WSL2-Linux-Kernel/drivers/mfd/db8500-prcmu.c

2071 строка
54 KiB
C

/*
* Copyright (C) STMicroelectronics 2009
* Copyright (C) ST-Ericsson SA 2010
*
* License Terms: GNU General Public License v2
* Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
* Author: Sundar Iyer <sundar.iyer@stericsson.com>
* Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
*
* U8500 PRCM Unit interface driver
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/irq.h>
#include <linux/jiffies.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/mfd/core.h>
#include <linux/mfd/db8500-prcmu.h>
#include <linux/regulator/db8500-prcmu.h>
#include <linux/regulator/machine.h>
#include <mach/hardware.h>
#include <mach/irqs.h>
#include <mach/db8500-regs.h>
#include <mach/id.h>
#include "db8500-prcmu-regs.h"
/* Offset for the firmware version within the TCPM */
#define PRCMU_FW_VERSION_OFFSET 0xA4
/* PRCMU project numbers, defined by PRCMU FW */
#define PRCMU_PROJECT_ID_8500V1_0 1
#define PRCMU_PROJECT_ID_8500V2_0 2
#define PRCMU_PROJECT_ID_8400V2_0 3
/* Index of different voltages to be used when accessing AVSData */
#define PRCM_AVS_BASE 0x2FC
#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
#define PRCM_AVS_VOLTAGE 0
#define PRCM_AVS_VOLTAGE_MASK 0x3f
#define PRCM_AVS_ISSLOWSTARTUP 6
#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
#define PRCM_AVS_ISMODEENABLE 7
#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
#define PRCM_BOOT_STATUS 0xFFF
#define PRCM_ROMCODE_A2P 0xFFE
#define PRCM_ROMCODE_P2A 0xFFD
#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
/* Req Mailboxes */
#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
/* Ack Mailboxes */
#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
/* Mailbox 0 headers */
#define MB0H_POWER_STATE_TRANS 0
#define MB0H_CONFIG_WAKEUPS_EXE 1
#define MB0H_READ_WAKEUP_ACK 3
#define MB0H_CONFIG_WAKEUPS_SLEEP 4
#define MB0H_WAKEUP_EXE 2
#define MB0H_WAKEUP_SLEEP 5
/* Mailbox 0 REQs */
#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
/* Mailbox 0 ACKs */
#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
/* Mailbox 1 headers */
#define MB1H_ARM_APE_OPP 0x0
#define MB1H_RESET_MODEM 0x2
#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
#define MB1H_RELEASE_USB_WAKEUP 0x5
/* Mailbox 1 Requests */
#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
#define PRCM_REQ_MB1_APE_OPP_100_RESTORE (PRCM_REQ_MB1 + 0x4)
#define PRCM_REQ_MB1_ARM_OPP_100_RESTORE (PRCM_REQ_MB1 + 0x8)
/* Mailbox 1 ACKs */
#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
/* Mailbox 2 headers */
#define MB2H_DPS 0x0
#define MB2H_AUTO_PWR 0x1
/* Mailbox 2 REQs */
#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
/* Mailbox 2 ACKs */
#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
#define HWACC_PWR_ST_OK 0xFE
/* Mailbox 3 headers */
#define MB3H_ANC 0x0
#define MB3H_SIDETONE 0x1
#define MB3H_SYSCLK 0xE
/* Mailbox 3 Requests */
#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
/* Mailbox 4 headers */
#define MB4H_DDR_INIT 0x0
#define MB4H_MEM_ST 0x1
#define MB4H_HOTDOG 0x12
#define MB4H_HOTMON 0x13
#define MB4H_HOT_PERIOD 0x14
/* Mailbox 4 Requests */
#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
#define HOTMON_CONFIG_LOW BIT(0)
#define HOTMON_CONFIG_HIGH BIT(1)
/* Mailbox 5 Requests */
#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
#define PRCMU_I2C_WRITE(slave) \
(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
#define PRCMU_I2C_READ(slave) \
(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
#define PRCMU_I2C_STOP_EN BIT(3)
/* Mailbox 5 ACKs */
#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
#define I2C_WR_OK 0x1
#define I2C_RD_OK 0x2
#define NUM_MB 8
#define MBOX_BIT BIT
#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
/*
* Wakeups/IRQs
*/
#define WAKEUP_BIT_RTC BIT(0)
#define WAKEUP_BIT_RTT0 BIT(1)
#define WAKEUP_BIT_RTT1 BIT(2)
#define WAKEUP_BIT_HSI0 BIT(3)
#define WAKEUP_BIT_HSI1 BIT(4)
#define WAKEUP_BIT_CA_WAKE BIT(5)
#define WAKEUP_BIT_USB BIT(6)
#define WAKEUP_BIT_ABB BIT(7)
#define WAKEUP_BIT_ABB_FIFO BIT(8)
#define WAKEUP_BIT_SYSCLK_OK BIT(9)
#define WAKEUP_BIT_CA_SLEEP BIT(10)
#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
#define WAKEUP_BIT_ANC_OK BIT(13)
#define WAKEUP_BIT_SW_ERROR BIT(14)
#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
#define WAKEUP_BIT_ARM BIT(17)
#define WAKEUP_BIT_HOTMON_LOW BIT(18)
#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
#define WAKEUP_BIT_GPIO0 BIT(23)
#define WAKEUP_BIT_GPIO1 BIT(24)
#define WAKEUP_BIT_GPIO2 BIT(25)
#define WAKEUP_BIT_GPIO3 BIT(26)
#define WAKEUP_BIT_GPIO4 BIT(27)
#define WAKEUP_BIT_GPIO5 BIT(28)
#define WAKEUP_BIT_GPIO6 BIT(29)
#define WAKEUP_BIT_GPIO7 BIT(30)
#define WAKEUP_BIT_GPIO8 BIT(31)
/*
* This vector maps irq numbers to the bits in the bit field used in
* communication with the PRCMU firmware.
