
|
init_waitqueue_head(wait_table + i);
|
|
return 0;
|
|
}
|
|
fs_initcall(init_dax_wait_table);
|
|
|
|
/*
|
|
* DAX pagecache entries use XArray value entries so they can't be mistaken
|
|
* for pages. We use one bit for locking, one bit for the entry size (PMD)
|
|
* and two more to tell us if the entry is a zero page or an empty entry that
|
|
* is just used for locking. In total four special bits.
|
|
*
|
|
* If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
|
|
* and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
|
|
* block allocation.
|
|
*/
|
|
#define DAX_SHIFT (4)
|
|
#define DAX_LOCKED (1UL << 0)
|
|
#define DAX_PMD (1UL << 1)
|
|
#define DAX_ZERO_PAGE (1UL << 2)
|
|
#define DAX_EMPTY (1UL << 3)
|
|
|
|
static unsigned long dax_to_pfn(void *entry)
|
|
{
|
|
return xa_to_value(entry) >> DAX_SHIFT;
|
|
}
|
|
|
|
static void *dax_make_entry(pfn_t pfn, unsigned long flags)
|
|
{
|
|
return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
|
|
}
|
|
|
|
static bool dax_is_locked(void *entry)
|
|
{
|
|
return xa_to_value(entry) & DAX_LOCKED;
|
|
}
|
|
|
|
static unsigned int dax_entry_order(void *entry)
|
|
{
|
|
if (xa_to_value(entry) & DAX_PMD)
|
|
return PMD_ORDER;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long dax_is_pmd_entry(void *entry)
|
|
{
|
|
return xa_to_value(entry) & DAX_PMD;
|
|
}
|
|
|
|
static bool dax_is_pte_entry(void *entry)
|
|
{
|
|
return !(xa_to_value(entry) & DAX_PMD);
|
|
}
|
|
|
|
static int dax_is_zero_entry(void *entry)
|
|
{
|
|
return xa_to_value(entry) & DAX_ZERO_PAGE;
|
|
}
|
|
|
|
static int dax_is_empty_entry(void *entry)
|
|
{
|
|
return xa_to_value(entry) & DAX_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* true if the entry that was found is of a smaller order than the entry
|
|
* we were looking for
|
|
*/
|
|
static bool dax_is_conflict(void *entry)
|
|
{
|
|
return entry == XA_RETRY_ENTRY;
|
|
}
|
|
|
|
/*
|
|
* DAX page cache entry locking
|
|
*/
|
|
struct exceptional_entry_key {
|
|
struct xarray *xa;
|
|
pgoff_t entry_start;
|
|
};
|
|
|
|
struct wait_exceptional_entry_queue {
|
|
wait_queue_entry_t wait;
|
|
struct exceptional_entry_key key;
|
|
};
|
|
|
|
/**
|
|
* enum dax_wake_mode: waitqueue wakeup behaviour
|
|
* @WAKE_ALL: wake all waiters in the waitqueue
|
|
* @WAKE_NEXT: wake only the first waiter in the waitqueue
|
|
*/
|
|
enum dax_wake_mode {
|
|
WAKE_ALL,
|
|
WAKE_NEXT,
|
|
};
|
|
|
|
static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
|
|
void *entry, struct exceptional_entry_key *key)
|
|
{
|
|
unsigned long hash;
|
|
unsigned long index = xas->xa_index;
|
|
|
|
/*
|
|
* If 'entry' is a PMD, align the 'index' that we use for the wait
|
|
* queue to the start of that PMD. This ensures that all offsets in
|
|
* the range covered by the PMD map to the same bit lock.
|
|
*/
|
|
if (dax_is_pmd_entry(entry))
|
|
index &= ~PG_PMD_COLOUR;
|
|
key->xa = xas->xa;
|
|
key->entry_start = index;
|
|
|
|
hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
|
|
return wait_table + hash;
|
|
}
|
|
|
|
static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
|
|
unsigned int mode, int sync, void *keyp)
|
|
{
|
|
struct exceptional_entry_key *key = keyp;
|
|
struct wait_exceptional_entry_queue *ewait =
|
|
container_of(wait, struct wait_exceptional_entry_queue, wait);
|
|
|
|
if (key->xa != ewait->key.xa ||
|
|
key->entry_start != ewait->key.entry_start)
|
|
return 0;
|
|
return autoremove_wake_function(wait, mode, sync, NULL);
|
|
}
|
|
|
|
/*
|
|
* @entry may no longer be the entry at the index in the mapping.
|
|
* The important information it's conveying is whether the entry at
|
|
* this index used to be a PMD entry.
|
|
*/
|
|
static void dax_wake_entry(struct xa_state *xas, void *entry,
|
|
enum dax_wake_mode mode)
|
|
{
|
|
struct exceptional_entry_key key;
|
|
wait_queue_head_t *wq;
|
|
|
|
wq = dax_entry_waitqueue(xas, entry, &key);
|
|
|
|
/*
|
|
* Checking for locked entry and prepare_to_wait_exclusive() happens
|
|
* under the i_pages lock, ditto for entry handling in our callers.
|
|
* So at this point all tasks that could have seen our entry locked
|
|
* must be in the waitqueue and the following check will see them.
|
|
*/
|
|
if (waitqueue_active(wq))
|
|
__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
|
|
}
|
|
|
|
/*
|
|
* Look up entry in page cache, wait for it to become unlocked if it
|
|
* is a DAX entry and return it. The caller must subsequently call
|
|
* put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
|
|
* if it did. The entry returned may have a larger order than @order.
|
|
* If @order is larger than the order of the entry found in i_pages, this
|
|
* function returns a dax_is_conflict entry.
|
|
*
|
|
* Must be called with the i_pages lock held.
|
|
*/
|
|
static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
|
|
{
|
|
void *entry;
|
|
struct wait_exceptional_entry_queue ewait;
|
|
wait_queue_head_t *wq;
|
|
|
|
init_wait(&ewait.wait);
|
|
ewait.wait.func = wake_exceptional_entry_func;
|
|
|
|
for (;;) {
|
|
entry = xas_find_conflict(xas);
|
|
if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
|
|
return entry;
|
|
if (dax_entry_order(entry) < order)
|
|
return XA_RETRY_ENTRY;
|
|
if (!dax_is_locked(entry))
|
|
return entry;
|
|
|
|
wq = dax_entry_waitqueue(xas, entry, &ewait.key);
|
|
prepare_to_wait_exclusive(wq, &ewait.wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
xas_unlock_irq(xas);
|
|
xas_reset(xas);
|
|
schedule();
|
|
finish_wait(wq, &ewait.wait);
|
|
xas_lock_irq(xas);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The only thing keeping the address space around is the i_pages lock
|
|
* (it's cycled in clear_inode() after removing the entries from i_pages)
|
|
* After we call xas_unlock_irq(), we cannot touch xas->xa.
