WSL2-Linux-Kernel/drivers/dma/ipu/ipu_idmac.c

1879 строки
48 KiB
C

/*
* Copyright (C) 2008
* Guennadi Liakhovetski, DENX Software Engineering, <lg@denx.de>
*
* Copyright (C) 2005-2007 Freescale Semiconductor, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/clk.h>
#include <linux/vmalloc.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <mach/ipu.h>
#include "ipu_intern.h"
#define FS_VF_IN_VALID 0x00000002
#define FS_ENC_IN_VALID 0x00000001
static int ipu_disable_channel(struct idmac *idmac, struct idmac_channel *ichan,
bool wait_for_stop);
/*
* There can be only one, we could allocate it dynamically, but then we'd have
* to add an extra parameter to some functions, and use something as ugly as
* struct ipu *ipu = to_ipu(to_idmac(ichan->dma_chan.device));
* in the ISR
*/
static struct ipu ipu_data;
#define to_ipu(id) container_of(id, struct ipu, idmac)
static u32 __idmac_read_icreg(struct ipu *ipu, unsigned long reg)
{
return __raw_readl(ipu->reg_ic + reg);
}
#define idmac_read_icreg(ipu, reg) __idmac_read_icreg(ipu, reg - IC_CONF)
static void __idmac_write_icreg(struct ipu *ipu, u32 value, unsigned long reg)
{
__raw_writel(value, ipu->reg_ic + reg);
}
#define idmac_write_icreg(ipu, v, reg) __idmac_write_icreg(ipu, v, reg - IC_CONF)
static u32 idmac_read_ipureg(struct ipu *ipu, unsigned long reg)
{
return __raw_readl(ipu->reg_ipu + reg);
}
static void idmac_write_ipureg(struct ipu *ipu, u32 value, unsigned long reg)
{
__raw_writel(value, ipu->reg_ipu + reg);
}
/*****************************************************************************
* IPU / IC common functions
*/
static void dump_idmac_reg(struct ipu *ipu)
{
dev_dbg(ipu->dev, "IDMAC_CONF 0x%x, IC_CONF 0x%x, IDMAC_CHA_EN 0x%x, "
"IDMAC_CHA_PRI 0x%x, IDMAC_CHA_BUSY 0x%x\n",
idmac_read_icreg(ipu, IDMAC_CONF),
idmac_read_icreg(ipu, IC_CONF),
idmac_read_icreg(ipu, IDMAC_CHA_EN),
idmac_read_icreg(ipu, IDMAC_CHA_PRI),
idmac_read_icreg(ipu, IDMAC_CHA_BUSY));
dev_dbg(ipu->dev, "BUF0_RDY 0x%x, BUF1_RDY 0x%x, CUR_BUF 0x%x, "
"DB_MODE 0x%x, TASKS_STAT 0x%x\n",
idmac_read_ipureg(ipu, IPU_CHA_BUF0_RDY),
idmac_read_ipureg(ipu, IPU_CHA_BUF1_RDY),
idmac_read_ipureg(ipu, IPU_CHA_CUR_BUF),
idmac_read_ipureg(ipu, IPU_CHA_DB_MODE_SEL),
idmac_read_ipureg(ipu, IPU_TASKS_STAT));
}
static uint32_t bytes_per_pixel(enum pixel_fmt fmt)
{
switch (fmt) {
case IPU_PIX_FMT_GENERIC: /* generic data */
case IPU_PIX_FMT_RGB332:
case IPU_PIX_FMT_YUV420P:
case IPU_PIX_FMT_YUV422P:
default:
return 1;
case IPU_PIX_FMT_RGB565:
case IPU_PIX_FMT_YUYV:
case IPU_PIX_FMT_UYVY:
return 2;
case IPU_PIX_FMT_BGR24:
case IPU_PIX_FMT_RGB24:
return 3;
case IPU_PIX_FMT_GENERIC_32: /* generic data */
case IPU_PIX_FMT_BGR32:
case IPU_PIX_FMT_RGB32:
case IPU_PIX_FMT_ABGR32:
return 4;
}
}
/* Enable direct write to memory by the Camera Sensor Interface */
static void ipu_ic_enable_task(struct ipu *ipu, enum ipu_channel channel)
{
uint32_t ic_conf, mask;
switch (channel) {
case IDMAC_IC_0:
mask = IC_CONF_PRPENC_EN;
break;
case IDMAC_IC_7:
mask = IC_CONF_RWS_EN | IC_CONF_PRPENC_EN;
break;
default:
return;
}
ic_conf = idmac_read_icreg(ipu, IC_CONF) | mask;
idmac_write_icreg(ipu, ic_conf, IC_CONF);
}
/* Called under spin_lock_irqsave(&ipu_data.lock) */
static void ipu_ic_disable_task(struct ipu *ipu, enum ipu_channel channel)
{
uint32_t ic_conf, mask;
switch (channel) {
case IDMAC_IC_0:
mask = IC_CONF_PRPENC_EN;
break;
case IDMAC_IC_7:
mask = IC_CONF_RWS_EN | IC_CONF_PRPENC_EN;
break;
default:
return;
}
ic_conf = idmac_read_icreg(ipu, IC_CONF) & ~mask;
idmac_write_icreg(ipu, ic_conf, IC_CONF);
}
static uint32_t ipu_channel_status(struct ipu *ipu, enum ipu_channel channel)
{
uint32_t stat = TASK_STAT_IDLE;
uint32_t task_stat_reg = idmac_read_ipureg(ipu, IPU_TASKS_STAT);
switch (channel) {
case IDMAC_IC_7:
stat = (task_stat_reg & TSTAT_CSI2MEM_MASK) >>
TSTAT_CSI2MEM_OFFSET;
break;
case IDMAC_IC_0:
case IDMAC_SDC_0:
case IDMAC_SDC_1:
default:
break;
}
return stat;
}
struct chan_param_mem_planar {
/* Word 0 */
u32 xv:10;
u32 yv:10;
u32 xb:12;
u32 yb:12;
u32 res1:2;
u32 nsb:1;
u32 lnpb:6;
u32 ubo_l:11;
u32 ubo_h:15;
u32 vbo_l:17;
u32 vbo_h:9;
u32 res2:3;
u32 fw:12;
u32 fh_l:8;
u32 fh_h:4;
u32 res3:28;
/* Word 1 */
u32 eba0;
u32 eba1;
u32 bpp:3;
u32 sl:14;
u32 pfs:3;
u32 bam:3;
u32 res4:2;
u32 npb:6;
u32 res5:1;
u32 sat:2;
u32 res6:30;
} __attribute__ ((packed));
struct chan_param_mem_interleaved {
/* Word 0 */
u32 xv:10;
u32 yv:10;
u32 xb:12;
u32 yb:12;
u32 sce:1;
u32 res1:1;
u32 nsb:1;
u32 lnpb:6;
u32 sx:10;
u32 sy_l:1;
u32 sy_h:9;
u32 ns:10;
u32 sm:10;
u32 sdx_l:3;
u32 sdx_h:2;
u32 sdy:5;
u32 sdrx:1;
u32 sdry:1;
u32 sdr1:1;
u32 res2:2;
u32 fw:12;
u32 fh_l:8;
u32 fh_h:4;
u32 res3:28;
/* Word 1 */
u32 eba0;
u32 eba1;
u32 bpp:3;
u32 sl:14;
u32 pfs:3;
u32 bam:3;
u32 res4:2;
u32 npb:6;
u32 res5:1;
u32 sat:2;
u32 scc:1;
u32 ofs0:5;
u32 ofs1:5;
u32 ofs2:5;
u32 ofs3:5;
u32 wid0:3;
u32 wid1:3;
u32 wid2:3;
u32 wid3:3;
u32 dec_sel:1;
u32 res6:28;
} __attribute__ ((packed));
union chan_param_mem {
struct chan_param_mem_planar pp;
struct chan_param_mem_interleaved ip;
};
static void ipu_ch_param_set_plane_offset(union chan_param_mem *params,
u32 u_offset, u32 v_offset)
{
params->pp.ubo_l = u_offset & 0x7ff;
params->pp.ubo_h = u_offset >> 11;
params->pp.vbo_l = v_offset & 0x1ffff;
params->pp.vbo_h = v_offset >> 17;
}
static void ipu_ch_param_set_size(union chan_param_mem *params,
uint32_t pixel_fmt, uint16_t width,
uint16_t height, uint16_t stride)
{
u32 u_offset;
u32 v_offset;
params->pp.fw = width - 1;
params->pp.fh_l = height - 1;
params->pp.fh_h = (height - 1) >> 8;
params->pp.sl = stride - 1;
switch (pixel_fmt) {
case IPU_PIX_FMT_GENERIC:
/*Represents 8-bit Generic data */
params->pp.bpp = 3;
params->pp.pfs = 7;
params->pp.npb = 31;
params->pp.sat = 2; /* SAT = use 32-bit access */
