1802 строки
42 KiB
C
1802 строки
42 KiB
C
/*
|
|
* fs/f2fs/node.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *nat_entry_slab;
|
|
static struct kmem_cache *free_nid_slab;
|
|
|
|
static void clear_node_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
|
|
unsigned int long flags;
|
|
|
|
if (PageDirty(page)) {
|
|
spin_lock_irqsave(&mapping->tree_lock, flags);
|
|
radix_tree_tag_clear(&mapping->page_tree,
|
|
page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
|
|
clear_page_dirty_for_io(page);
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
}
|
|
ClearPageUptodate(page);
|
|
}
|
|
|
|
static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
pgoff_t index = current_nat_addr(sbi, nid);
|
|
return get_meta_page(sbi, index);
|
|
}
|
|
|
|
static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct page *src_page;
|
|
struct page *dst_page;
|
|
pgoff_t src_off;
|
|
pgoff_t dst_off;
|
|
void *src_addr;
|
|
void *dst_addr;
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
|
|
src_off = current_nat_addr(sbi, nid);
|
|
dst_off = next_nat_addr(sbi, src_off);
|
|
|
|
/* get current nat block page with lock */
|
|
src_page = get_meta_page(sbi, src_off);
|
|
|
|
/* Dirty src_page means that it is already the new target NAT page. */
|
|
if (PageDirty(src_page))
|
|
return src_page;
|
|
|
|
dst_page = grab_meta_page(sbi, dst_off);
|
|
|
|
src_addr = page_address(src_page);
|
|
dst_addr = page_address(dst_page);
|
|
memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
|
|
set_page_dirty(dst_page);
|
|
f2fs_put_page(src_page, 1);
|
|
|
|
set_to_next_nat(nm_i, nid);
|
|
|
|
return dst_page;
|
|
}
|
|
|
|
/*
|
|
* Readahead NAT pages
|
|
*/
|
|
static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
|
|
{
|
|
struct address_space *mapping = sbi->meta_inode->i_mapping;
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct blk_plug plug;
|
|
struct page *page;
|
|
pgoff_t index;
|
|
int i;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
|
|
if (nid >= nm_i->max_nid)
|
|
nid = 0;
|
|
index = current_nat_addr(sbi, nid);
|
|
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page)
|
|
continue;
|
|
if (PageUptodate(page)) {
|
|
f2fs_put_page(page, 1);
|
|
continue;
|
|
}
|
|
if (f2fs_readpage(sbi, page, index, READ))
|
|
continue;
|
|
|
|
f2fs_put_page(page, 0);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
|
|
{
|
|
return radix_tree_lookup(&nm_i->nat_root, n);
|
|
}
|
|
|
|
static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
|
|
nid_t start, unsigned int nr, struct nat_entry **ep)
|
|
{
|
|
return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
|
|
}
|
|
|
|
static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
|
|
{
|
|
list_del(&e->list);
|
|
radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
|
|
nm_i->nat_cnt--;
|
|
kmem_cache_free(nat_entry_slab, e);
|
|
}
|
|
|
|
int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct nat_entry *e;
|
|
int is_cp = 1;
|
|
|
|
read_lock(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, nid);
|
|
if (e && !e->checkpointed)
|
|
is_cp = 0;
|
|
read_unlock(&nm_i->nat_tree_lock);
|
|
return is_cp;
|
|
}
|
|
|
|
static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
|
|
{
|
|
struct nat_entry *new;
|
|
|
|
new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
|
|
if (!new)
|
|
return NULL;
|
|
if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
|
|
kmem_cache_free(nat_entry_slab, new);
|
|
return NULL;
|
|
}
|
|
memset(new, 0, sizeof(struct nat_entry));
|
|
nat_set_nid(new, nid);
|
|
list_add_tail(&new->list, &nm_i->nat_entries);
|
|
nm_i->nat_cnt++;
|
|
return new;
|
|
}
|
|
|
|
static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
|
|
struct f2fs_nat_entry *ne)
|
|
{
|
|
struct nat_entry *e;
|
|
retry:
|
|
write_lock(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, nid);
|
|
if (!e) {
|
|
e = grab_nat_entry(nm_i, nid);
|
|
if (!e) {
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
goto retry;
|
|
}
|
|
nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
|
|
nat_set_ino(e, le32_to_cpu(ne->ino));
|
|
nat_set_version(e, ne->version);
|
|
e->checkpointed = true;
|
|
}
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
}
|
|
|
|
static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
|
|
block_t new_blkaddr)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct nat_entry *e;
|
|
retry:
|
|
write_lock(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, ni->nid);
|
|
if (!e) {
|
|
e = grab_nat_entry(nm_i, ni->nid);
|
|
if (!e) {
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
goto retry;
|
|
}
|
|
e->ni = *ni;
|
|
e->checkpointed = true;
|
|
BUG_ON(ni->blk_addr == NEW_ADDR);
|
|
} else if (new_blkaddr == NEW_ADDR) {
|
|
/*
|
|
* when nid is reallocated,
|
|
* previous nat entry can be remained in nat cache.