|
|
*/
|
|
static void wait_entry_unlocked(struct xa_state *xas, void *entry)
|
|
{
|
|
struct wait_exceptional_entry_queue ewait;
|
|
wait_queue_head_t *wq;
|
|
|
|
init_wait(&ewait.wait);
|
|
ewait.wait.func = wake_exceptional_entry_func;
|
|
|
|
wq = dax_entry_waitqueue(xas, entry, &ewait.key);
|
|
/*
|
|
* Unlike get_unlocked_entry() there is no guarantee that this
|
|
* path ever successfully retrieves an unlocked entry before an
|
|
* inode dies. Perform a non-exclusive wait in case this path
|
|
* never successfully performs its own wake up.
|
|
*/
|
|
prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
|
|
xas_unlock_irq(xas);
|
|
schedule();
|
|
finish_wait(wq, &ewait.wait);
|
|
}
|
|
|
|
static void put_unlocked_entry(struct xa_state *xas, void *entry,
|
|
enum dax_wake_mode mode)
|
|
{
|
|
if (entry && !dax_is_conflict(entry))
|
|
dax_wake_entry(xas, entry, mode);
|
|
}
|
|
|
|
/*
|
|
* We used the xa_state to get the entry, but then we locked the entry and
|
|
* dropped the xa_lock, so we know the xa_state is stale and must be reset
|
|
* before use.
|
|
*/
|
|
static void dax_unlock_entry(struct xa_state *xas, void *entry)
|
|
{
|
|
void *old;
|
|
|
|
BUG_ON(dax_is_locked(entry));
|
|
xas_reset(xas);
|
|
xas_lock_irq(xas);
|
|
old = xas_store(xas, entry);
|
|
xas_unlock_irq(xas);
|
|
BUG_ON(!dax_is_locked(old));
|
|
dax_wake_entry(xas, entry, WAKE_NEXT);
|
|
}
|
|
|
|
/*
|
|
* Return: The entry stored at this location before it was locked.
|
|
*/
|
|
static void *dax_lock_entry(struct xa_state *xas, void *entry)
|
|
{
|
|
unsigned long v = xa_to_value(entry);
|
|
return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
|
|
}
|
|
|
|
static unsigned long dax_entry_size(void *entry)
|
|
{
|
|
if (dax_is_zero_entry(entry))
|
|
return 0;
|
|
else if (dax_is_empty_entry(entry))
|
|
return 0;
|
|
else if (dax_is_pmd_entry(entry))
|
|
return PMD_SIZE;
|
|
else
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
static unsigned long dax_end_pfn(void *entry)
|
|
{
|
|
return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Iterate through all mapped pfns represented by an entry, i.e. skip
|
|
* 'empty' and 'zero' entries.
|
|
*/
|
|
#define for_each_mapped_pfn(entry, pfn) \
|
|
for (pfn = dax_to_pfn(entry); \
|
|
pfn < dax_end_pfn(entry); pfn++)
|
|
|
|
/*
|
|
* TODO: for reflink+dax we need a way to associate a single page with
|
|
* multiple address_space instances at different linear_page_index()
|
|
* offsets.
|
|
*/
|
|
static void dax_associate_entry(void *entry, struct address_space *mapping,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
unsigned long size = dax_entry_size(entry), pfn, index;
|
|
int i = 0;
|
|
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return;
|
|
|
|
index = linear_page_index(vma, address & ~(size - 1));
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
WARN_ON_ONCE(page->mapping);
|
|
page->mapping = mapping;
|
|
page->index = index + i++;
|
|
}
|
|
}
|
|
|
|
static void dax_disassociate_entry(void *entry, struct address_space *mapping,
|
|
bool trunc)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return;
|
|
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
|
|
WARN_ON_ONCE(page->mapping && page->mapping != mapping);
|
|
page->mapping = NULL;
|
|
page->index = 0;
|
|
}
|
|
}
|
|
|
|
static struct page *dax_busy_page(void *entry)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (page_ref_count(page) > 1)
|
|
return page;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* dax_lock_page - Lock the DAX entry corresponding to a page
|
|
* @page: The page whose entry we want to lock
|
|
*
|
|
* Context: Process context.
|
|
* Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
|
|
* not be locked.
|
|
*/
|
|
dax_entry_t dax_lock_page(struct page *page)
|
|
{
|
|
XA_STATE(xas, NULL, 0);
|
|
void *entry;
|
|
|
|
/* Ensure page->mapping isn't freed while we look at it */
|
|
rcu_read_lock();
|
|
for (;;) {
|
|
struct address_space *mapping = READ_ONCE(page->mapping);
|
|
|
|
entry = NULL;
|
|
if (!mapping || !dax_mapping(mapping))
|
|
break;
|
|
|
|
/*
|
|
* In the device-dax case there's no need to lock, a
|
|
* struct dev_pagemap pin is sufficient to keep the
|
|
* inode alive, and we assume we have dev_pagemap pin
|
|
* otherwise we would not have a valid pfn_to_page()
|
|
* translation.
|
|
*/
|
|
entry = (void *)~0UL;
|
|
if (S_ISCHR(mapping->host->i_mode))
|
|
break;
|
|
|
|
xas.xa = &mapping->i_pages;
|
|
xas_lock_irq(&xas);
|
|
if (mapping != page->mapping) {
|
|
xas_unlock_irq(&xas);
|
|
continue;
|
|
}
|
|
xas_set(&xas, page->index);
|
|
entry = xas_load(&xas);
|
|
if (dax_is_locked(entry)) {
|
|
rcu_read_unlock();
|
|
wait_entry_unlocked(&xas, entry);
|
|
rcu_read_lock();
|
|
continue;
|
|
}
|
|
dax_lock_entry(&xas, entry);
|
|
xas_unlock_irq(&xas);
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
return (dax_entry_t)entry;
|
|
}
|
|
|
|
void dax_unlock_page(struct page *page, dax_entry_t cookie)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
XA_STATE(xas, &mapping->i_pages, page->index);
|
|
|
|
if (S_ISCHR(mapping->host->i_mode))
|
|
return;
|
|
|
|
dax_unlock_entry(&xas, (void *)cookie);
|
|
}
|
|
|
|
/*
|
|
* Find page cache entry at given index. If it is a DAX entry, return it
|
|
* with the entry locked. If the page cache doesn't contain an entry at
|
|
* that index, add a locked empty entry.