break;
case IPU_PIX_FMT_GENERIC_32:
/*Represents 32-bit Generic data */
params->pp.bpp = 0;
params->pp.pfs = 7;
params->pp.npb = 7;
params->pp.sat = 2; /* SAT = use 32-bit access */
break;
case IPU_PIX_FMT_RGB565:
params->ip.bpp = 2;
params->ip.pfs = 4;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
params->ip.ofs0 = 0; /* Red bit offset */
params->ip.ofs1 = 5; /* Green bit offset */
params->ip.ofs2 = 11; /* Blue bit offset */
params->ip.ofs3 = 16; /* Alpha bit offset */
params->ip.wid0 = 4; /* Red bit width - 1 */
params->ip.wid1 = 5; /* Green bit width - 1 */
params->ip.wid2 = 4; /* Blue bit width - 1 */
break;
case IPU_PIX_FMT_BGR24:
params->ip.bpp = 1; /* 24 BPP & RGB PFS */
params->ip.pfs = 4;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
params->ip.ofs0 = 0; /* Red bit offset */
params->ip.ofs1 = 8; /* Green bit offset */
params->ip.ofs2 = 16; /* Blue bit offset */
params->ip.ofs3 = 24; /* Alpha bit offset */
params->ip.wid0 = 7; /* Red bit width - 1 */
params->ip.wid1 = 7; /* Green bit width - 1 */
params->ip.wid2 = 7; /* Blue bit width - 1 */
break;
case IPU_PIX_FMT_RGB24:
params->ip.bpp = 1; /* 24 BPP & RGB PFS */
params->ip.pfs = 4;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
params->ip.ofs0 = 16; /* Red bit offset */
params->ip.ofs1 = 8; /* Green bit offset */
params->ip.ofs2 = 0; /* Blue bit offset */
params->ip.ofs3 = 24; /* Alpha bit offset */
params->ip.wid0 = 7; /* Red bit width - 1 */
params->ip.wid1 = 7; /* Green bit width - 1 */
params->ip.wid2 = 7; /* Blue bit width - 1 */
break;
case IPU_PIX_FMT_BGRA32:
case IPU_PIX_FMT_BGR32:
params->ip.bpp = 0;
params->ip.pfs = 4;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
params->ip.ofs0 = 8; /* Red bit offset */
params->ip.ofs1 = 16; /* Green bit offset */
params->ip.ofs2 = 24; /* Blue bit offset */
params->ip.ofs3 = 0; /* Alpha bit offset */
params->ip.wid0 = 7; /* Red bit width - 1 */
params->ip.wid1 = 7; /* Green bit width - 1 */
params->ip.wid2 = 7; /* Blue bit width - 1 */
params->ip.wid3 = 7; /* Alpha bit width - 1 */
break;
case IPU_PIX_FMT_RGBA32:
case IPU_PIX_FMT_RGB32:
params->ip.bpp = 0;
params->ip.pfs = 4;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
params->ip.ofs0 = 24; /* Red bit offset */
params->ip.ofs1 = 16; /* Green bit offset */
params->ip.ofs2 = 8; /* Blue bit offset */
params->ip.ofs3 = 0; /* Alpha bit offset */
params->ip.wid0 = 7; /* Red bit width - 1 */
params->ip.wid1 = 7; /* Green bit width - 1 */
params->ip.wid2 = 7; /* Blue bit width - 1 */
params->ip.wid3 = 7; /* Alpha bit width - 1 */
break;
case IPU_PIX_FMT_ABGR32:
params->ip.bpp = 0;
params->ip.pfs = 4;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
params->ip.ofs0 = 8; /* Red bit offset */
params->ip.ofs1 = 16; /* Green bit offset */
params->ip.ofs2 = 24; /* Blue bit offset */
params->ip.ofs3 = 0; /* Alpha bit offset */
params->ip.wid0 = 7; /* Red bit width - 1 */
params->ip.wid1 = 7; /* Green bit width - 1 */
params->ip.wid2 = 7; /* Blue bit width - 1 */
params->ip.wid3 = 7; /* Alpha bit width - 1 */
break;
case IPU_PIX_FMT_UYVY:
params->ip.bpp = 2;
params->ip.pfs = 6;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
break;
case IPU_PIX_FMT_YUV420P2:
case IPU_PIX_FMT_YUV420P:
params->ip.bpp = 3;
params->ip.pfs = 3;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
u_offset = stride * height;
v_offset = u_offset + u_offset / 4;
ipu_ch_param_set_plane_offset(params, u_offset, v_offset);
break;
case IPU_PIX_FMT_YVU422P:
params->ip.bpp = 3;
params->ip.pfs = 2;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
v_offset = stride * height;
u_offset = v_offset + v_offset / 2;
ipu_ch_param_set_plane_offset(params, u_offset, v_offset);
break;
case IPU_PIX_FMT_YUV422P:
params->ip.bpp = 3;
params->ip.pfs = 2;
params->ip.npb = 7;
params->ip.sat = 2; /* SAT = 32-bit access */
u_offset = stride * height;
v_offset = u_offset + u_offset / 2;
ipu_ch_param_set_plane_offset(params, u_offset, v_offset);
break;
default:
dev_err(ipu_data.dev,
"mx3 ipu: unimplemented pixel format %d\n", pixel_fmt);
break;
}
params->pp.nsb = 1;
}
static void ipu_ch_param_set_burst_size(union chan_param_mem *params,
uint16_t burst_pixels)
{
params->pp.npb = burst_pixels - 1;
}
static void ipu_ch_param_set_buffer(union chan_param_mem *params,
dma_addr_t buf0, dma_addr_t buf1)
{
params->pp.eba0 = buf0;
params->pp.eba1 = buf1;
}
static void ipu_ch_param_set_rotation(union chan_param_mem *params,
enum ipu_rotate_mode rotate)
{
params->pp.bam = rotate;
}
static void ipu_write_param_mem(uint32_t addr, uint32_t *data,
uint32_t num_words)
{
for (; num_words > 0; num_words--) {
dev_dbg(ipu_data.dev,
"write param mem - addr = 0x%08X, data = 0x%08X\n",
addr, *data);
idmac_write_ipureg(&ipu_data, addr, IPU_IMA_ADDR);
idmac_write_ipureg(&ipu_data, *data++, IPU_IMA_DATA);
addr++;
if ((addr & 0x7) == 5) {
addr &= ~0x7; /* set to word 0 */
addr += 8; /* increment to next row */
}
}
}
static int calc_resize_coeffs(uint32_t in_size, uint32_t out_size,
uint32_t *resize_coeff,
uint32_t *downsize_coeff)
{
uint32_t temp_size;
uint32_t temp_downsize;
*resize_coeff = 1 << 13;
*downsize_coeff = 1 << 13;
/* Cannot downsize more than 8:1 */
if (out_size << 3 < in_size)
return -EINVAL;
/* compute downsizing coefficient */
temp_downsize = 0;
temp_size = in_size;
while (temp_size >= out_size * 2 && temp_downsize < 2) {
temp_size >>= 1;
temp_downsize++;
}
*downsize_coeff = temp_downsize;
/*
* compute resizing coefficient using the following formula:
* resize_coeff = M*(SI -1)/(SO - 1)
* where M = 2^13, SI - input size, SO - output size
*/
*resize_coeff = (8192L * (temp_size - 1)) / (out_size - 1);
if (*resize_coeff >= 16384L) {
dev_err(ipu_data.dev, "Warning! Overflow on resize coeff.\n");
*resize_coeff = 0x3FFF;
}