|
|
* So, reinitialize it with new information.
|
|
*/
|
|
e->ni = *ni;
|
|
BUG_ON(ni->blk_addr != NULL_ADDR);
|
|
}
|
|
|
|
if (new_blkaddr == NEW_ADDR)
|
|
e->checkpointed = false;
|
|
|
|
/* sanity check */
|
|
BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
|
|
BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
|
|
new_blkaddr == NULL_ADDR);
|
|
BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
|
|
new_blkaddr == NEW_ADDR);
|
|
BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
|
|
nat_get_blkaddr(e) != NULL_ADDR &&
|
|
new_blkaddr == NEW_ADDR);
|
|
|
|
/* increament version no as node is removed */
|
|
if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
|
|
unsigned char version = nat_get_version(e);
|
|
nat_set_version(e, inc_node_version(version));
|
|
}
|
|
|
|
/* change address */
|
|
nat_set_blkaddr(e, new_blkaddr);
|
|
__set_nat_cache_dirty(nm_i, e);
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
}
|
|
|
|
static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
|
|
if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
|
|
return 0;
|
|
|
|
write_lock(&nm_i->nat_tree_lock);
|
|
while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
|
|
struct nat_entry *ne;
|
|
ne = list_first_entry(&nm_i->nat_entries,
|
|
struct nat_entry, list);
|
|
__del_from_nat_cache(nm_i, ne);
|
|
nr_shrink--;
|
|
}
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
return nr_shrink;
|
|
}
|
|
|
|
/*
|
|
* This function returns always success
|
|
*/
|
|
void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_summary_block *sum = curseg->sum_blk;
|
|
nid_t start_nid = START_NID(nid);
|
|
struct f2fs_nat_block *nat_blk;
|
|
struct page *page = NULL;
|
|
struct f2fs_nat_entry ne;
|
|
struct nat_entry *e;
|
|
int i;
|
|
|
|
memset(&ne, 0, sizeof(struct f2fs_nat_entry));
|
|
ni->nid = nid;
|
|
|
|
/* Check nat cache */
|
|
read_lock(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, nid);
|
|
if (e) {
|
|
ni->ino = nat_get_ino(e);
|
|
ni->blk_addr = nat_get_blkaddr(e);
|
|
ni->version = nat_get_version(e);
|
|
}
|
|
read_unlock(&nm_i->nat_tree_lock);
|
|
if (e)
|
|
return;
|
|
|
|
/* Check current segment summary */
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
|
|
if (i >= 0) {
|
|
ne = nat_in_journal(sum, i);
|
|
node_info_from_raw_nat(ni, &ne);
|
|
}
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
if (i >= 0)
|
|
goto cache;
|
|
|
|
/* Fill node_info from nat page */
|
|
page = get_current_nat_page(sbi, start_nid);
|
|
nat_blk = (struct f2fs_nat_block *)page_address(page);
|
|
ne = nat_blk->entries[nid - start_nid];
|
|
node_info_from_raw_nat(ni, &ne);
|
|
f2fs_put_page(page, 1);
|
|
cache:
|
|
/* cache nat entry */
|
|
cache_nat_entry(NM_I(sbi), nid, &ne);
|
|
}
|
|
|
|
/*
|
|
* The maximum depth is four.
|
|
* Offset[0] will have raw inode offset.