|
|
*
|
|
* When requesting an entry with size DAX_PMD, grab_mapping_entry() will
|
|
* either return that locked entry or will return VM_FAULT_FALLBACK.
|
|
* This will happen if there are any PTE entries within the PMD range
|
|
* that we are requesting.
|
|
*
|
|
* We always favor PTE entries over PMD entries. There isn't a flow where we
|
|
* evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
|
|
* insertion will fail if it finds any PTE entries already in the tree, and a
|
|
* PTE insertion will cause an existing PMD entry to be unmapped and
|
|
* downgraded to PTE entries. This happens for both PMD zero pages as
|
|
* well as PMD empty entries.
|
|
*
|
|
* The exception to this downgrade path is for PMD entries that have
|
|
* real storage backing them. We will leave these real PMD entries in
|
|
* the tree, and PTE writes will simply dirty the entire PMD entry.
|
|
*
|
|
* Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
|
|
* persistent memory the benefit is doubtful. We can add that later if we can
|
|
* show it helps.
|
|
*
|
|
* On error, this function does not return an ERR_PTR. Instead it returns
|
|
* a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
|
|
* overlap with xarray value entries.
|
|
*/
|
|
static void *grab_mapping_entry(struct xa_state *xas,
|
|
struct address_space *mapping, unsigned int order)
|
|
{
|
|
unsigned long index = xas->xa_index;
|
|
bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
|
|
void *entry;
|
|
|
|
retry:
|
|
pmd_downgrade = false;
|
|
xas_lock_irq(xas);
|
|
entry = get_unlocked_entry(xas, order);
|
|
|
|
if (entry) {
|
|
if (dax_is_conflict(entry))
|
|
goto fallback;
|
|
if (!xa_is_value(entry)) {
|
|
xas_set_err(xas, -EIO);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (order == 0) {
|
|
if (dax_is_pmd_entry(entry) &&
|
|
(dax_is_zero_entry(entry) ||
|
|
dax_is_empty_entry(entry))) {
|
|
pmd_downgrade = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pmd_downgrade) {
|
|
/*
|
|
* Make sure 'entry' remains valid while we drop
|
|
* the i_pages lock.
|
|
*/
|
|
dax_lock_entry(xas, entry);
|
|
|
|
/*
|
|
* Besides huge zero pages the only other thing that gets
|
|
* downgraded are empty entries which don't need to be
|
|
* unmapped.
|
|
*/
|
|
if (dax_is_zero_entry(entry)) {
|
|
xas_unlock_irq(xas);
|
|
unmap_mapping_pages(mapping,
|
|
xas->xa_index & ~PG_PMD_COLOUR,
|
|
PG_PMD_NR, false);
|
|
xas_reset(xas);
|
|
xas_lock_irq(xas);
|
|
}
|
|
|
|
dax_disassociate_entry(entry, mapping, false);
|
|
xas_store(xas, NULL); /* undo the PMD join */
|
|
dax_wake_entry(xas, entry, WAKE_ALL);
|
|
mapping->nrpages -= PG_PMD_NR;
|
|
entry = NULL;
|
|
xas_set(xas, index);
|
|
}
|
|
|
|
if (entry) {
|
|
dax_lock_entry(xas, entry);
|
|
} else {
|
|
unsigned long flags = DAX_EMPTY;
|
|
|
|
if (order > 0)
|
|
flags |= DAX_PMD;
|
|
entry = dax_make_entry(pfn_to_pfn_t(0), flags);
|
|
dax_lock_entry(xas, entry);
|
|
if (xas_error(xas))
|
|
goto out_unlock;
|
|
mapping->nrpages += 1UL << order;
|
|
}
|
|
|
|
out_unlock:
|
|
xas_unlock_irq(xas);
|
|
if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
|
|
goto retry;
|
|
if (xas->xa_node == XA_ERROR(-ENOMEM))
|
|
return xa_mk_internal(VM_FAULT_OOM);
|
|
if (xas_error(xas))
|
|
return xa_mk_internal(VM_FAULT_SIGBUS);
|
|
return entry;
|
|
fallback:
|
|
xas_unlock_irq(xas);
|
|
return xa_mk_internal(VM_FAULT_FALLBACK);
|
|
}
|
|
|
|
/**
|
|
* dax_layout_busy_page_range - find first pinned page in @mapping
|
|
* @mapping: address space to scan for a page with ref count > 1
|
|
* @start: Starting offset. Page containing 'start' is included.
|
|
* @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
|
|
* pages from 'start' till the end of file are included.
|
|
*
|
|
* DAX requires ZONE_DEVICE mapped pages. These pages are never
|
|
* 'onlined' to the page allocator so they are considered idle when
|
|
* page->count == 1. A filesystem uses this interface to determine if
|
|
* any page in the mapping is busy, i.e. for DMA, or other
|
|
* get_user_pages() usages.
|
|
*
|
|
* It is expected that the filesystem is holding locks to block the
|
|
* establishment of new mappings in this address_space. I.e. it expects
|
|
* to be able to run unmap_mapping_range() and subsequently not race
|
|
* mapping_mapped() becoming true.
|
|
*/
|
|
struct page *dax_layout_busy_page_range(struct address_space *mapping,
|
|
loff_t start, loff_t end)
|
|
{
|
|
void *entry;
|
|
unsigned int scanned = 0;
|
|
struct page *page = NULL;
|
|
pgoff_t start_idx = start >> PAGE_SHIFT;
|
|
pgoff_t end_idx;
|
|
XA_STATE(xas, &mapping->i_pages, start_idx);
|
|
|
|
/*
|
|
* In the 'limited' case get_user_pages() for dax is disabled.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return NULL;
|
|
|
|
if (!dax_mapping(mapping) || !mapping_mapped(mapping))
|
|
return NULL;
|
|
|
|
/* If end == LLONG_MAX, all pages from start to till end of file */
|
|
if (end == LLONG_MAX)
|
|
end_idx = ULONG_MAX;
|
|
else
|
|
end_idx = end >> PAGE_SHIFT;
|
|
/*
|
|
* If we race get_user_pages_fast() here either we'll see the
|
|
* elevated page count in the iteration and wait, or
|
|
* get_user_pages_fast() will see that the page it took a reference
|
|
* against is no longer mapped in the page tables and bail to the
|
|
* get_user_pages() slow path. The slow path is protected by
|
|
* pte_lock() and pmd_lock(). New references are not taken without
|
|
* holding those locks, and unmap_mapping_pages() will not zero the
|
|
* pte or pmd without holding the respective lock, so we are
|
|
* guaranteed to either see new references or prevent new
|
|
* references from being established.