dev_dbg(ipu_data.dev, "resizing from %u -> %u pixels, "
"downsize=%u, resize=%u.%lu (reg=%u)\n", in_size, out_size,
*downsize_coeff, *resize_coeff >= 8192L ? 1 : 0,
((*resize_coeff & 0x1FFF) * 10000L) / 8192L, *resize_coeff);
return 0;
}
static enum ipu_color_space format_to_colorspace(enum pixel_fmt fmt)
{
switch (fmt) {
case IPU_PIX_FMT_RGB565:
case IPU_PIX_FMT_BGR24:
case IPU_PIX_FMT_RGB24:
case IPU_PIX_FMT_BGR32:
case IPU_PIX_FMT_RGB32:
return IPU_COLORSPACE_RGB;
default:
return IPU_COLORSPACE_YCBCR;
}
}
static int ipu_ic_init_prpenc(struct ipu *ipu,
union ipu_channel_param *params, bool src_is_csi)
{
uint32_t reg, ic_conf;
uint32_t downsize_coeff, resize_coeff;
enum ipu_color_space in_fmt, out_fmt;
/* Setup vertical resizing */
calc_resize_coeffs(params->video.in_height,
params->video.out_height,
&resize_coeff, &downsize_coeff);
reg = (downsize_coeff << 30) | (resize_coeff << 16);
/* Setup horizontal resizing */
calc_resize_coeffs(params->video.in_width,
params->video.out_width,
&resize_coeff, &downsize_coeff);
reg |= (downsize_coeff << 14) | resize_coeff;
/* Setup color space conversion */
in_fmt = format_to_colorspace(params->video.in_pixel_fmt);
out_fmt = format_to_colorspace(params->video.out_pixel_fmt);
/*
* Colourspace conversion unsupported yet - see _init_csc() in
* Freescale sources
*/
if (in_fmt != out_fmt) {
dev_err(ipu->dev, "Colourspace conversion unsupported!\n");
return -EOPNOTSUPP;
}
idmac_write_icreg(ipu, reg, IC_PRP_ENC_RSC);
ic_conf = idmac_read_icreg(ipu, IC_CONF);
if (src_is_csi)
ic_conf &= ~IC_CONF_RWS_EN;
else
ic_conf |= IC_CONF_RWS_EN;
idmac_write_icreg(ipu, ic_conf, IC_CONF);
return 0;
}
static uint32_t dma_param_addr(uint32_t dma_ch)
{
/* Channel Parameter Memory */
return 0x10000 | (dma_ch << 4);
}
static void ipu_channel_set_priority(struct ipu *ipu, enum ipu_channel channel,
bool prio)
{
u32 reg = idmac_read_icreg(ipu, IDMAC_CHA_PRI);
if (prio)
reg |= 1UL << channel;
else
reg &= ~(1UL << channel);
idmac_write_icreg(ipu, reg, IDMAC_CHA_PRI);
dump_idmac_reg(ipu);
}
static uint32_t ipu_channel_conf_mask(enum ipu_channel channel)
{
uint32_t mask;
switch (channel) {
case IDMAC_IC_0:
case IDMAC_IC_7:
mask = IPU_CONF_CSI_EN | IPU_CONF_IC_EN;
break;
case IDMAC_SDC_0:
case IDMAC_SDC_1:
mask = IPU_CONF_SDC_EN | IPU_CONF_DI_EN;
break;
default:
mask = 0;
break;
}
return mask;
}
/**
* ipu_enable_channel() - enable an IPU channel.
* @idmac: IPU DMAC context.
* @ichan: IDMAC channel.
* @return: 0 on success or negative error code on failure.
*/
static int ipu_enable_channel(struct idmac *idmac, struct idmac_channel *ichan)
{
struct ipu *ipu = to_ipu(idmac);
enum ipu_channel channel = ichan->dma_chan.chan_id;
uint32_t reg;
unsigned long flags;
spin_lock_irqsave(&ipu->lock, flags);
/* Reset to buffer 0 */
idmac_write_ipureg(ipu, 1UL << channel, IPU_CHA_CUR_BUF);
ichan->active_buffer = 0;
ichan->status = IPU_CHANNEL_ENABLED;
switch (channel) {
case IDMAC_SDC_0:
case IDMAC_SDC_1:
case IDMAC_IC_7:
ipu_channel_set_priority(ipu, channel, true);
default:
break;
}
reg = idmac_read_icreg(ipu, IDMAC_CHA_EN);
idmac_write_icreg(ipu, reg | (1UL << channel), IDMAC_CHA_EN);
ipu_ic_enable_task(ipu, channel);
spin_unlock_irqrestore(&ipu->lock, flags);
return 0;
}
/**
* ipu_init_channel_buffer() - initialize a buffer for logical IPU channel.
* @ichan: IDMAC channel.
* @pixel_fmt: pixel format of buffer. Pixel format is a FOURCC ASCII code.
* @width: width of buffer in pixels.
* @height: height of buffer in pixels.
* @stride: stride length of buffer in pixels.
* @rot_mode: rotation mode of buffer. A rotation setting other than
* IPU_ROTATE_VERT_FLIP should only be used for input buffers of
* rotation channels.
* @phyaddr_0: buffer 0 physical address.
* @phyaddr_1: buffer 1 physical address. Setting this to a value other than
* NULL enables double buffering mode.
* @return: 0 on success or negative error code on failure.
*/
static int ipu_init_channel_buffer(struct idmac_channel *ichan,
enum pixel_fmt pixel_fmt,
uint16_t width, uint16_t height,
uint32_t stride,
enum ipu_rotate_mode rot_mode,
dma_addr_t phyaddr_0, dma_addr_t phyaddr_1)
{
enum ipu_channel channel = ichan->dma_chan.chan_id;
struct idmac *idmac = to_idmac(ichan->dma_chan.device);
struct ipu *ipu = to_ipu(idmac);
union chan_param_mem params = {};
unsigned long flags;
uint32_t reg;
uint32_t stride_bytes;
stride_bytes = stride * bytes_per_pixel(pixel_fmt);
if (stride_bytes % 4) {
dev_err(ipu->dev,
"Stride length must be 32-bit aligned, stride = %d, bytes = %d\n",
stride, stride_bytes);
return -EINVAL;
}
/* IC channel's stride must be a multiple of 8 pixels */
if ((channel <= IDMAC_IC_13) && (stride % 8)) {
dev_err(ipu->dev, "Stride must be 8 pixel multiple\n");
return -EINVAL;
}
/* Build parameter memory data for DMA channel */
ipu_ch_param_set_size(&params, pixel_fmt, width, height, stride_bytes);
ipu_ch_param_set_buffer(&params, phyaddr_0, phyaddr_1);
ipu_ch_param_set_rotation(&params, rot_mode);
/* Some channels (rotation) have restriction on burst length */
switch (channel) {
case IDMAC_IC_7: /* Hangs with burst 8, 16, other values
invalid - Table 44-30 */
/*
ipu_ch_param_set_burst_size(&params, 8);
*/
break;
case IDMAC_SDC_0:
case IDMAC_SDC_1:
/* In original code only IPU_PIX_FMT_RGB565 was setting burst */
ipu_ch_param_set_burst_size(&params, 16);
break;
case IDMAC_IC_0:
default:
break;
}
spin_lock_irqsave(&ipu->lock, flags);
ipu_write_param_mem(dma_param_addr(channel), (uint32_t *)&params, 10);
reg = idmac_read_ipureg(ipu, IPU_CHA_DB_MODE_SEL);
if (phyaddr_1)
reg |= 1UL << channel;
else
reg &= ~(1UL << channel);
idmac_write_ipureg(ipu, reg, IPU_CHA_DB_MODE_SEL);
ichan->status = IPU_CHANNEL_READY;
spin_unlock_irqrestore(&ipu->lock, flags);
return 0;
}
/**
* ipu_select_buffer() - mark a channel's buffer as ready.