*
* The reason for having this is to keep the irq numbers contiguous even though
* the bits in the bit field are not. (The bits also have a tendency to move
* around, to further complicate matters.)
*/
#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
IRQ_ENTRY(RTC),
IRQ_ENTRY(RTT0),
IRQ_ENTRY(RTT1),
IRQ_ENTRY(HSI0),
IRQ_ENTRY(HSI1),
IRQ_ENTRY(CA_WAKE),
IRQ_ENTRY(USB),
IRQ_ENTRY(ABB),
IRQ_ENTRY(ABB_FIFO),
IRQ_ENTRY(CA_SLEEP),
IRQ_ENTRY(ARM),
IRQ_ENTRY(HOTMON_LOW),
IRQ_ENTRY(HOTMON_HIGH),
IRQ_ENTRY(MODEM_SW_RESET_REQ),
IRQ_ENTRY(GPIO0),
IRQ_ENTRY(GPIO1),
IRQ_ENTRY(GPIO2),
IRQ_ENTRY(GPIO3),
IRQ_ENTRY(GPIO4),
IRQ_ENTRY(GPIO5),
IRQ_ENTRY(GPIO6),
IRQ_ENTRY(GPIO7),
IRQ_ENTRY(GPIO8)
};
#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
WAKEUP_ENTRY(RTC),
WAKEUP_ENTRY(RTT0),
WAKEUP_ENTRY(RTT1),
WAKEUP_ENTRY(HSI0),
WAKEUP_ENTRY(HSI1),
WAKEUP_ENTRY(USB),
WAKEUP_ENTRY(ABB),
WAKEUP_ENTRY(ABB_FIFO),
WAKEUP_ENTRY(ARM)
};
/*
* mb0_transfer - state needed for mailbox 0 communication.
* @lock: The transaction lock.
* @dbb_events_lock: A lock used to handle concurrent access to (parts of)
* the request data.
* @mask_work: Work structure used for (un)masking wakeup interrupts.
* @req: Request data that need to persist between requests.
*/
static struct {
spinlock_t lock;
spinlock_t dbb_irqs_lock;
struct work_struct mask_work;
struct mutex ac_wake_lock;
struct completion ac_wake_work;
struct {
u32 dbb_irqs;
u32 dbb_wakeups;
u32 abb_events;
} req;
} mb0_transfer;
/*
* mb1_transfer - state needed for mailbox 1 communication.
* @lock: The transaction lock.
* @work: The transaction completion structure.
* @ack: Reply ("acknowledge") data.
*/
static struct {
struct mutex lock;
struct completion work;
struct {
u8 header;
u8 arm_opp;
u8 ape_opp;
u8 ape_voltage_status;
} ack;
} mb1_transfer;
/*
* mb2_transfer - state needed for mailbox 2 communication.
* @lock: The transaction lock.
* @work: The transaction completion structure.
* @auto_pm_lock: The autonomous power management configuration lock.
* @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
* @req: Request data that need to persist between requests.
* @ack: Reply ("acknowledge") data.
*/
static struct {
struct mutex lock;
struct completion work;
spinlock_t auto_pm_lock;
bool auto_pm_enabled;
struct {
u8 status;
} ack;
} mb2_transfer;
/*
* mb3_transfer - state needed for mailbox 3 communication.
* @lock: The request lock.
* @sysclk_lock: A lock used to handle concurrent sysclk requests.
* @sysclk_work: Work structure used for sysclk requests.
*/
static struct {
spinlock_t lock;
struct mutex sysclk_lock;
struct completion sysclk_work;
} mb3_transfer;
/*
* mb4_transfer - state needed for mailbox 4 communication.
* @lock: The transaction lock.
* @work: The transaction completion structure.
*/
static struct {
struct mutex lock;
struct completion work;
} mb4_transfer;
/*
* mb5_transfer - state needed for mailbox 5 communication.
* @lock: The transaction lock.
* @work: The transaction completion structure.
* @ack: Reply ("acknowledge") data.