|
|
*/
|
|
unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
|
|
|
|
xas_lock_irq(&xas);
|
|
xas_for_each(&xas, entry, end_idx) {
|
|
if (WARN_ON_ONCE(!xa_is_value(entry)))
|
|
continue;
|
|
if (unlikely(dax_is_locked(entry)))
|
|
entry = get_unlocked_entry(&xas, 0);
|
|
if (entry)
|
|
page = dax_busy_page(entry);
|
|
put_unlocked_entry(&xas, entry, WAKE_NEXT);
|
|
if (page)
|
|
break;
|
|
if (++scanned % XA_CHECK_SCHED)
|
|
continue;
|
|
|
|
xas_pause(&xas);
|
|
xas_unlock_irq(&xas);
|
|
cond_resched();
|
|
xas_lock_irq(&xas);
|
|
}
|
|
xas_unlock_irq(&xas);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
|
|
|
|
struct page *dax_layout_busy_page(struct address_space *mapping)
|
|
{
|
|
return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_layout_busy_page);
|
|
|
|
static int __dax_invalidate_entry(struct address_space *mapping,
|
|
pgoff_t index, bool trunc)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, index);
|
|
int ret = 0;
|
|
void *entry;
|
|
|
|
xas_lock_irq(&xas);
|
|
entry = get_unlocked_entry(&xas, 0);
|
|
if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
|
|
goto out;
|
|
if (!trunc &&
|
|
(xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
|
|
xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
|
|
goto out;
|
|
dax_disassociate_entry(entry, mapping, trunc);
|
|
xas_store(&xas, NULL);
|
|
mapping->nrpages -= 1UL << dax_entry_order(entry);
|
|
ret = 1;
|
|
out:
|
|
put_unlocked_entry(&xas, entry, WAKE_ALL);
|
|
xas_unlock_irq(&xas);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Delete DAX entry at @index from @mapping. Wait for it
|
|
* to be unlocked before deleting it.
|
|
*/
|
|
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
|
|
{
|
|
int ret = __dax_invalidate_entry(mapping, index, true);
|
|
|
|
/*
|
|
* This gets called from truncate / punch_hole path. As such, the caller
|
|
* must hold locks protecting against concurrent modifications of the
|
|
* page cache (usually fs-private i_mmap_sem for writing). Since the
|
|
* caller has seen a DAX entry for this index, we better find it
|
|
* at that index as well...
|
|
*/
|
|
WARN_ON_ONCE(!ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Invalidate DAX entry if it is clean.
|
|
*/
|
|
int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
return __dax_invalidate_entry(mapping, index, false);
|
|
}
|
|
|
|
static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
|
|
{
|
|
return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
|
|
}
|
|
|
|
static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
|
|
{
|
|
pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
|
|
void *vto, *kaddr;
|
|
long rc;
|
|
int id;
|
|
|
|
id = dax_read_lock();
|
|
rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
|
|
&kaddr, NULL);
|
|
if (rc < 0) {
|
|
dax_read_unlock(id);
|
|
return rc;
|
|
}
|
|
vto = kmap_atomic(vmf->cow_page);
|
|
copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
|
|
kunmap_atomic(vto);
|
|
dax_read_unlock(id);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* By this point grab_mapping_entry() has ensured that we have a locked entry
|
|
* of the appropriate size so we don't have to worry about downgrading PMDs to
|
|
* PTEs. If we happen to be trying to insert a PTE and there is a PMD
|
|
* already in the tree, we will skip the insertion and just dirty the PMD as
|
|
* appropriate.
|
|
*/
|
|
static void *dax_insert_entry(struct xa_state *xas,
|
|
struct address_space *mapping, struct vm_fault *vmf,
|
|
void *entry, pfn_t pfn, unsigned long flags, bool dirty)
|
|
{
|
|
void *new_entry = dax_make_entry(pfn, flags);
|
|
|
|
if (dirty)
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
|
|
if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
|
|
unsigned long index = xas->xa_index;
|
|
/* we are replacing a zero page with block mapping */
|
|
if (dax_is_pmd_entry(entry))
|
|
unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
|
|
PG_PMD_NR, false);
|
|
else /* pte entry */
|
|
unmap_mapping_pages(mapping, index, 1, false);
|
|
}
|
|
|
|
xas_reset(xas);
|
|
xas_lock_irq(xas);
|
|
if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
|
|
void *old;
|
|
|
|
dax_disassociate_entry(entry, mapping, false);
|
|
dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
|
|
/*
|
|
* Only swap our new entry into the page cache if the current
|
|
* entry is a zero page or an empty entry. If a normal PTE or
|
|
* PMD entry is already in the cache, we leave it alone. This
|
|
* means that if we are trying to insert a PTE and the
|
|
* existing entry is a PMD, we will just leave the PMD in the
|
|
* tree and dirty it if necessary.
|
|
*/
|
|
old = dax_lock_entry(xas, new_entry);
|
|
WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
|
|
DAX_LOCKED));
|
|
entry = new_entry;
|
|
} else {
|
|
xas_load(xas); /* Walk the xa_state */
|
|
}
|
|
|
|
if (dirty)
|
|
xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
|
|
|
|
xas_unlock_irq(xas);
|
|
return entry;
|
|
}
|
|
|
|
static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
|
|
struct address_space *mapping, void *entry)
|
|
{
|
|
unsigned long pfn, index, count, end;
|
|
long ret = 0;
|
|
struct vm_area_struct *vma;
|
|
|
|
/*
|
|
* A page got tagged dirty in DAX mapping? Something is seriously
|
|
* wrong.
|
|
*/
|
|
if (WARN_ON(!xa_is_value(entry)))
|
|
return -EIO;
|
|
|
|
if (unlikely(dax_is_locked(entry))) {
|
|
void *old_entry = entry;
|
|
|
|
entry = get_unlocked_entry(xas, 0);
|
|
|
|
/* Entry got punched out / reallocated? */
|
|
if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
|
|
goto put_unlocked;
|
|
/*
|
|
* Entry got reallocated elsewhere? No need to writeback.
|
|
* We have to compare pfns as we must not bail out due to
|
|
* difference in lockbit or entry type.