* @channel: channel ID.
* @buffer_n: buffer number to mark ready.
*/
static void ipu_select_buffer(enum ipu_channel channel, int buffer_n)
{
/* No locking - this is a write-one-to-set register, cleared by IPU */
if (buffer_n == 0)
/* Mark buffer 0 as ready. */
idmac_write_ipureg(&ipu_data, 1UL << channel, IPU_CHA_BUF0_RDY);
else
/* Mark buffer 1 as ready. */
idmac_write_ipureg(&ipu_data, 1UL << channel, IPU_CHA_BUF1_RDY);
}
/**
* ipu_update_channel_buffer() - update physical address of a channel buffer.
* @ichan: IDMAC channel.
* @buffer_n: buffer number to update.
* 0 or 1 are the only valid values.
* @phyaddr: buffer physical address.
* @return: Returns 0 on success or negative error code on failure. This
* function will fail if the buffer is set to ready.
*/
/* Called under spin_lock(_irqsave)(&ichan->lock) */
static int ipu_update_channel_buffer(struct idmac_channel *ichan,
int buffer_n, dma_addr_t phyaddr)
{
enum ipu_channel channel = ichan->dma_chan.chan_id;
uint32_t reg;
unsigned long flags;
spin_lock_irqsave(&ipu_data.lock, flags);
if (buffer_n == 0) {
reg = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF0_RDY);
if (reg & (1UL << channel)) {
ipu_ic_disable_task(&ipu_data, channel);
ichan->status = IPU_CHANNEL_READY;
}
/* 44.3.3.1.9 - Row Number 1 (WORD1, offset 0) */
idmac_write_ipureg(&ipu_data, dma_param_addr(channel) +
0x0008UL, IPU_IMA_ADDR);
idmac_write_ipureg(&ipu_data, phyaddr, IPU_IMA_DATA);
} else {
reg = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF1_RDY);
if (reg & (1UL << channel)) {
ipu_ic_disable_task(&ipu_data, channel);
ichan->status = IPU_CHANNEL_READY;
}
/* Check if double-buffering is already enabled */
reg = idmac_read_ipureg(&ipu_data, IPU_CHA_DB_MODE_SEL);
if (!(reg & (1UL << channel)))
idmac_write_ipureg(&ipu_data, reg | (1UL << channel),
IPU_CHA_DB_MODE_SEL);
/* 44.3.3.1.9 - Row Number 1 (WORD1, offset 1) */
idmac_write_ipureg(&ipu_data, dma_param_addr(channel) +
0x0009UL, IPU_IMA_ADDR);
idmac_write_ipureg(&ipu_data, phyaddr, IPU_IMA_DATA);
}
spin_unlock_irqrestore(&ipu_data.lock, flags);
return 0;
}
/* Called under spin_lock_irqsave(&ichan->lock) */
static int ipu_submit_buffer(struct idmac_channel *ichan,
struct idmac_tx_desc *desc, struct scatterlist *sg, int buf_idx)
{
unsigned int chan_id = ichan->dma_chan.chan_id;
struct device *dev = &ichan->dma_chan.dev->device;
int ret;
if (async_tx_test_ack(&desc->txd))
return -EINTR;
/*
* On first invocation this shouldn't be necessary, the call to
* ipu_init_channel_buffer() above will set addresses for us, so we
* could make it conditional on status >= IPU_CHANNEL_ENABLED, but
* doing it again shouldn't hurt either.
*/
ret = ipu_update_channel_buffer(ichan, buf_idx,
sg_dma_address(sg));
if (ret < 0) {
dev_err(dev, "Updating sg %p on channel 0x%x buffer %d failed!\n",
sg, chan_id, buf_idx);
return ret;
}
ipu_select_buffer(chan_id, buf_idx);
dev_dbg(dev, "Updated sg %p on channel 0x%x buffer %d\n",
sg, chan_id, buf_idx);
return 0;
}
/* Called under spin_lock_irqsave(&ichan->lock) */
static int ipu_submit_channel_buffers(struct idmac_channel *ichan,
struct idmac_tx_desc *desc)
{
struct scatterlist *sg;
int i, ret = 0;
for (i = 0, sg = desc->sg; i < 2 && sg; i++) {
if (!ichan->sg[i]) {
ichan->sg[i] = sg;
ret = ipu_submit_buffer(ichan, desc, sg, i);
if (ret < 0)
return ret;
sg = sg_next(sg);
}
}
return ret;
}
static dma_cookie_t idmac_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct idmac_tx_desc *desc = to_tx_desc(tx);
struct idmac_channel *ichan = to_idmac_chan(tx->chan);
struct idmac *idmac = to_idmac(tx->chan->device);
struct ipu *ipu = to_ipu(idmac);
struct device *dev = &ichan->dma_chan.dev->device;
dma_cookie_t cookie;
unsigned long flags;
int ret;
/* Sanity check */
if (!list_empty(&desc->list)) {
/* The descriptor doesn't belong to client */
dev_err(dev, "Descriptor %p not prepared!\n", tx);
return -EBUSY;
}
mutex_lock(&ichan->chan_mutex);
async_tx_clear_ack(tx);
if (ichan->status < IPU_CHANNEL_READY) {
struct idmac_video_param *video = &ichan->params.video;
/*
* Initial buffer assignment - the first two sg-entries from
* the descriptor will end up in the IDMAC buffers
*/
dma_addr_t dma_1 = sg_is_last(desc->sg) ? 0 :
sg_dma_address(&desc->sg[1]);
WARN_ON(ichan->sg[0] || ichan->sg[1]);
cookie = ipu_init_channel_buffer(ichan,
video->out_pixel_fmt,
video->out_width,
video->out_height,
video->out_stride,
IPU_ROTATE_NONE,
sg_dma_address(&desc->sg[0]),
dma_1);
if (cookie < 0)
goto out;
}
dev_dbg(dev, "Submitting sg %p\n", &desc->sg[0]);
cookie = ichan->dma_chan.cookie;
if (++cookie < 0)
cookie = 1;
/* from dmaengine.h: "last cookie value returned to client" */
ichan->dma_chan.cookie = cookie;
tx->cookie = cookie;
/* ipu->lock can be taken under ichan->lock, but not v.v. */
spin_lock_irqsave(&ichan->lock, flags);
list_add_tail(&desc->list, &ichan->queue);
/* submit_buffers() atomically verifies and fills empty sg slots */
ret = ipu_submit_channel_buffers(ichan, desc);
spin_unlock_irqrestore(&ichan->lock, flags);
if (ret < 0) {
cookie = ret;
goto dequeue;
}
if (ichan->status < IPU_CHANNEL_ENABLED) {
ret = ipu_enable_channel(idmac, ichan);
if (ret < 0) {
cookie = ret;
goto dequeue;
}
}
dump_idmac_reg(ipu);
dequeue:
if (cookie < 0) {
spin_lock_irqsave(&ichan->lock, flags);
list_del_init(&desc->list);
spin_unlock_irqrestore(&ichan->lock, flags);
tx->cookie = cookie;
ichan->dma_chan.cookie = cookie;
}
out:
mutex_unlock(&ichan->chan_mutex);
return cookie;
}
/* Called with ichan->chan_mutex held */
static int idmac_desc_alloc(struct idmac_channel *ichan, int n)
{
struct idmac_tx_desc *desc = vmalloc(n * sizeof(struct idmac_tx_desc));
struct idmac *idmac = to_idmac(ichan->dma_chan.device);
if (!desc)
return -ENOMEM;
/* No interrupts, just disable the tasklet for a moment */
tasklet_disable(&to_ipu(idmac)->tasklet);
ichan->n_tx_desc = n;
ichan->desc = desc;
INIT_LIST_HEAD(&ichan->queue);
INIT_LIST_HEAD(&ichan->free_list);
while (n--) {
struct dma_async_tx_descriptor *txd = &desc->txd;
memset(txd, 0, sizeof(*txd));
dma_async_tx_descriptor_init(txd, &ichan->dma_chan);
txd->tx_submit = idmac_tx_submit;
list_add(&desc->list, &ichan->free_list);
desc++;
}
tasklet_enable(&to_ipu(idmac)->tasklet);
return 0;
}
/**
* ipu_init_channel() - initialize an IPU channel.