*/
static struct {
struct mutex lock;
struct completion work;
struct {
u8 status;
u8 value;
} ack;
} mb5_transfer;
static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
/* Spinlocks */
static DEFINE_SPINLOCK(clkout_lock);
static DEFINE_SPINLOCK(gpiocr_lock);
/* Global var to runtime determine TCDM base for v2 or v1 */
static __iomem void *tcdm_base;
struct clk_mgt {
unsigned int offset;
u32 pllsw;
};
static DEFINE_SPINLOCK(clk_mgt_lock);
#define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT), 0 }
struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
CLK_MGT_ENTRY(SGACLK),
CLK_MGT_ENTRY(UARTCLK),
CLK_MGT_ENTRY(MSP02CLK),
CLK_MGT_ENTRY(MSP1CLK),
CLK_MGT_ENTRY(I2CCLK),
CLK_MGT_ENTRY(SDMMCCLK),
CLK_MGT_ENTRY(SLIMCLK),
CLK_MGT_ENTRY(PER1CLK),
CLK_MGT_ENTRY(PER2CLK),
CLK_MGT_ENTRY(PER3CLK),
CLK_MGT_ENTRY(PER5CLK),
CLK_MGT_ENTRY(PER6CLK),
CLK_MGT_ENTRY(PER7CLK),
CLK_MGT_ENTRY(LCDCLK),
CLK_MGT_ENTRY(BMLCLK),
CLK_MGT_ENTRY(HSITXCLK),
CLK_MGT_ENTRY(HSIRXCLK),
CLK_MGT_ENTRY(HDMICLK),
CLK_MGT_ENTRY(APEATCLK),
CLK_MGT_ENTRY(APETRACECLK),
CLK_MGT_ENTRY(MCDECLK),
CLK_MGT_ENTRY(IPI2CCLK),
CLK_MGT_ENTRY(DSIALTCLK),
CLK_MGT_ENTRY(DMACLK),
CLK_MGT_ENTRY(B2R2CLK),
CLK_MGT_ENTRY(TVCLK),
CLK_MGT_ENTRY(SSPCLK),
CLK_MGT_ENTRY(RNGCLK),
CLK_MGT_ENTRY(UICCCLK),
};
/*
* Used by MCDE to setup all necessary PRCMU registers
*/
#define PRCMU_RESET_DSIPLL 0x00004000
#define PRCMU_UNCLAMP_DSIPLL 0x00400800
#define PRCMU_CLK_PLL_DIV_SHIFT 0
#define PRCMU_CLK_PLL_SW_SHIFT 5
#define PRCMU_CLK_38 (1 << 9)
#define PRCMU_CLK_38_SRC (1 << 10)
#define PRCMU_CLK_38_DIV (1 << 11)
/* PLLDIV=12, PLLSW=4 (PLLDDR) */
#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
/* PLLDIV=8, PLLSW=4 (PLLDDR) */
#define PRCMU_DSI_CLOCK_SETTING_U8400 0x00000088
/* DPI 50000000 Hz */
#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
(16 << PRCMU_CLK_PLL_DIV_SHIFT))
#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
/* D=101, N=1, R=4, SELDIV2=0 */
#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
/* D=70, N=1, R=3, SELDIV2=0 */
#define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
#define PRCMU_ENABLE_PLLDSI 0x00000001
#define PRCMU_DISABLE_PLLDSI 0x00000000
#define PRCMU_RELEASE_RESET_DSS 0x0000400C
#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
/* ESC clk, div0=1, div1=1, div2=3 */
#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
#define PRCMU_DSI_RESET_SW 0x00000007
#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
static struct {
u8 project_number;
u8 api_version;
u8 func_version;
u8 errata;
} prcmu_version;
int prcmu_enable_dsipll(void)
{
int i;
unsigned int plldsifreq;
/* Clear DSIPLL_RESETN */
writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_CLR));
/* Unclamp DSIPLL in/out */
writel(PRCMU_UNCLAMP_DSIPLL, (_PRCMU_BASE + PRCM_MMIP_LS_CLAMP_CLR));
if (prcmu_is_u8400())
plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
else
plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
/* Set DSI PLL FREQ */
writel(plldsifreq, (_PRCMU_BASE + PRCM_PLLDSI_FREQ));
writel(PRCMU_DSI_PLLOUT_SEL_SETTING,
(_PRCMU_BASE + PRCM_DSI_PLLOUT_SEL));
/* Enable Escape clocks */
writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV,
(_PRCMU_BASE + PRCM_DSITVCLK_DIV));
/* Start DSI PLL */
writel(PRCMU_ENABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
/* Reset DSI PLL */
writel(PRCMU_DSI_RESET_SW, (_PRCMU_BASE + PRCM_DSI_SW_RESET));
for (i = 0; i < 10; i++) {
if ((readl(_PRCMU_BASE + PRCM_PLLDSI_LOCKP) &
PRCMU_PLLDSI_LOCKP_LOCKED)
== PRCMU_PLLDSI_LOCKP_LOCKED)
break;
udelay(100);
}
/* Set DSIPLL_RESETN */
writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_SET));
return 0;
}
int prcmu_disable_dsipll(void)
{
/* Disable dsi pll */
writel(PRCMU_DISABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
/* Disable escapeclock */
writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV,
(_PRCMU_BASE + PRCM_DSITVCLK_DIV));
return 0;
}
int prcmu_set_display_clocks(void)
{
unsigned long flags;
unsigned int dsiclk;
if (prcmu_is_u8400())
dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
else
dsiclk = PRCMU_DSI_CLOCK_SETTING;
spin_lock_irqsave(&clk_mgt_lock, flags);
/* Grab the HW semaphore. */
while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
cpu_relax();
writel(dsiclk, (_PRCMU_BASE + PRCM_HDMICLK_MGT));
writel(PRCMU_DSI_LP_CLOCK_SETTING, (_PRCMU_BASE + PRCM_TVCLK_MGT));
writel(PRCMU_DPI_CLOCK_SETTING, (_PRCMU_BASE + PRCM_LCDCLK_MGT));
/* Release the HW semaphore. */
writel(0, (_PRCMU_BASE + PRCM_SEM));
spin_unlock_irqrestore(&clk_mgt_lock, flags);
return 0;
}
/**
* prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
*/
void prcmu_enable_spi2(void)
{
u32 reg;
unsigned long flags;
spin_lock_irqsave(&gpiocr_lock, flags);
reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
writel(reg | PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
spin_unlock_irqrestore(&gpiocr_lock, flags);
}
/**
* prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
*/
void prcmu_disable_spi2(void)
{
u32 reg;
unsigned long flags;
spin_lock_irqsave(&gpiocr_lock, flags);
reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
spin_unlock_irqrestore(&gpiocr_lock, flags);
}
bool prcmu_has_arm_maxopp(void)
{
return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
}
bool prcmu_is_u8400(void)
{
return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
}
/**
* prcmu_get_boot_status - PRCMU boot status checking
* Returns: the current PRCMU boot status
*/
int prcmu_get_boot_status(void)
{
return readb(tcdm_base + PRCM_BOOT_STATUS);
}
/**
* prcmu_set_rc_a2p - This function is used to run few power state sequences
* @val: Value to be set, i.e. transition requested
* Returns: 0 on success, -EINVAL on invalid argument
*
* This function is used to run the following power state sequences -
* any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
*/
int prcmu_set_rc_a2p(enum romcode_write val)
{
if (val < RDY_2_DS || val > RDY_2_XP70_RST)
return -EINVAL;
writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
return 0;
}
/**
* prcmu_get_rc_p2a - This function is used to get power state sequences
* Returns: the power transition that has last happened
*
* This function can return the following transitions-
* any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
*/
enum romcode_read prcmu_get_rc_p2a(void)
{
return readb(tcdm_base + PRCM_ROMCODE_P2A);
}
/**
* prcmu_get_current_mode - Return the current XP70 power mode
* Returns: Returns the current AP(ARM) power mode: init,
* apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
*/
enum ap_pwrst prcmu_get_xp70_current_state(void)
{
return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
}
/**
* prcmu_config_clkout - Configure one of the programmable clock outputs.
* @clkout: The CLKOUT number (0 or 1).
* @source: The clock to be used (one of the PRCMU_CLKSRC_*).
* @div: The divider to be applied.
*
* Configures one of the programmable clock outputs (CLKOUTs).
* @div should be in the range [1,63] to request a configuration, or 0 to
* inform that the configuration is no longer requested.
*/
int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
{
static int requests[2];
int r = 0;
unsigned long flags;
u32 val;
u32 bits;
u32 mask;
u32 div_mask;
BUG_ON(clkout > 1);
BUG_ON(div > 63);
BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
if (!div && !requests[clkout])
return -EINVAL;
switch (clkout) {
case 0:
div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
break;
case 1:
div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
PRCM_CLKOCR_CLK1TYPE);
bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
break;
}
bits &= mask;
spin_lock_irqsave(&clkout_lock, flags);
val = readl(_PRCMU_BASE + PRCM_CLKOCR);
if (val & div_mask) {
if (div) {
if ((val & mask) != bits) {
r = -EBUSY;
goto unlock_and_return;
}
} else {
if ((val & mask & ~div_mask) != bits) {
r = -EINVAL;
goto unlock_and_return;
}
}
}
writel((bits | (val & ~mask)), (_PRCMU_BASE + PRCM_CLKOCR));
requests[clkout] += (div ? 1 : -1);
unlock_and_return:
spin_unlock_irqrestore(&clkout_lock, flags);
return r;
}
int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
{
unsigned long flags;
BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
spin_lock_irqsave(&mb0_transfer.lock, flags);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
cpu_relax();
writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
writeb((keep_ulp_clk ? 1 : 0),
(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
return 0;
}
/* This function should only be called while mb0_transfer.lock is held. */
static void config_wakeups(void)
{
const u8 header[2] = {
MB0H_CONFIG_WAKEUPS_EXE,
MB0H_CONFIG_WAKEUPS_SLEEP
};
static u32 last_dbb_events;
static u32 last_abb_events;
u32 dbb_events;
u32 abb_events;
unsigned int i;
dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
abb_events = mb0_transfer.req.abb_events;
if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
return;
for (i = 0; i < 2; i++) {
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
cpu_relax();
writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
}
last_dbb_events = dbb_events;
last_abb_events = abb_events;
}
void prcmu_enable_wakeups(u32 wakeups)
{
unsigned long flags;
u32 bits;
int i;
BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
if (wakeups & BIT(i))
bits |= prcmu_wakeup_bit[i];
}
spin_lock_irqsave(&mb0_transfer.lock, flags);
mb0_transfer.req.dbb_wakeups = bits;
config_wakeups();
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}
void prcmu_config_abb_event_readout(u32 abb_events)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.lock, flags);
mb0_transfer.req.abb_events = abb_events;
config_wakeups();
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}
void prcmu_get_abb_event_buffer(void __iomem **buf)
{
if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
else
*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
}
/**
* prcmu_set_arm_opp - set the appropriate ARM OPP
* @opp: The new ARM operating point to which transition is to be made
* Returns: 0 on success, non-zero on failure
*
* This function sets the the operating point of the ARM.