|
|
*/
|
|
if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
|
|
goto put_unlocked;
|
|
if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
|
|
dax_is_zero_entry(entry))) {
|
|
ret = -EIO;
|
|
goto put_unlocked;
|
|
}
|
|
|
|
/* Another fsync thread may have already done this entry */
|
|
if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
|
|
goto put_unlocked;
|
|
}
|
|
|
|
/* Lock the entry to serialize with page faults */
|
|
dax_lock_entry(xas, entry);
|
|
|
|
/*
|
|
* We can clear the tag now but we have to be careful so that concurrent
|
|
* dax_writeback_one() calls for the same index cannot finish before we
|
|
* actually flush the caches. This is achieved as the calls will look
|
|
* at the entry only under the i_pages lock and once they do that
|
|
* they will see the entry locked and wait for it to unlock.
|
|
*/
|
|
xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
|
|
xas_unlock_irq(xas);
|
|
|
|
/*
|
|
* If dax_writeback_mapping_range() was given a wbc->range_start
|
|
* in the middle of a PMD, the 'index' we use needs to be
|
|
* aligned to the start of the PMD.
|
|
* This allows us to flush for PMD_SIZE and not have to worry about
|
|
* partial PMD writebacks.
|
|
*/
|
|
pfn = dax_to_pfn(entry);
|
|
count = 1UL << dax_entry_order(entry);
|
|
index = xas->xa_index & ~(count - 1);
|
|
end = index + count - 1;
|
|
|
|
/* Walk all mappings of a given index of a file and writeprotect them */
|
|
i_mmap_lock_read(mapping);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
|
|
pfn_mkclean_range(pfn, count, index, vma);
|
|
cond_resched();
|
|
}
|
|
i_mmap_unlock_read(mapping);
|
|
|
|
dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
|
|
/*
|
|
* After we have flushed the cache, we can clear the dirty tag. There
|
|
* cannot be new dirty data in the pfn after the flush has completed as
|
|
* the pfn mappings are writeprotected and fault waits for mapping
|
|
* entry lock.
|
|
*/
|
|
xas_reset(xas);
|
|
xas_lock_irq(xas);
|
|
xas_store(xas, entry);
|
|
xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
|
|
dax_wake_entry(xas, entry, WAKE_NEXT);
|
|
|
|
trace_dax_writeback_one(mapping->host, index, count);
|
|
return ret;
|
|
|
|
put_unlocked:
|
|
put_unlocked_entry(xas, entry, WAKE_NEXT);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Flush the mapping to the persistent domain within the byte range of [start,
|
|
* end]. This is required by data integrity operations to ensure file data is
|
|
* on persistent storage prior to completion of the operation.
|
|
*/
|
|
int dax_writeback_mapping_range(struct address_space *mapping,
|
|
struct dax_device *dax_dev, struct writeback_control *wbc)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
|
|
struct inode *inode = mapping->host;
|
|
pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
|
|
void *entry;
|
|
int ret = 0;
|
|
unsigned int scanned = 0;
|
|
|
|
if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
|
|
return -EIO;
|
|
|
|
if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
|
|
return 0;
|
|
|
|
trace_dax_writeback_range(inode, xas.xa_index, end_index);
|
|
|
|
tag_pages_for_writeback(mapping, xas.xa_index, end_index);
|
|
|
|
xas_lock_irq(&xas);
|
|
xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
|
|
ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
|
|
if (ret < 0) {
|
|
mapping_set_error(mapping, ret);
|
|
break;
|
|
}
|
|
if (++scanned % XA_CHECK_SCHED)
|
|
continue;
|
|
|
|
xas_pause(&xas);
|
|
xas_unlock_irq(&xas);
|
|
cond_resched();
|
|
xas_lock_irq(&xas);
|
|
}
|
|
xas_unlock_irq(&xas);
|
|
trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
|
|
|
|
static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
|
|
pfn_t *pfnp)
|
|
{
|
|
pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
|
|
int id, rc;
|
|
long length;
|
|
|
|
id = dax_read_lock();
|
|
length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
|
|
DAX_ACCESS, NULL, pfnp);
|
|
if (length < 0) {
|
|
rc = length;
|
|
goto out;
|
|
}
|
|
rc = -EINVAL;
|
|
if (PFN_PHYS(length) < size)
|
|
goto out;
|
|
if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
|
|
goto out;
|
|
/* For larger pages we need devmap */
|
|
if (length > 1 && !pfn_t_devmap(*pfnp))
|
|
goto out;
|
|
rc = 0;
|
|
out:
|
|
dax_read_unlock(id);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The user has performed a load from a hole in the file. Allocating a new
|
|
* page in the file would cause excessive storage usage for workloads with
|
|
* sparse files. Instead we insert a read-only mapping of the 4k zero page.
|
|
* If this page is ever written to we will re-fault and change the mapping to
|
|
* point to real DAX storage instead.