* @idmac: IPU DMAC context.
* @ichan: pointer to the channel object.
* @return 0 on success or negative error code on failure.
*/
static int ipu_init_channel(struct idmac *idmac, struct idmac_channel *ichan)
{
union ipu_channel_param *params = &ichan->params;
uint32_t ipu_conf;
enum ipu_channel channel = ichan->dma_chan.chan_id;
unsigned long flags;
uint32_t reg;
struct ipu *ipu = to_ipu(idmac);
int ret = 0, n_desc = 0;
dev_dbg(ipu->dev, "init channel = %d\n", channel);
if (channel != IDMAC_SDC_0 && channel != IDMAC_SDC_1 &&
channel != IDMAC_IC_7)
return -EINVAL;
spin_lock_irqsave(&ipu->lock, flags);
switch (channel) {
case IDMAC_IC_7:
n_desc = 16;
reg = idmac_read_icreg(ipu, IC_CONF);
idmac_write_icreg(ipu, reg & ~IC_CONF_CSI_MEM_WR_EN, IC_CONF);
break;
case IDMAC_IC_0:
n_desc = 16;
reg = idmac_read_ipureg(ipu, IPU_FS_PROC_FLOW);
idmac_write_ipureg(ipu, reg & ~FS_ENC_IN_VALID, IPU_FS_PROC_FLOW);
ret = ipu_ic_init_prpenc(ipu, params, true);
break;
case IDMAC_SDC_0:
case IDMAC_SDC_1:
n_desc = 4;
default:
break;
}
ipu->channel_init_mask |= 1L << channel;
/* Enable IPU sub module */
ipu_conf = idmac_read_ipureg(ipu, IPU_CONF) |
ipu_channel_conf_mask(channel);
idmac_write_ipureg(ipu, ipu_conf, IPU_CONF);
spin_unlock_irqrestore(&ipu->lock, flags);
if (n_desc && !ichan->desc)
ret = idmac_desc_alloc(ichan, n_desc);
dump_idmac_reg(ipu);
return ret;
}
/**
* ipu_uninit_channel() - uninitialize an IPU channel.
* @idmac: IPU DMAC context.
* @ichan: pointer to the channel object.
*/
static void ipu_uninit_channel(struct idmac *idmac, struct idmac_channel *ichan)
{
enum ipu_channel channel = ichan->dma_chan.chan_id;
unsigned long flags;
uint32_t reg;
unsigned long chan_mask = 1UL << channel;
uint32_t ipu_conf;
struct ipu *ipu = to_ipu(idmac);
spin_lock_irqsave(&ipu->lock, flags);
if (!(ipu->channel_init_mask & chan_mask)) {
dev_err(ipu->dev, "Channel already uninitialized %d\n",
channel);
spin_unlock_irqrestore(&ipu->lock, flags);
return;
}
/* Reset the double buffer */
reg = idmac_read_ipureg(ipu, IPU_CHA_DB_MODE_SEL);
idmac_write_ipureg(ipu, reg & ~chan_mask, IPU_CHA_DB_MODE_SEL);
ichan->sec_chan_en = false;
switch (channel) {
case IDMAC_IC_7:
reg = idmac_read_icreg(ipu, IC_CONF);
idmac_write_icreg(ipu, reg & ~(IC_CONF_RWS_EN | IC_CONF_PRPENC_EN),
IC_CONF);
break;
case IDMAC_IC_0:
reg = idmac_read_icreg(ipu, IC_CONF);
idmac_write_icreg(ipu, reg & ~(IC_CONF_PRPENC_EN | IC_CONF_PRPENC_CSC1),
IC_CONF);
break;
case IDMAC_SDC_0:
case IDMAC_SDC_1:
default:
break;
}
ipu->channel_init_mask &= ~(1L << channel);
ipu_conf = idmac_read_ipureg(ipu, IPU_CONF) &
~ipu_channel_conf_mask(channel);
idmac_write_ipureg(ipu, ipu_conf, IPU_CONF);
spin_unlock_irqrestore(&ipu->lock, flags);
ichan->n_tx_desc = 0;
vfree(ichan->desc);
ichan->desc = NULL;
}
/**
* ipu_disable_channel() - disable an IPU channel.
* @idmac: IPU DMAC context.
* @ichan: channel object pointer.
* @wait_for_stop: flag to set whether to wait for channel end of frame or
* return immediately.
* @return: 0 on success or negative error code on failure.
*/
static int ipu_disable_channel(struct idmac *idmac, struct idmac_channel *ichan,
bool wait_for_stop)
{
enum ipu_channel channel = ichan->dma_chan.chan_id;
struct ipu *ipu = to_ipu(idmac);
uint32_t reg;
unsigned long flags;
unsigned long chan_mask = 1UL << channel;
unsigned int timeout;
if (wait_for_stop && channel != IDMAC_SDC_1 && channel != IDMAC_SDC_0) {
timeout = 40;
/* This waiting always fails. Related to spurious irq problem */
while ((idmac_read_icreg(ipu, IDMAC_CHA_BUSY) & chan_mask) ||
(ipu_channel_status(ipu, channel) == TASK_STAT_ACTIVE)) {
timeout--;
msleep(10);
if (!timeout) {
dev_dbg(ipu->dev,
"Warning: timeout waiting for channel %u to "
"stop: buf0_rdy = 0x%08X, buf1_rdy = 0x%08X, "
"busy = 0x%08X, tstat = 0x%08X\n", channel,
idmac_read_ipureg(ipu, IPU_CHA_BUF0_RDY),
idmac_read_ipureg(ipu, IPU_CHA_BUF1_RDY),
idmac_read_icreg(ipu, IDMAC_CHA_BUSY),
idmac_read_ipureg(ipu, IPU_TASKS_STAT));
break;
}
}
dev_dbg(ipu->dev, "timeout = %d * 10ms\n", 40 - timeout);
}
/* SDC BG and FG must be disabled before DMA is disabled */
if (wait_for_stop && (channel == IDMAC_SDC_0 ||
channel == IDMAC_SDC_1)) {
for (timeout = 5;
timeout && !ipu_irq_status(ichan->eof_irq); timeout--)
msleep(5);
}
spin_lock_irqsave(&ipu->lock, flags);
/* Disable IC task */
ipu_ic_disable_task(ipu, channel);
/* Disable DMA channel(s) */
reg = idmac_read_icreg(ipu, IDMAC_CHA_EN);
idmac_write_icreg(ipu, reg & ~chan_mask, IDMAC_CHA_EN);
/*
* Problem (observed with channel DMAIC_7): after enabling the channel
* and initialising buffers, there comes an interrupt with current still
* pointing at buffer 0, whereas it should use buffer 0 first and only
* generate an interrupt when it is done, then current should already
* point to buffer 1. This spurious interrupt also comes on channel
* DMASDC_0. With DMAIC_7 normally, is we just leave the ISR after the
* first interrupt, there comes the second with current correctly
* pointing to buffer 1 this time. But sometimes this second interrupt
* doesn't come and the channel hangs. Clearing BUFx_RDY when disabling
* the channel seems to prevent the channel from hanging, but it doesn't
* prevent the spurious interrupt. This might also be unsafe. Think
* about the IDMAC controller trying to switch to a buffer, when we
* clear the ready bit, and re-enable it a moment later.