*/
int prcmu_set_arm_opp(u8 opp)
{
int r;
if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
return -EINVAL;
r = 0;
mutex_lock(&mb1_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb1_transfer.work);
if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
(mb1_transfer.ack.arm_opp != opp))
r = -EIO;
mutex_unlock(&mb1_transfer.lock);
return r;
}
/**
* prcmu_get_arm_opp - get the current ARM OPP
*
* Returns: the current ARM OPP
*/
int prcmu_get_arm_opp(void)
{
return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
}
/**
* prcmu_get_ddr_opp - get the current DDR OPP
*
* Returns: the current DDR OPP
*/
int prcmu_get_ddr_opp(void)
{
return readb(_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW);
}
/**
* set_ddr_opp - set the appropriate DDR OPP
* @opp: The new DDR operating point to which transition is to be made
* Returns: 0 on success, non-zero on failure
*
* This function sets the operating point of the DDR.
*/
int prcmu_set_ddr_opp(u8 opp)
{
if (opp < DDR_100_OPP || opp > DDR_25_OPP)
return -EINVAL;
/* Changing the DDR OPP can hang the hardware pre-v21 */
if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
writeb(opp, (_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW));
return 0;
}
/**
* set_ape_opp - set the appropriate APE OPP
* @opp: The new APE operating point to which transition is to be made
* Returns: 0 on success, non-zero on failure
*
* This function sets the operating point of the APE.
*/
int prcmu_set_ape_opp(u8 opp)
{
int r = 0;
mutex_lock(&mb1_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb1_transfer.work);
if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
(mb1_transfer.ack.ape_opp != opp))
r = -EIO;
mutex_unlock(&mb1_transfer.lock);
return r;
}
/**
* prcmu_get_ape_opp - get the current APE OPP
*
* Returns: the current APE OPP
*/
int prcmu_get_ape_opp(void)
{
return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
}
/**
* prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
* @enable: true to request the higher voltage, false to drop a request.
*
* Calls to this function to enable and disable requests must be balanced.
*/
int prcmu_request_ape_opp_100_voltage(bool enable)
{
int r = 0;
u8 header;
static unsigned int requests;
mutex_lock(&mb1_transfer.lock);
if (enable) {
if (0 != requests++)
goto unlock_and_return;
header = MB1H_REQUEST_APE_OPP_100_VOLT;
} else {
if (requests == 0) {
r = -EIO;
goto unlock_and_return;
} else if (1 != requests--) {
goto unlock_and_return;
}
header = MB1H_RELEASE_APE_OPP_100_VOLT;
}
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb1_transfer.work);
if ((mb1_transfer.ack.header != header) ||
((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
r = -EIO;
unlock_and_return:
mutex_unlock(&mb1_transfer.lock);
return r;
}
/**
* prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
*
* This function releases the power state requirements of a USB wakeup.
*/
int prcmu_release_usb_wakeup_state(void)
{
int r = 0;
mutex_lock(&mb1_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_RELEASE_USB_WAKEUP,
(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb1_transfer.work);
if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
r = -EIO;
mutex_unlock(&mb1_transfer.lock);
return r;
}
/**
* prcmu_set_epod - set the state of a EPOD (power domain)
* @epod_id: The EPOD to set
* @epod_state: The new EPOD state
*
* This function sets the state of a EPOD (power domain). It may not be called
* from interrupt context.
*/
int prcmu_set_epod(u16 epod_id, u8 epod_state)
{
int r = 0;
bool ram_retention = false;
int i;
/* check argument */
BUG_ON(epod_id >= NUM_EPOD_ID);
/* set flag if retention is possible */
switch (epod_id) {
case EPOD_ID_SVAMMDSP:
case EPOD_ID_SIAMMDSP:
case EPOD_ID_ESRAM12:
case EPOD_ID_ESRAM34:
ram_retention = true;
break;
}
/* check argument */
BUG_ON(epod_state > EPOD_STATE_ON);
BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
/* get lock */
mutex_lock(&mb2_transfer.lock);
/* wait for mailbox */
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
cpu_relax();
/* fill in mailbox */
for (i = 0; i < NUM_EPOD_ID; i++)
writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
/*
* The current firmware version does not handle errors correctly,
* and we cannot recover if there is an error.
* This is expected to change when the firmware is updated.
*/
if (!wait_for_completion_timeout(&mb2_transfer.work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
r = -EIO;
goto unlock_and_return;
}
if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
r = -EIO;
unlock_and_return:
mutex_unlock(&mb2_transfer.lock);
return r;
}
/**
* prcmu_configure_auto_pm - Configure autonomous power management.
* @sleep: Configuration for ApSleep.
* @idle: Configuration for ApIdle.
*/
void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
struct prcmu_auto_pm_config *idle)
{
u32 sleep_cfg;
u32 idle_cfg;
unsigned long flags;
BUG_ON((sleep == NULL) || (idle == NULL));
sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
idle_cfg = (idle->sva_auto_pm_enable & 0xF);
idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
/*
* The autonomous power management configuration is done through
* fields in mailbox 2, but these fields are only used as shared
* variables - i.e. there is no need to send a message.