|
|
*/
|
|
static vm_fault_t dax_load_hole(struct xa_state *xas,
|
|
struct address_space *mapping, void **entry,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
unsigned long vaddr = vmf->address;
|
|
pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
|
|
vm_fault_t ret;
|
|
|
|
*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
|
|
DAX_ZERO_PAGE, false);
|
|
|
|
ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
|
|
trace_dax_load_hole(inode, vmf, ret);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
|
|
const struct iomap *iomap, void **entry)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
unsigned long pmd_addr = vmf->address & PMD_MASK;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct inode *inode = mapping->host;
|
|
pgtable_t pgtable = NULL;
|
|
struct page *zero_page;
|
|
spinlock_t *ptl;
|
|
pmd_t pmd_entry;
|
|
pfn_t pfn;
|
|
|
|
zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
|
|
|
|
if (unlikely(!zero_page))
|
|
goto fallback;
|
|
|
|
pfn = page_to_pfn_t(zero_page);
|
|
*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
|
|
DAX_PMD | DAX_ZERO_PAGE, false);
|
|
|
|
if (arch_needs_pgtable_deposit()) {
|
|
pgtable = pte_alloc_one(vma->vm_mm);
|
|
if (!pgtable)
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
|
|
if (!pmd_none(*(vmf->pmd))) {
|
|
spin_unlock(ptl);
|
|
goto fallback;
|
|
}
|
|
|
|
if (pgtable) {
|
|
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
|
|
mm_inc_nr_ptes(vma->vm_mm);
|
|
}
|
|
pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
|
|
pmd_entry = pmd_mkhuge(pmd_entry);
|
|
set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
|
|
spin_unlock(ptl);
|
|
trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
|
|
return VM_FAULT_NOPAGE;
|
|
|
|
fallback:
|
|
if (pgtable)
|
|
pte_free(vma->vm_mm, pgtable);
|
|
trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
#else
|
|
static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
|
|
const struct iomap *iomap, void **entry)
|
|
{
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
#endif /* CONFIG_FS_DAX_PMD */
|
|
|
|
static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
|
|
unsigned int offset, size_t size)
|
|
{
|
|
void *kaddr;
|
|
long ret;
|
|
|
|
ret = dax_direct_access(dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, NULL);
|
|
if (ret > 0) {
|
|
memset(kaddr + offset, 0, size);
|
|
dax_flush(dax_dev, kaddr + offset, size);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
|
|
{
|
|
const struct iomap *iomap = &iter->iomap;
|
|
const struct iomap *srcmap = iomap_iter_srcmap(iter);
|
|
loff_t pos = iter->pos;
|
|
u64 length = iomap_length(iter);
|
|
s64 written = 0;
|
|
|
|
/* already zeroed? we're done. */
|
|
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
|
|
return length;
|
|
|
|
do {
|
|
unsigned offset = offset_in_page(pos);
|
|
unsigned size = min_t(u64, PAGE_SIZE - offset, length);
|
|
pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
|
|
long rc;
|
|
int id;
|
|
|
|
id = dax_read_lock();
|
|
if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
|
|
rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
|
|
else
|
|
rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
|
|
dax_read_unlock(id);
|
|
|
|
if (rc < 0)
|
|
return rc;
|
|
pos += size;
|
|
length -= size;
|
|
written += size;
|
|
if (did_zero)
|
|
*did_zero = true;
|
|
} while (length > 0);
|
|
|
|
return written;
|
|
}
|
|
|
|
int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_iter iter = {
|
|
.inode = inode,
|
|
.pos = pos,
|
|
.len = len,
|
|
.flags = IOMAP_DAX | IOMAP_ZERO,
|
|
};
|
|
int ret;
|
|
|
|
while ((ret = iomap_iter(&iter, ops)) > 0)
|
|
iter.processed = dax_zero_iter(&iter, did_zero);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_zero_range);
|
|
|
|
int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
unsigned int blocksize = i_blocksize(inode);
|
|
unsigned int off = pos & (blocksize - 1);
|
|
|
|
/* Block boundary? Nothing to do */
|
|
if (!off)
|
|
return 0;
|
|
return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_truncate_page);
|
|
|
|
static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
|
|
struct iov_iter *iter)
|
|
{
|
|
const struct iomap *iomap = &iomi->iomap;
|
|
loff_t length = iomap_length(iomi);
|
|
loff_t pos = iomi->pos;
|
|
struct dax_device *dax_dev = iomap->dax_dev;
|
|
loff_t end = pos + length, done = 0;
|
|
ssize_t ret = 0;
|
|
size_t xfer;
|
|
int id;
|
|
|
|
if (iov_iter_rw(iter) == READ) {
|
|
end = min(end, i_size_read(iomi->inode));
|
|
if (pos >= end)
|
|
return 0;
|
|
|
|
if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
|
|
return iov_iter_zero(min(length, end - pos), iter);
|
|
}
|
|
|
|
if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Write can allocate block for an area which has a hole page mapped
|
|
* into page tables. We have to tear down these mappings so that data
|
|
* written by write(2) is visible in mmap.
|
|
*/
|
|
if (iomap->flags & IOMAP_F_NEW) {
|
|
invalidate_inode_pages2_range(iomi->inode->i_mapping,
|
|
pos >> PAGE_SHIFT,
|
|
(end - 1) >> PAGE_SHIFT);
|
|
}
|
|
|
|
id = dax_read_lock();
|
|
while (pos < end) {
|
|
unsigned offset = pos & (PAGE_SIZE - 1);
|
|
const size_t size = ALIGN(length + offset, PAGE_SIZE);
|
|
pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
|
|
ssize_t map_len;
|
|
bool recovery = false;
|
|
void *kaddr;
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
|
|
map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
|
|
DAX_ACCESS, &kaddr, NULL);
|
|
if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
|
|
map_len = dax_direct_access(dax_dev, pgoff,
|
|
PHYS_PFN(size), DAX_RECOVERY_WRITE,
|
|
&kaddr, NULL);
|
|
if (map_len > 0)
|
|
recovery = true;
|
|
}
|
|
if (map_len < 0) {
|
|
ret = map_len;
|
|
break;
|
|
}
|
|
|
|
map_len = PFN_PHYS(map_len);
|
|
kaddr += offset;
|
|
map_len -= offset;
|
|
if (map_len > end - pos)
|
|
map_len = end - pos;
|
|
|
|
if (recovery)
|
|
xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
|
|
map_len, iter);
|
|
else if (iov_iter_rw(iter) == WRITE)
|
|
xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
|
|
map_len, iter);
|
|
else
|
|
xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
|
|
map_len, iter);
|
|
|
|
pos += xfer;
|
|
length -= xfer;
|
|
done += xfer;
|
|
|
|
if (xfer == 0)
|
|
ret = -EFAULT;
|
|
if (xfer < map_len)
|
|
break;
|
|
}
|
|
dax_read_unlock(id);
|
|
|
|
return done ? done : ret;
|
|
}
|
|
|
|
/**
|
|
* dax_iomap_rw - Perform I/O to a DAX file
|
|
* @iocb: The control block for this I/O
|
|
* @iter: The addresses to do I/O from or to
|
|
* @ops: iomap ops passed from the file system
|
|
*
|
|
* This function performs read and write operations to directly mapped
|
|
* persistent memory. The callers needs to take care of read/write exclusion
|
|
* and evicting any page cache pages in the region under I/O.
|
|
*/
|
|
ssize_t
|
|
dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_iter iomi = {
|
|
.inode = iocb->ki_filp->f_mapping->host,
|
|
.pos = iocb->ki_pos,
|
|
.len = iov_iter_count(iter),
|
|
.flags = IOMAP_DAX,
|
|
};
|
|
loff_t done = 0;
|
|
int ret;
|
|
|
|
if (iov_iter_rw(iter) == WRITE) {
|
|
lockdep_assert_held_write(&iomi.inode->i_rwsem);
|
|
iomi.flags |= IOMAP_WRITE;
|
|
} else {
|
|
lockdep_assert_held(&iomi.inode->i_rwsem);
|
|
}
|
|
|
|
if (iocb->ki_flags & IOCB_NOWAIT)
|
|
iomi.flags |= IOMAP_NOWAIT;
|
|
|
|
while ((ret = iomap_iter(&iomi, ops)) > 0)
|
|
iomi.processed = dax_iomap_iter(&iomi, iter);
|
|
|
|
done = iomi.pos - iocb->ki_pos;
|
|
iocb->ki_pos = iomi.pos;
|
|
return done ? done : ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_iomap_rw);
|
|
|
|
static vm_fault_t dax_fault_return(int error)
|
|
{
|
|
if (error == 0)
|
|
return VM_FAULT_NOPAGE;
|
|
return vmf_error(error);
|
|
}
|
|
|
|
/*
|
|
* MAP_SYNC on a dax mapping guarantees dirty metadata is
|
|
* flushed on write-faults (non-cow), but not read-faults.