|
|
*/
|
|
static int get_node_path(long block, int offset[4], unsigned int noffset[4])
|
|
{
|
|
const long direct_index = ADDRS_PER_INODE;
|
|
const long direct_blks = ADDRS_PER_BLOCK;
|
|
const long dptrs_per_blk = NIDS_PER_BLOCK;
|
|
const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
|
|
const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
|
|
int n = 0;
|
|
int level = 0;
|
|
|
|
noffset[0] = 0;
|
|
|
|
if (block < direct_index) {
|
|
offset[n] = block;
|
|
goto got;
|
|
}
|
|
block -= direct_index;
|
|
if (block < direct_blks) {
|
|
offset[n++] = NODE_DIR1_BLOCK;
|
|
noffset[n] = 1;
|
|
offset[n] = block;
|
|
level = 1;
|
|
goto got;
|
|
}
|
|
block -= direct_blks;
|
|
if (block < direct_blks) {
|
|
offset[n++] = NODE_DIR2_BLOCK;
|
|
noffset[n] = 2;
|
|
offset[n] = block;
|
|
level = 1;
|
|
goto got;
|
|
}
|
|
block -= direct_blks;
|
|
if (block < indirect_blks) {
|
|
offset[n++] = NODE_IND1_BLOCK;
|
|
noffset[n] = 3;
|
|
offset[n++] = block / direct_blks;
|
|
noffset[n] = 4 + offset[n - 1];
|
|
offset[n] = block % direct_blks;
|
|
level = 2;
|
|
goto got;
|
|
}
|
|
block -= indirect_blks;
|
|
if (block < indirect_blks) {
|
|
offset[n++] = NODE_IND2_BLOCK;
|
|
noffset[n] = 4 + dptrs_per_blk;
|
|
offset[n++] = block / direct_blks;
|
|
noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
|
|
offset[n] = block % direct_blks;
|
|
level = 2;
|
|
goto got;
|
|
}
|
|
block -= indirect_blks;
|
|
if (block < dindirect_blks) {
|
|
offset[n++] = NODE_DIND_BLOCK;
|
|
noffset[n] = 5 + (dptrs_per_blk * 2);
|
|
offset[n++] = block / indirect_blks;
|
|
noffset[n] = 6 + (dptrs_per_blk * 2) +
|
|
offset[n - 1] * (dptrs_per_blk + 1);
|
|
offset[n++] = (block / direct_blks) % dptrs_per_blk;
|
|
noffset[n] = 7 + (dptrs_per_blk * 2) +
|
|
offset[n - 2] * (dptrs_per_blk + 1) +
|
|
offset[n - 1];
|
|
offset[n] = block % direct_blks;
|
|
level = 3;
|
|
goto got;
|
|
} else {
|
|
BUG();
|
|
}
|
|
got:
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* Caller should call f2fs_put_dnode(dn).
|
|
* Also, it should grab and release a mutex by calling mutex_lock_op() and
|
|
* mutex_unlock_op() only if ro is not set RDONLY_NODE.
|
|
* In the case of RDONLY_NODE, we don't need to care about mutex.
|
|
*/
|
|
int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
|
|
struct page *npage[4];
|
|
struct page *parent;
|
|
int offset[4];
|
|
unsigned int noffset[4];
|
|
nid_t nids[4];
|
|
int level, i;
|
|
int err = 0;
|
|
|
|
level = get_node_path(index, offset, noffset);
|
|
|
|
nids[0] = dn->inode->i_ino;
|
|
npage[0] = dn->inode_page;
|
|
|
|
if (!npage[0]) {
|
|
npage[0] = get_node_page(sbi, nids[0]);
|
|
if (IS_ERR(npage[0]))
|
|
return PTR_ERR(npage[0]);
|
|
}
|
|
parent = npage[0];
|
|
if (level != 0)
|
|
nids[1] = get_nid(parent, offset[0], true);
|
|
dn->inode_page = npage[0];
|
|
dn->inode_page_locked = true;
|
|
|
|
/* get indirect or direct nodes */
|
|
for (i = 1; i <= level; i++) {
|
|
bool done = false;
|
|
|
|
if (!nids[i] && mode == ALLOC_NODE) {
|
|
/* alloc new node */
|
|
if (!alloc_nid(sbi, &(nids[i]))) {
|
|
err = -ENOSPC;
|
|
goto release_pages;
|
|
}
|
|
|
|
dn->nid = nids[i];
|
|
npage[i] = new_node_page(dn, noffset[i], NULL);
|
|
if (IS_ERR(npage[i])) {
|
|
alloc_nid_failed(sbi, nids[i]);
|
|
err = PTR_ERR(npage[i]);
|
|
goto release_pages;
|
|
}
|