*/
writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
mb2_transfer.auto_pm_enabled =
((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
(sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
(idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
(idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
}
EXPORT_SYMBOL(prcmu_configure_auto_pm);
bool prcmu_is_auto_pm_enabled(void)
{
return mb2_transfer.auto_pm_enabled;
}
static int request_sysclk(bool enable)
{
int r;
unsigned long flags;
r = 0;
mutex_lock(&mb3_transfer.sysclk_lock);
spin_lock_irqsave(&mb3_transfer.lock, flags);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
cpu_relax();
writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
spin_unlock_irqrestore(&mb3_transfer.lock, flags);
/*
* The firmware only sends an ACK if we want to enable the
* SysClk, and it succeeds.
*/
if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
r = -EIO;
}
mutex_unlock(&mb3_transfer.sysclk_lock);
return r;
}
static int request_timclk(bool enable)
{
u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
if (!enable)
val |= PRCM_TCR_STOP_TIMERS;
writel(val, (_PRCMU_BASE + PRCM_TCR));
return 0;
}
static int request_reg_clock(u8 clock, bool enable)
{
u32 val;
unsigned long flags;
spin_lock_irqsave(&clk_mgt_lock, flags);
/* Grab the HW semaphore. */
while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
cpu_relax();
val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
if (enable) {
val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
} else {
clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
}
writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
/* Release the HW semaphore. */
writel(0, (_PRCMU_BASE + PRCM_SEM));
spin_unlock_irqrestore(&clk_mgt_lock, flags);
return 0;
}
/**
* prcmu_request_clock() - Request for a clock to be enabled or disabled.
* @clock: The clock for which the request is made.
* @enable: Whether the clock should be enabled (true) or disabled (false).
*
* This function should only be used by the clock implementation.
* Do not use it from any other place!
*/
int prcmu_request_clock(u8 clock, bool enable)
{
if (clock < PRCMU_NUM_REG_CLOCKS)
return request_reg_clock(clock, enable);
else if (clock == PRCMU_TIMCLK)
return request_timclk(enable);
else if (clock == PRCMU_SYSCLK)
return request_sysclk(enable);
else
return -EINVAL;
}
int prcmu_config_esram0_deep_sleep(u8 state)
{
if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
(state < ESRAM0_DEEP_SLEEP_STATE_OFF))
return -EINVAL;
mutex_lock(&mb4_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
(tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
writeb(DDR_PWR_STATE_ON,
(tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
int prcmu_config_hotdog(u8 threshold)
{
mutex_lock(&mb4_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
int prcmu_config_hotmon(u8 low, u8 high)
{
mutex_lock(&mb4_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
static int config_hot_period(u16 val)
{
mutex_lock(&mb4_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
int prcmu_start_temp_sense(u16 cycles32k)
{
if (cycles32k == 0xFFFF)
return -EINVAL;
return config_hot_period(cycles32k);
}
int prcmu_stop_temp_sense(void)
{
return config_hot_period(0xFFFF);
}
/**
* prcmu_set_clock_divider() - Configure the clock divider.
* @clock: The clock for which the request is made.
* @divider: The clock divider. (< 32)
*
* This function should only be used by the clock implementation.
* Do not use it from any other place!
*/
int prcmu_set_clock_divider(u8 clock, u8 divider)
{
u32 val;
unsigned long flags;
if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
return -EINVAL;
spin_lock_irqsave(&clk_mgt_lock, flags);
/* Grab the HW semaphore. */
while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
cpu_relax();
val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
val |= (u32)divider;
writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
/* Release the HW semaphore. */
writel(0, (_PRCMU_BASE + PRCM_SEM));
spin_unlock_irqrestore(&clk_mgt_lock, flags);
return 0;
}
/**
* prcmu_abb_read() - Read register value(s) from the ABB.
* @slave: The I2C slave address.
* @reg: The (start) register address.
* @value: The read out value(s).
* @size: The number of registers to read.
*
* Reads register value(s) from the ABB.
* @size has to be 1 for the current firmware version.
*/
int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
{
int r;
if (size != 1)
return -EINVAL;
mutex_lock(&mb5_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
cpu_relax();
writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
if (!wait_for_completion_timeout(&mb5_transfer.work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
r = -EIO;
} else {
r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
}
if (!r)
*value = mb5_transfer.ack.value;
mutex_unlock(&mb5_transfer.lock);
return r;
}
/**
* prcmu_abb_write() - Write register value(s) to the ABB.
* @slave: The I2C slave address.
* @reg: The (start) register address.
* @value: The value(s) to write.
* @size: The number of registers to write.
*
* Reads register value(s) from the ABB.
* @size has to be 1 for the current firmware version.