|
|
*/
|
|
static bool dax_fault_is_synchronous(unsigned long flags,
|
|
struct vm_area_struct *vma, const struct iomap *iomap)
|
|
{
|
|
return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
|
|
&& (iomap->flags & IOMAP_F_DIRTY);
|
|
}
|
|
|
|
/*
|
|
* When handling a synchronous page fault and the inode need a fsync, we can
|
|
* insert the PTE/PMD into page tables only after that fsync happened. Skip
|
|
* insertion for now and return the pfn so that caller can insert it after the
|
|
* fsync is done.
|
|
*/
|
|
static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
|
|
{
|
|
if (WARN_ON_ONCE(!pfnp))
|
|
return VM_FAULT_SIGBUS;
|
|
*pfnp = pfn;
|
|
return VM_FAULT_NEEDDSYNC;
|
|
}
|
|
|
|
static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
|
|
const struct iomap_iter *iter)
|
|
{
|
|
vm_fault_t ret;
|
|
int error = 0;
|
|
|
|
switch (iter->iomap.type) {
|
|
case IOMAP_HOLE:
|
|
case IOMAP_UNWRITTEN:
|
|
clear_user_highpage(vmf->cow_page, vmf->address);
|
|
break;
|
|
case IOMAP_MAPPED:
|
|
error = copy_cow_page_dax(vmf, iter);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
error = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
return dax_fault_return(error);
|
|
|
|
__SetPageUptodate(vmf->cow_page);
|
|
ret = finish_fault(vmf);
|
|
if (!ret)
|
|
return VM_FAULT_DONE_COW;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
|
|
* @vmf: vm fault instance
|
|
* @iter: iomap iter
|
|
* @pfnp: pfn to be returned
|
|
* @xas: the dax mapping tree of a file
|
|
* @entry: an unlocked dax entry to be inserted
|
|
* @pmd: distinguish whether it is a pmd fault
|
|
*/
|
|
static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
|
|
const struct iomap_iter *iter, pfn_t *pfnp,
|
|
struct xa_state *xas, void **entry, bool pmd)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
const struct iomap *iomap = &iter->iomap;
|
|
size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
|
|
loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
|
|
unsigned long entry_flags = pmd ? DAX_PMD : 0;
|
|
int err = 0;
|
|
pfn_t pfn;
|
|
|
|
if (!pmd && vmf->cow_page)
|
|
return dax_fault_cow_page(vmf, iter);
|
|
|
|
/* if we are reading UNWRITTEN and HOLE, return a hole. */
|
|
if (!write &&
|
|
(iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
|
|
if (!pmd)
|
|
return dax_load_hole(xas, mapping, entry, vmf);
|
|
return dax_pmd_load_hole(xas, vmf, iomap, entry);
|
|
}
|
|
|
|
if (iomap->type != IOMAP_MAPPED) {
|
|
WARN_ON_ONCE(1);
|
|
return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
|
|
if (err)
|
|
return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
|
|
|
|
*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
|
|
write && !sync);
|
|
|
|
if (sync)
|
|
return dax_fault_synchronous_pfnp(pfnp, pfn);
|
|
|
|
/* insert PMD pfn */
|
|
if (pmd)
|
|
return vmf_insert_pfn_pmd(vmf, pfn, write);
|
|
|
|
/* insert PTE pfn */
|
|
if (write)
|
|
return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
|
|
return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
|
|
}
|
|
|
|
static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
int *iomap_errp, const struct iomap_ops *ops)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
|
|
struct iomap_iter iter = {
|
|
.inode = mapping->host,
|
|
.pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
|
|
.len = PAGE_SIZE,
|
|
.flags = IOMAP_DAX | IOMAP_FAULT,
|
|
};
|
|
vm_fault_t ret = 0;
|
|
void *entry;
|
|
int error;
|
|
|
|
trace_dax_pte_fault(iter.inode, vmf, ret);
|
|
/*
|
|
* Check whether offset isn't beyond end of file now. Caller is supposed
|
|
* to hold locks serializing us with truncate / punch hole so this is
|
|
* a reliable test.
|
|
*/
|
|
if (iter.pos >= i_size_read(iter.inode)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
|
|
if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
|
|
iter.flags |= IOMAP_WRITE;
|
|
|
|
entry = grab_mapping_entry(&xas, mapping, 0);
|
|
if (xa_is_internal(entry)) {
|
|
ret = xa_to_internal(entry);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* It is possible, particularly with mixed reads & writes to private
|
|
* mappings, that we have raced with a PMD fault that overlaps with
|
|
* the PTE we need to set up. If so just return and the fault will be
|
|
* retried.
|
|
*/
|
|
if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
|
|
ret = VM_FAULT_NOPAGE;
|
|
goto unlock_entry;
|
|
}
|
|
|
|
while ((error = iomap_iter(&iter, ops)) > 0) {
|
|
if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
|
|
iter.processed = -EIO; /* fs corruption? */
|
|
continue;
|
|
}
|
|
|
|
ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
|
|
if (ret != VM_FAULT_SIGBUS &&
|
|
(iter.iomap.flags & IOMAP_F_NEW)) {
|
|
count_vm_event(PGMAJFAULT);
|
|
count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
|
|
ret |= VM_FAULT_MAJOR;
|
|
}
|
|
|
|
if (!(ret & VM_FAULT_ERROR))
|
|
iter.processed = PAGE_SIZE;
|
|
}
|
|
|
|
if (iomap_errp)
|
|
*iomap_errp = error;
|
|
if (!ret && error)
|
|
ret = dax_fault_return(error);
|
|
|
|
unlock_entry:
|
|
dax_unlock_entry(&xas, entry);
|
|
out:
|
|
trace_dax_pte_fault_done(iter.inode, vmf, ret);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
|
|
pgoff_t max_pgoff)
|
|
{
|
|
unsigned long pmd_addr = vmf->address & PMD_MASK;
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
|
|
/*
|
|
* Make sure that the faulting address's PMD offset (color) matches
|
|
* the PMD offset from the start of the file. This is necessary so
|
|
* that a PMD range in the page table overlaps exactly with a PMD
|
|
* range in the page cache.