*/
reg = idmac_read_ipureg(ipu, IPU_CHA_BUF0_RDY);
idmac_write_ipureg(ipu, 0, IPU_CHA_BUF0_RDY);
idmac_write_ipureg(ipu, reg & ~(1UL << channel), IPU_CHA_BUF0_RDY);
reg = idmac_read_ipureg(ipu, IPU_CHA_BUF1_RDY);
idmac_write_ipureg(ipu, 0, IPU_CHA_BUF1_RDY);
idmac_write_ipureg(ipu, reg & ~(1UL << channel), IPU_CHA_BUF1_RDY);
spin_unlock_irqrestore(&ipu->lock, flags);
return 0;
}
static struct scatterlist *idmac_sg_next(struct idmac_channel *ichan,
struct idmac_tx_desc **desc, struct scatterlist *sg)
{
struct scatterlist *sgnew = sg ? sg_next(sg) : NULL;
if (sgnew)
/* next sg-element in this list */
return sgnew;
if ((*desc)->list.next == &ichan->queue)
/* No more descriptors on the queue */
return NULL;
/* Fetch next descriptor */
*desc = list_entry((*desc)->list.next, struct idmac_tx_desc, list);
return (*desc)->sg;
}
/*
* We have several possibilities here:
* current BUF next BUF
*
* not last sg next not last sg
* not last sg next last sg
* last sg first sg from next descriptor
* last sg NULL
*
* Besides, the descriptor queue might be empty or not. We process all these
* cases carefully.
*/
static irqreturn_t idmac_interrupt(int irq, void *dev_id)
{
struct idmac_channel *ichan = dev_id;
struct device *dev = &ichan->dma_chan.dev->device;
unsigned int chan_id = ichan->dma_chan.chan_id;
struct scatterlist **sg, *sgnext, *sgnew = NULL;
/* Next transfer descriptor */
struct idmac_tx_desc *desc, *descnew;
dma_async_tx_callback callback;
void *callback_param;
bool done = false;
u32 ready0, ready1, curbuf, err;
unsigned long flags;
/* IDMAC has cleared the respective BUFx_RDY bit, we manage the buffer */
dev_dbg(dev, "IDMAC irq %d, buf %d\n", irq, ichan->active_buffer);
spin_lock_irqsave(&ipu_data.lock, flags);
ready0 = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF0_RDY);
ready1 = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF1_RDY);
curbuf = idmac_read_ipureg(&ipu_data, IPU_CHA_CUR_BUF);
err = idmac_read_ipureg(&ipu_data, IPU_INT_STAT_4);
if (err & (1 << chan_id)) {
idmac_write_ipureg(&ipu_data, 1 << chan_id, IPU_INT_STAT_4);
spin_unlock_irqrestore(&ipu_data.lock, flags);
/*
* Doing this
* ichan->sg[0] = ichan->sg[1] = NULL;
* you can force channel re-enable on the next tx_submit(), but
* this is dirty - think about descriptors with multiple
* sg elements.
*/
dev_warn(dev, "NFB4EOF on channel %d, ready %x, %x, cur %x\n",
chan_id, ready0, ready1, curbuf);
return IRQ_HANDLED;
}
spin_unlock_irqrestore(&ipu_data.lock, flags);
/* Other interrupts do not interfere with this channel */
spin_lock(&ichan->lock);
if (unlikely(chan_id != IDMAC_SDC_0 && chan_id != IDMAC_SDC_1 &&
((curbuf >> chan_id) & 1) == ichan->active_buffer &&
!list_is_last(ichan->queue.next, &ichan->queue))) {
int i = 100;
/* This doesn't help. See comment in ipu_disable_channel() */
while (--i) {
curbuf = idmac_read_ipureg(&ipu_data, IPU_CHA_CUR_BUF);
if (((curbuf >> chan_id) & 1) != ichan->active_buffer)
break;
cpu_relax();
}
if (!i) {
spin_unlock(&ichan->lock);
dev_dbg(dev,
"IRQ on active buffer on channel %x, active "
"%d, ready %x, %x, current %x!\n", chan_id,
ichan->active_buffer, ready0, ready1, curbuf);
return IRQ_NONE;
} else
dev_dbg(dev,
"Buffer deactivated on channel %x, active "
"%d, ready %x, %x, current %x, rest %d!\n", chan_id,
ichan->active_buffer, ready0, ready1, curbuf, i);
}
if (unlikely((ichan->active_buffer && (ready1 >> chan_id) & 1) ||
(!ichan->active_buffer && (ready0 >> chan_id) & 1)
)) {
spin_unlock(&ichan->lock);
dev_dbg(dev,
"IRQ with active buffer still ready on channel %x, "
"active %d, ready %x, %x!\n", chan_id,
ichan->active_buffer, ready0, ready1);
return IRQ_NONE;
}
if (unlikely(list_empty(&ichan->queue))) {
ichan->sg[ichan->active_buffer] = NULL;
spin_unlock(&ichan->lock);
dev_err(dev,
"IRQ without queued buffers on channel %x, active %d, "
"ready %x, %x!\n", chan_id,
ichan->active_buffer, ready0, ready1);
return IRQ_NONE;
}
/*
* active_buffer is a software flag, it shows which buffer we are
* currently expecting back from the hardware, IDMAC should be
* processing the other buffer already
*/
sg = &ichan->sg[ichan->active_buffer];
sgnext = ichan->sg[!ichan->active_buffer];
if (!*sg) {
spin_unlock(&ichan->lock);
return IRQ_HANDLED;
}
desc = list_entry(ichan->queue.next, struct idmac_tx_desc, list);
descnew = desc;
dev_dbg(dev, "IDMAC irq %d, dma 0x%08x, next dma 0x%08x, current %d, curbuf 0x%08x\n",
irq, sg_dma_address(*sg), sgnext ? sg_dma_address(sgnext) : 0, ichan->active_buffer, curbuf);
/* Find the descriptor of sgnext */
sgnew = idmac_sg_next(ichan, &descnew, *sg);
if (sgnext != sgnew)
dev_err(dev, "Submitted buffer %p, next buffer %p\n", sgnext, sgnew);
/*
* if sgnext == NULL sg must be the last element in a scatterlist and
* queue must be empty
*/
if (unlikely(!sgnext)) {
if (!WARN_ON(sg_next(*sg)))
dev_dbg(dev, "Underrun on channel %x\n", chan_id);
ichan->sg[!ichan->active_buffer] = sgnew;
if (unlikely(sgnew)) {
ipu_submit_buffer(ichan, descnew, sgnew, !ichan->active_buffer);
} else {
spin_lock_irqsave(&ipu_data.lock, flags);
ipu_ic_disable_task(&ipu_data, chan_id);
spin_unlock_irqrestore(&ipu_data.lock, flags);
ichan->status = IPU_CHANNEL_READY;
/* Continue to check for complete descriptor */
}
}
/* Calculate and submit the next sg element */
sgnew = idmac_sg_next(ichan, &descnew, sgnew);
if (unlikely(!sg_next(*sg)) || !sgnext) {
/*
* Last element in scatterlist done, remove from the queue,
* _init for debugging
*/
list_del_init(&desc->list);
done = true;
}
*sg = sgnew;
if (likely(sgnew) &&
ipu_submit_buffer(ichan, descnew, sgnew, ichan->active_buffer) < 0) {
callback = desc->txd.callback;
callback_param = desc->txd.callback_param;
spin_unlock(&ichan->lock);
callback(callback_param);
spin_lock(&ichan->lock);
}
/* Flip the active buffer - even if update above failed */
ichan->active_buffer = !ichan->active_buffer;