*/
int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
{
int r;
if (size != 1)
return -EINVAL;
mutex_lock(&mb5_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
cpu_relax();
writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
if (!wait_for_completion_timeout(&mb5_transfer.work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
r = -EIO;
} else {
r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
}
mutex_unlock(&mb5_transfer.lock);
return r;
}
/**
* prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
*/
void prcmu_ac_wake_req(void)
{
u32 val;
mutex_lock(&mb0_transfer.ac_wake_lock);
val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
goto unlock_and_return;
atomic_set(&ac_wake_req_state, 1);
writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
(_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
}
unlock_and_return:
mutex_unlock(&mb0_transfer.ac_wake_lock);
}
/**
* prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
*/
void prcmu_ac_sleep_req()
{
u32 val;
mutex_lock(&mb0_transfer.ac_wake_lock);
val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
goto unlock_and_return;
writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
(_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
}
atomic_set(&ac_wake_req_state, 0);
unlock_and_return:
mutex_unlock(&mb0_transfer.ac_wake_lock);
}
bool prcmu_is_ac_wake_requested(void)
{
return (atomic_read(&ac_wake_req_state) != 0);
}
/**
* prcmu_system_reset - System reset
*
* Saves the reset reason code and then sets the APE_SOFRST register which
* fires interrupt to fw
*/
void prcmu_system_reset(u16 reset_code)
{
writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
writel(1, (_PRCMU_BASE + PRCM_APE_SOFTRST));
}
/**
* prcmu_reset_modem - ask the PRCMU to reset modem
*/
void prcmu_modem_reset(void)
{
mutex_lock(&mb1_transfer.lock);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
wait_for_completion(&mb1_transfer.work);
/*
* No need to check return from PRCMU as modem should go in reset state
* This state is already managed by upper layer
*/
mutex_unlock(&mb1_transfer.lock);
}
static void ack_dbb_wakeup(void)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.lock, flags);
while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
cpu_relax();
writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}
static inline void print_unknown_header_warning(u8 n, u8 header)
{
pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
header, n);
}
static bool read_mailbox_0(void)
{
bool r;
u32 ev;
unsigned int n;
u8 header;
header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
switch (header) {
case MB0H_WAKEUP_EXE:
case MB0H_WAKEUP_SLEEP:
if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
else
ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
complete(&mb0_transfer.ac_wake_work);
if (ev & WAKEUP_BIT_SYSCLK_OK)
complete(&mb3_transfer.sysclk_work);
ev &= mb0_transfer.req.dbb_irqs;
for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
if (ev & prcmu_irq_bit[n])
generic_handle_irq(IRQ_PRCMU_BASE + n);
}
r = true;
break;
default:
print_unknown_header_warning(0, header);
r = false;
break;
}
writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
return r;
}
static bool read_mailbox_1(void)
{
mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
mb1_transfer.ack.arm_opp = readb(tcdm_base +
PRCM_ACK_MB1_CURRENT_ARM_OPP);
mb1_transfer.ack.ape_opp = readb(tcdm_base +
PRCM_ACK_MB1_CURRENT_APE_OPP);
mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
complete(&mb1_transfer.work);
return false;
}
static bool read_mailbox_2(void)
{
mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
complete(&mb2_transfer.work);
return false;
}
static bool read_mailbox_3(void)
{
writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
return false;
}
static bool read_mailbox_4(void)
{
u8 header;
bool do_complete = true;
header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
switch (header) {
case MB4H_MEM_ST:
case MB4H_HOTDOG:
case MB4H_HOTMON:
case MB4H_HOT_PERIOD:
break;
default:
print_unknown_header_warning(4, header);
do_complete = false;
break;
}
writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
if (do_complete)
complete(&mb4_transfer.work);
return false;
}
static bool read_mailbox_5(void)
{
mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
complete(&mb5_transfer.work);
return false;
}
static bool read_mailbox_6(void)
{
writel(MBOX_BIT(6), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
return false;
}
static bool read_mailbox_7(void)
{
writel(MBOX_BIT(7), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
return false;
}
static bool (* const read_mailbox[NUM_MB])(void) = {
read_mailbox_0,
read_mailbox_1,
read_mailbox_2,
read_mailbox_3,
read_mailbox_4,
read_mailbox_5,
read_mailbox_6,
read_mailbox_7
};
static irqreturn_t prcmu_irq_handler(int irq, void *data)
{
u32 bits;
u8 n;
irqreturn_t r;
bits = (readl(_PRCMU_BASE + PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
if (unlikely(!bits))
return IRQ_NONE;
r = IRQ_HANDLED;
for (n = 0; bits; n++) {
if (bits & MBOX_BIT(n)) {
bits -= MBOX_BIT(n);
if (read_mailbox[n]())
r = IRQ_WAKE_THREAD;
}
}
return r;
}
static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
{
ack_dbb_wakeup();
return IRQ_HANDLED;
}
static void prcmu_mask_work(struct work_struct *work)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.lock, flags);
config_wakeups();
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}
static void prcmu_irq_mask(struct irq_data *d)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
if (d->irq != IRQ_PRCMU_CA_SLEEP)
schedule_work(&mb0_transfer.mask_work);
}
static void prcmu_irq_unmask(struct irq_data *d)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
if (d->irq != IRQ_PRCMU_CA_SLEEP)
schedule_work(&mb0_transfer.mask_work);
}
static void noop(struct irq_data *d)
{
}
static struct irq_chip prcmu_irq_chip = {
.name = "prcmu",
.irq_disable = prcmu_irq_mask,
.irq_ack = noop,
.irq_mask = prcmu_irq_mask,
.irq_unmask = prcmu_irq_unmask,
};
void __init prcmu_early_init(void)
{
unsigned int i;
if (cpu_is_u8500v1()) {
tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
} else if (cpu_is_u8500v2()) {