|
|
*/
|
|
if ((vmf->pgoff & PG_PMD_COLOUR) !=
|
|
((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
|
|
return true;
|
|
|
|
/* Fall back to PTEs if we're going to COW */
|
|
if (write && !(vmf->vma->vm_flags & VM_SHARED))
|
|
return true;
|
|
|
|
/* If the PMD would extend outside the VMA */
|
|
if (pmd_addr < vmf->vma->vm_start)
|
|
return true;
|
|
if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
|
|
return true;
|
|
|
|
/* If the PMD would extend beyond the file size */
|
|
if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
|
|
struct iomap_iter iter = {
|
|
.inode = mapping->host,
|
|
.len = PMD_SIZE,
|
|
.flags = IOMAP_DAX | IOMAP_FAULT,
|
|
};
|
|
vm_fault_t ret = VM_FAULT_FALLBACK;
|
|
pgoff_t max_pgoff;
|
|
void *entry;
|
|
int error;
|
|
|
|
if (vmf->flags & FAULT_FLAG_WRITE)
|
|
iter.flags |= IOMAP_WRITE;
|
|
|
|
/*
|
|
* Check whether offset isn't beyond end of file now. Caller is
|
|
* supposed to hold locks serializing us with truncate / punch hole so
|
|
* this is a reliable test.
|
|
*/
|
|
max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
|
|
|
|
trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
|
|
|
|
if (xas.xa_index >= max_pgoff) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
|
|
if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
|
|
goto fallback;
|
|
|
|
/*
|
|
* grab_mapping_entry() will make sure we get an empty PMD entry,
|
|
* a zero PMD entry or a DAX PMD. If it can't (because a PTE
|
|
* entry is already in the array, for instance), it will return
|
|
* VM_FAULT_FALLBACK.
|
|
*/
|
|
entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
|
|
if (xa_is_internal(entry)) {
|
|
ret = xa_to_internal(entry);
|
|
goto fallback;
|
|
}
|
|
|
|
/*
|
|
* It is possible, particularly with mixed reads & writes to private
|
|
* mappings, that we have raced with a PTE fault that overlaps with
|
|
* the PMD we need to set up. If so just return and the fault will be
|
|
* retried.
|
|
*/
|
|
if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
|
|
!pmd_devmap(*vmf->pmd)) {
|
|
ret = 0;
|
|
goto unlock_entry;
|
|
}
|
|
|
|
iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
|
|
while ((error = iomap_iter(&iter, ops)) > 0) {
|
|
if (iomap_length(&iter) < PMD_SIZE)
|
|
continue; /* actually breaks out of the loop */
|
|
|
|
ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
|
|
if (ret != VM_FAULT_FALLBACK)
|
|
iter.processed = PMD_SIZE;
|
|
}
|
|
|
|
unlock_entry:
|
|
dax_unlock_entry(&xas, entry);
|
|
fallback:
|
|
if (ret == VM_FAULT_FALLBACK) {
|
|
split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
}
|
|
out:
|
|
trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
|
|
return ret;
|
|
}
|
|
#else
|
|
static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
#endif /* CONFIG_FS_DAX_PMD */
|
|
|
|
/**
|
|
* dax_iomap_fault - handle a page fault on a DAX file
|
|
* @vmf: The description of the fault
|
|
* @pe_size: Size of the page to fault in
|
|
* @pfnp: PFN to insert for synchronous faults if fsync is required
|
|
* @iomap_errp: Storage for detailed error code in case of error
|
|
* @ops: Iomap ops passed from the file system
|
|
*
|
|
* When a page fault occurs, filesystems may call this helper in
|
|
* their fault handler for DAX files. dax_iomap_fault() assumes the caller
|
|
* has done all the necessary locking for page fault to proceed
|
|
* successfully.
|
|
*/
|
|
vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
|
|
pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
|
|
{
|
|
switch (pe_size) {
|
|
case PE_SIZE_PTE:
|
|
return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
|
|
case PE_SIZE_PMD:
|
|
return dax_iomap_pmd_fault(vmf, pfnp, ops);
|
|
default:
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_iomap_fault);
|
|
|
|
/*
|
|
* dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
|
|
* @vmf: The description of the fault
|
|
* @pfn: PFN to insert
|
|
* @order: Order of entry to insert.
|
|
*
|
|
* This function inserts a writeable PTE or PMD entry into the page tables
|
|
* for an mmaped DAX file. It also marks the page cache entry as dirty.
|
|
*/
|
|
static vm_fault_t
|
|
dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
|
|
void *entry;
|
|
vm_fault_t ret;
|
|
|
|
xas_lock_irq(&xas);
|
|
entry = get_unlocked_entry(&xas, order);
|
|
/* Did we race with someone splitting entry or so? */
|
|
if (!entry || dax_is_conflict(entry) ||
|
|
(order == 0 && !dax_is_pte_entry(entry))) {
|
|
put_unlocked_entry(&xas, entry, WAKE_NEXT);
|
|
xas_unlock_irq(&xas);
|
|
trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
|
|
VM_FAULT_NOPAGE);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
|
|
dax_lock_entry(&xas, entry);
|
|
xas_unlock_irq(&xas);
|
|
if (order == 0)
|
|
ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
else if (order == PMD_ORDER)
|
|
ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
|
|
#endif
|
|
else
|
|
ret = VM_FAULT_FALLBACK;
|
|
dax_unlock_entry(&xas, entry);
|
|
trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dax_finish_sync_fault - finish synchronous page fault
|
|
* @vmf: The description of the fault
|
|
* @pe_size: Size of entry to be inserted
|
|
* @pfn: PFN to insert
|
|
*
|
|
* This function ensures that the file range touched by the page fault is
|
|
* stored persistently on the media and handles inserting of appropriate page
|
|
* table entry.
|
|
*/
|
|
vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
|
|
enum page_entry_size pe_size, pfn_t pfn)
|
|
{
|
|
int err;
|
|
loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
|
|
unsigned int order = pe_order(pe_size);
|
|
size_t len = PAGE_SIZE << order;
|
|
|
|
err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
|
|
if (err)
|
|
return VM_FAULT_SIGBUS;
|
|
return dax_insert_pfn_mkwrite(vmf, pfn, order);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
|