if (done)
ichan->completed = desc->txd.cookie;
callback = desc->txd.callback;
callback_param = desc->txd.callback_param;
spin_unlock(&ichan->lock);
if (done && (desc->txd.flags & DMA_PREP_INTERRUPT) && callback)
callback(callback_param);
return IRQ_HANDLED;
}
static void ipu_gc_tasklet(unsigned long arg)
{
struct ipu *ipu = (struct ipu *)arg;
int i;
for (i = 0; i < IPU_CHANNELS_NUM; i++) {
struct idmac_channel *ichan = ipu->channel + i;
struct idmac_tx_desc *desc;
unsigned long flags;
struct scatterlist *sg;
int j, k;
for (j = 0; j < ichan->n_tx_desc; j++) {
desc = ichan->desc + j;
spin_lock_irqsave(&ichan->lock, flags);
if (async_tx_test_ack(&desc->txd)) {
list_move(&desc->list, &ichan->free_list);
for_each_sg(desc->sg, sg, desc->sg_len, k) {
if (ichan->sg[0] == sg)
ichan->sg[0] = NULL;
else if (ichan->sg[1] == sg)
ichan->sg[1] = NULL;
}
async_tx_clear_ack(&desc->txd);
}
spin_unlock_irqrestore(&ichan->lock, flags);
}
}
}
/* Allocate and initialise a transfer descriptor. */
static struct dma_async_tx_descriptor *idmac_prep_slave_sg(struct dma_chan *chan,
struct scatterlist *sgl, unsigned int sg_len,
enum dma_data_direction direction, unsigned long tx_flags)
{
struct idmac_channel *ichan = to_idmac_chan(chan);
struct idmac_tx_desc *desc = NULL;
struct dma_async_tx_descriptor *txd = NULL;
unsigned long flags;
/* We only can handle these three channels so far */
if (chan->chan_id != IDMAC_SDC_0 && chan->chan_id != IDMAC_SDC_1 &&
chan->chan_id != IDMAC_IC_7)
return NULL;
if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE) {
dev_err(chan->device->dev, "Invalid DMA direction %d!\n", direction);
return NULL;
}
mutex_lock(&ichan->chan_mutex);
spin_lock_irqsave(&ichan->lock, flags);
if (!list_empty(&ichan->free_list)) {
desc = list_entry(ichan->free_list.next,
struct idmac_tx_desc, list);
list_del_init(&desc->list);
desc->sg_len = sg_len;
desc->sg = sgl;
txd = &desc->txd;
txd->flags = tx_flags;
}
spin_unlock_irqrestore(&ichan->lock, flags);
mutex_unlock(&ichan->chan_mutex);
tasklet_schedule(&to_ipu(to_idmac(chan->device))->tasklet);
return txd;
}
/* Re-select the current buffer and re-activate the channel */
static void idmac_issue_pending(struct dma_chan *chan)
{
struct idmac_channel *ichan = to_idmac_chan(chan);
struct idmac *idmac = to_idmac(chan->device);
struct ipu *ipu = to_ipu(idmac);
unsigned long flags;
/* This is not always needed, but doesn't hurt either */
spin_lock_irqsave(&ipu->lock, flags);
ipu_select_buffer(chan->chan_id, ichan->active_buffer);
spin_unlock_irqrestore(&ipu->lock, flags);
/*
* Might need to perform some parts of initialisation from
* ipu_enable_channel(), but not all, we do not want to reset to buffer
* 0, don't need to set priority again either, but re-enabling the task
* and the channel might be a good idea.
*/
}
static void __idmac_terminate_all(struct dma_chan *chan)
{
struct idmac_channel *ichan = to_idmac_chan(chan);
struct idmac *idmac = to_idmac(chan->device);
unsigned long flags;
int i;
ipu_disable_channel(idmac, ichan,
ichan->status >= IPU_CHANNEL_ENABLED);
tasklet_disable(&to_ipu(idmac)->tasklet);
/* ichan->queue is modified in ISR, have to spinlock */
spin_lock_irqsave(&ichan->lock, flags);
list_splice_init(&ichan->queue, &ichan->free_list);
if (ichan->desc)
for (i = 0; i < ichan->n_tx_desc; i++) {
struct idmac_tx_desc *desc = ichan->desc + i;
if (list_empty(&desc->list))
/* Descriptor was prepared, but not submitted */
list_add(&desc->list, &ichan->free_list);
async_tx_clear_ack(&desc->txd);
}
ichan->sg[0] = NULL;
ichan->sg[1] = NULL;
spin_unlock_irqrestore(&ichan->lock, flags);
tasklet_enable(&to_ipu(idmac)->tasklet);
ichan->status = IPU_CHANNEL_INITIALIZED;
}
static void idmac_terminate_all(struct dma_chan *chan)
{
struct idmac_channel *ichan = to_idmac_chan(chan);
mutex_lock(&ichan->chan_mutex);
__idmac_terminate_all(chan);
mutex_unlock(&ichan->chan_mutex);
}
#ifdef DEBUG
static irqreturn_t ic_sof_irq(int irq, void *dev_id)
{
struct idmac_channel *ichan = dev_id;
printk(KERN_DEBUG "Got SOF IRQ %d on Channel %d\n",
irq, ichan->dma_chan.chan_id);
disable_irq_nosync(irq);
return IRQ_HANDLED;
}
static irqreturn_t ic_eof_irq(int irq, void *dev_id)
{
struct idmac_channel *ichan = dev_id;
printk(KERN_DEBUG "Got EOF IRQ %d on Channel %d\n",
irq, ichan->dma_chan.chan_id);
disable_irq_nosync(irq);
return IRQ_HANDLED;
}
static int ic_sof = -EINVAL, ic_eof = -EINVAL;
#endif
static int idmac_alloc_chan_resources(struct dma_chan *chan)
{
struct idmac_channel *ichan = to_idmac_chan(chan);
struct idmac *idmac = to_idmac(chan->device);
int ret;
/* dmaengine.c now guarantees to only offer free channels */
BUG_ON(chan->client_count > 1);
WARN_ON(ichan->status != IPU_CHANNEL_FREE);
chan->cookie = 1;
ichan->completed = -ENXIO;
ret = ipu_irq_map(chan->chan_id);
if (ret < 0)
goto eimap;
ichan->eof_irq = ret;
/*
* Important to first disable the channel, because maybe someone
* used it before us, e.g., the bootloader
*/
ipu_disable_channel(idmac, ichan, true);
ret = ipu_init_channel(idmac, ichan);
if (ret < 0)
goto eichan;
ret = request_irq(ichan->eof_irq, idmac_interrupt, 0,
ichan->eof_name, ichan);
if (ret < 0)
goto erirq;
#ifdef DEBUG
if (chan->chan_id == IDMAC_IC_7) {
ic_sof = ipu_irq_map(69);
if (ic_sof > 0)
request_irq(ic_sof, ic_sof_irq, 0, "IC SOF", ichan);
ic_eof = ipu_irq_map(70);
if (ic_eof > 0)
request_irq(ic_eof, ic_eof_irq, 0, "IC EOF", ichan);
}
#endif
ichan->status = IPU_CHANNEL_INITIALIZED;
dev_dbg(&chan->dev->device, "Found channel 0x%x, irq %d\n",
chan->chan_id, ichan->eof_irq);
return ret;
erirq:
ipu_uninit_channel(idmac, ichan);
eichan:
ipu_irq_unmap(chan->chan_id);
eimap:
return ret;
}
static void idmac_free_chan_resources(struct dma_chan *chan)
{
struct idmac_channel *ichan = to_idmac_chan(chan);
struct idmac *idmac = to_idmac(chan->device);
mutex_lock(&ichan->chan_mutex);