void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
if (tcpm_base != NULL) {
int version;
version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
prcmu_version.project_number = version & 0xFF;
prcmu_version.api_version = (version >> 8) & 0xFF;
prcmu_version.func_version = (version >> 16) & 0xFF;
prcmu_version.errata = (version >> 24) & 0xFF;
pr_info("PRCMU firmware version %d.%d.%d\n",
(version >> 8) & 0xFF, (version >> 16) & 0xFF,
(version >> 24) & 0xFF);
iounmap(tcpm_base);
}
tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
} else {
pr_err("prcmu: Unsupported chip version\n");
BUG();
}
spin_lock_init(&mb0_transfer.lock);
spin_lock_init(&mb0_transfer.dbb_irqs_lock);
mutex_init(&mb0_transfer.ac_wake_lock);
init_completion(&mb0_transfer.ac_wake_work);
mutex_init(&mb1_transfer.lock);
init_completion(&mb1_transfer.work);
mutex_init(&mb2_transfer.lock);
init_completion(&mb2_transfer.work);
spin_lock_init(&mb2_transfer.auto_pm_lock);
spin_lock_init(&mb3_transfer.lock);
mutex_init(&mb3_transfer.sysclk_lock);
init_completion(&mb3_transfer.sysclk_work);
mutex_init(&mb4_transfer.lock);
init_completion(&mb4_transfer.work);
mutex_init(&mb5_transfer.lock);
init_completion(&mb5_transfer.work);
INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
/* Initalize irqs. */
for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
unsigned int irq;
irq = IRQ_PRCMU_BASE + i;
irq_set_chip_and_handler(irq, &prcmu_irq_chip,
handle_simple_irq);
set_irq_flags(irq, IRQF_VALID);
}
}
/*
* Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
*/
static struct regulator_consumer_supply db8500_vape_consumers[] = {
REGULATOR_SUPPLY("v-ape", NULL),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
/* "v-mmc" changed to "vcore" in the mainline kernel */
REGULATOR_SUPPLY("vcore", "sdi0"),
REGULATOR_SUPPLY("vcore", "sdi1"),
REGULATOR_SUPPLY("vcore", "sdi2"),
REGULATOR_SUPPLY("vcore", "sdi3"),
REGULATOR_SUPPLY("vcore", "sdi4"),
REGULATOR_SUPPLY("v-dma", "dma40.0"),
REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
/* "v-uart" changed to "vcore" in the mainline kernel */
REGULATOR_SUPPLY("vcore", "uart0"),
REGULATOR_SUPPLY("vcore", "uart1"),
REGULATOR_SUPPLY("vcore", "uart2"),
REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
};
static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
/* CG2900 and CW1200 power to off-chip peripherals */
REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
/* AV8100 regulator */
REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
};
static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
REGULATOR_SUPPLY("vsupply", "b2r2.0"),
REGULATOR_SUPPLY("vsupply", "mcde.0"),
};
static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
[DB8500_REGULATOR_VAPE] = {
.constraints = {
.name = "db8500-vape",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_vape_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
},
[DB8500_REGULATOR_VARM] = {
.constraints = {
.name = "db8500-varm",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VMODEM] = {
.constraints = {
.name = "db8500-vmodem",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VPLL] = {
.constraints = {
.name = "db8500-vpll",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VSMPS1] = {
.constraints = {
.name = "db8500-vsmps1",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VSMPS2] = {
.constraints = {
.name = "db8500-vsmps2",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_vsmps2_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
},
[DB8500_REGULATOR_VSMPS3] = {
.constraints = {
.name = "db8500-vsmps3",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VRF1] = {
.constraints = {
.name = "db8500-vrf1",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-sva-mmdsp",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
.constraints = {
/* "ret" means "retention" */
.name = "db8500-sva-mmdsp-ret",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-sva-pipe",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-sia-mmdsp",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
.constraints = {
.name = "db8500-sia-mmdsp-ret",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-sia-pipe",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SGA] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-sga",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-b2r2-mcde",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_b2r2_mcde_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
},
[DB8500_REGULATOR_SWITCH_ESRAM12] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-esram12",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
.constraints = {
.name = "db8500-esram12-ret",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_ESRAM34] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-esram34",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
.constraints = {
.name = "db8500-esram34-ret",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
};
static struct mfd_cell db8500_prcmu_devs[] = {
{
.name = "db8500-prcmu-regulators",
.platform_data = &db8500_regulators,
.pdata_size = sizeof(db8500_regulators),
},
{
.name = "cpufreq-u8500",
},
};
/**
* prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
*
*/
static int __init db8500_prcmu_probe(struct platform_device *pdev)
{
int err = 0;
if (ux500_is_svp())
return -ENODEV;
/* Clean up the mailbox interrupts after pre-kernel code. */
writel(ALL_MBOX_BITS, (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
if (err < 0) {
pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
err = -EBUSY;
goto no_irq_return;
}
if (cpu_is_u8500v20_or_later())
prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
ARRAY_SIZE(db8500_prcmu_devs), NULL,
0);
if (err)
pr_err("prcmu: Failed to add subdevices\n");
else
pr_info("DB8500 PRCMU initialized\n");
no_irq_return:
return err;
}
static struct platform_driver db8500_prcmu_driver = {
.driver = {
.name = "db8500-prcmu",
.owner = THIS_MODULE,
},
};
static int __init db8500_prcmu_init(void)
{
return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
}
arch_initcall(db8500_prcmu_init);
MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
MODULE_LICENSE("GPL v2");