__idmac_terminate_all(chan);
if (ichan->status > IPU_CHANNEL_FREE) {
#ifdef DEBUG
if (chan->chan_id == IDMAC_IC_7) {
if (ic_sof > 0) {
free_irq(ic_sof, ichan);
ipu_irq_unmap(69);
ic_sof = -EINVAL;
}
if (ic_eof > 0) {
free_irq(ic_eof, ichan);
ipu_irq_unmap(70);
ic_eof = -EINVAL;
}
}
#endif
free_irq(ichan->eof_irq, ichan);
ipu_irq_unmap(chan->chan_id);
}
ichan->status = IPU_CHANNEL_FREE;
ipu_uninit_channel(idmac, ichan);
mutex_unlock(&ichan->chan_mutex);
tasklet_schedule(&to_ipu(idmac)->tasklet);
}
static enum dma_status idmac_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used)
{
struct idmac_channel *ichan = to_idmac_chan(chan);
if (done)
*done = ichan->completed;
if (used)
*used = chan->cookie;
if (cookie != chan->cookie)
return DMA_ERROR;
return DMA_SUCCESS;
}
static int __init ipu_idmac_init(struct ipu *ipu)
{
struct idmac *idmac = &ipu->idmac;
struct dma_device *dma = &idmac->dma;
int i;
dma_cap_set(DMA_SLAVE, dma->cap_mask);
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
/* Compulsory common fields */
dma->dev = ipu->dev;
dma->device_alloc_chan_resources = idmac_alloc_chan_resources;
dma->device_free_chan_resources = idmac_free_chan_resources;
dma->device_is_tx_complete = idmac_is_tx_complete;
dma->device_issue_pending = idmac_issue_pending;
/* Compulsory for DMA_SLAVE fields */
dma->device_prep_slave_sg = idmac_prep_slave_sg;
dma->device_terminate_all = idmac_terminate_all;
INIT_LIST_HEAD(&dma->channels);
for (i = 0; i < IPU_CHANNELS_NUM; i++) {
struct idmac_channel *ichan = ipu->channel + i;
struct dma_chan *dma_chan = &ichan->dma_chan;
spin_lock_init(&ichan->lock);
mutex_init(&ichan->chan_mutex);
ichan->status = IPU_CHANNEL_FREE;
ichan->sec_chan_en = false;
ichan->completed = -ENXIO;
snprintf(ichan->eof_name, sizeof(ichan->eof_name), "IDMAC EOF %d", i);
dma_chan->device = &idmac->dma;
dma_chan->cookie = 1;
dma_chan->chan_id = i;
list_add_tail(&dma_chan->device_node, &dma->channels);
}
idmac_write_icreg(ipu, 0x00000070, IDMAC_CONF);
return dma_async_device_register(&idmac->dma);
}
static void __exit ipu_idmac_exit(struct ipu *ipu)
{
int i;
struct idmac *idmac = &ipu->idmac;
for (i = 0; i < IPU_CHANNELS_NUM; i++) {
struct idmac_channel *ichan = ipu->channel + i;
idmac_terminate_all(&ichan->dma_chan);
idmac_prep_slave_sg(&ichan->dma_chan, NULL, 0, DMA_NONE, 0);
}
dma_async_device_unregister(&idmac->dma);
}
/*****************************************************************************
* IPU common probe / remove
*/
static int __init ipu_probe(struct platform_device *pdev)
{
struct ipu_platform_data *pdata = pdev->dev.platform_data;
struct resource *mem_ipu, *mem_ic;
int ret;
spin_lock_init(&ipu_data.lock);
mem_ipu = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mem_ic = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!pdata || !mem_ipu || !mem_ic)
return -EINVAL;
ipu_data.dev = &pdev->dev;
platform_set_drvdata(pdev, &ipu_data);
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_noirq;
ipu_data.irq_fn = ret;
ret = platform_get_irq(pdev, 1);
if (ret < 0)
goto err_noirq;
ipu_data.irq_err = ret;
ipu_data.irq_base = pdata->irq_base;
dev_dbg(&pdev->dev, "fn irq %u, err irq %u, irq-base %u\n",
ipu_data.irq_fn, ipu_data.irq_err, ipu_data.irq_base);
/* Remap IPU common registers */
ipu_data.reg_ipu = ioremap(mem_ipu->start,
mem_ipu->end - mem_ipu->start + 1);
if (!ipu_data.reg_ipu) {
ret = -ENOMEM;
goto err_ioremap_ipu;
}
/* Remap Image Converter and Image DMA Controller registers */
ipu_data.reg_ic = ioremap(mem_ic->start,
mem_ic->end - mem_ic->start + 1);
if (!ipu_data.reg_ic) {
ret = -ENOMEM;
goto err_ioremap_ic;
}
/* Get IPU clock */
ipu_data.ipu_clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(ipu_data.ipu_clk)) {
ret = PTR_ERR(ipu_data.ipu_clk);
goto err_clk_get;
}
/* Make sure IPU HSP clock is running */
clk_enable(ipu_data.ipu_clk);
/* Disable all interrupts */
idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_1);
idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_2);
idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_3);
idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_4);
idmac_write_ipureg(&ipu_data, 0, IPU_INT_CTRL_5);
dev_dbg(&pdev->dev, "%s @ 0x%08lx, fn irq %u, err irq %u\n", pdev->name,
(unsigned long)mem_ipu->start, ipu_data.irq_fn, ipu_data.irq_err);
ret = ipu_irq_attach_irq(&ipu_data, pdev);
if (ret < 0)
goto err_attach_irq;
/* Initialize DMA engine */
ret = ipu_idmac_init(&ipu_data);
if (ret < 0)
goto err_idmac_init;
tasklet_init(&ipu_data.tasklet, ipu_gc_tasklet, (unsigned long)&ipu_data);
ipu_data.dev = &pdev->dev;
dev_dbg(ipu_data.dev, "IPU initialized\n");
return 0;
err_idmac_init:
err_attach_irq:
ipu_irq_detach_irq(&ipu_data, pdev);
clk_disable(ipu_data.ipu_clk);
clk_put(ipu_data.ipu_clk);
err_clk_get:
iounmap(ipu_data.reg_ic);
err_ioremap_ic:
iounmap(ipu_data.reg_ipu);
err_ioremap_ipu:
err_noirq:
dev_err(&pdev->dev, "Failed to probe IPU: %d\n", ret);
return ret;
}
static int __exit ipu_remove(struct platform_device *pdev)
{
struct ipu *ipu = platform_get_drvdata(pdev);
ipu_idmac_exit(ipu);
ipu_irq_detach_irq(ipu, pdev);
clk_disable(ipu->ipu_clk);
clk_put(ipu->ipu_clk);
iounmap(ipu->reg_ic);
iounmap(ipu->reg_ipu);
tasklet_kill(&ipu->tasklet);
platform_set_drvdata(pdev, NULL);
return 0;
}
/*
* We need two MEM resources - with IPU-common and Image Converter registers,
* including PF_CONF and IDMAC_* registers, and two IRQs - function and error
*/
static struct platform_driver ipu_platform_driver = {
.driver = {
.name = "ipu-core",
.owner = THIS_MODULE,
},
.remove = __exit_p(ipu_remove),
};
static int __init ipu_init(void)
{
return platform_driver_probe(&ipu_platform_driver, ipu_probe);
}
subsys_initcall(ipu_init);
MODULE_DESCRIPTION("IPU core driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Guennadi Liakhovetski <lg@denx.de>");
MODULE_ALIAS("platform:ipu-core");