|
|
|
set_nid(parent, offset[i - 1], nids[i], i == 1);
|
|
alloc_nid_done(sbi, nids[i]);
|
|
done = true;
|
|
} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
|
|
npage[i] = get_node_page_ra(parent, offset[i - 1]);
|
|
if (IS_ERR(npage[i])) {
|
|
err = PTR_ERR(npage[i]);
|
|
goto release_pages;
|
|
}
|
|
done = true;
|
|
}
|
|
if (i == 1) {
|
|
dn->inode_page_locked = false;
|
|
unlock_page(parent);
|
|
} else {
|
|
f2fs_put_page(parent, 1);
|
|
}
|
|
|
|
if (!done) {
|
|
npage[i] = get_node_page(sbi, nids[i]);
|
|
if (IS_ERR(npage[i])) {
|
|
err = PTR_ERR(npage[i]);
|
|
f2fs_put_page(npage[0], 0);
|
|
goto release_out;
|
|
}
|
|
}
|
|
if (i < level) {
|
|
parent = npage[i];
|
|
nids[i + 1] = get_nid(parent, offset[i], false);
|
|
}
|
|
}
|
|
dn->nid = nids[level];
|
|
dn->ofs_in_node = offset[level];
|
|
dn->node_page = npage[level];
|
|
dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
|
|
return 0;
|
|
|
|
release_pages:
|
|
f2fs_put_page(parent, 1);
|
|
if (i > 1)
|
|
f2fs_put_page(npage[0], 0);
|
|
release_out:
|
|
dn->inode_page = NULL;
|
|
dn->node_page = NULL;
|
|
return err;
|
|
}
|
|
|
|
static void truncate_node(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
|
|
struct node_info ni;
|
|
|
|
get_node_info(sbi, dn->nid, &ni);
|
|
if (dn->inode->i_blocks == 0) {
|
|
BUG_ON(ni.blk_addr != NULL_ADDR);
|
|
goto invalidate;
|
|
}
|
|
BUG_ON(ni.blk_addr == NULL_ADDR);
|
|
|
|
/* Deallocate node address */
|
|
invalidate_blocks(sbi, ni.blk_addr);
|
|
dec_valid_node_count(sbi, dn->inode, 1);
|
|
set_node_addr(sbi, &ni, NULL_ADDR);
|
|
|
|
if (dn->nid == dn->inode->i_ino) {
|
|
remove_orphan_inode(sbi, dn->nid);
|
|
dec_valid_inode_count(sbi);
|
|
} else {
|
|
sync_inode_page(dn);
|
|
}
|
|
invalidate:
|
|
clear_node_page_dirty(dn->node_page);
|
|
F2FS_SET_SB_DIRT(sbi);
|
|
|
|
f2fs_put_page(dn->node_page, 1);
|
|
dn->node_page = NULL;
|
|
trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
|
|
}
|
|
|
|
static int truncate_dnode(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
|
|
struct page *page;
|
|
|
|
if (dn->nid == 0)
|
|
return 1;
|
|
|
|
/* get direct node */
|
|
page = get_node_page(sbi, dn->nid);
|
|
if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
|
|
return 1;
|
|
else if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
/* Make dnode_of_data for parameter */
|
|
dn->node_page = page;
|
|
dn->ofs_in_node = 0;
|
|
truncate_data_blocks(dn);
|
|
truncate_node(dn);
|
|
return 1;
|
|
}
|
|
|
|
static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
|
|
int ofs, int depth)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
|
|
struct dnode_of_data rdn = *dn;
|
|
struct page *page;
|
|
struct f2fs_node *rn;
|
|
nid_t child_nid;
|
|
unsigned int child_nofs;
|
|
int freed = 0;
|
|
int i, ret;
|
|
|
|
if (dn->nid == 0)
|
|
return NIDS_PER_BLOCK + 1;
|
|
|
|
trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
|
|
|
|
page = get_node_page(sbi, dn->nid);
|
|
if (IS_ERR(page)) {
|
|
trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
rn = (struct f2fs_node *)page_address(page);
|
|
if (depth < 3) {
|
|
for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
|
|
child_nid = le32_to_cpu(rn->in.nid[i]);
|
|
if (child_nid == 0)
|
|
continue;
|
|
rdn.nid = child_nid;
|
|
ret = truncate_dnode(&rdn);
|
|
if (ret < 0)
|
|
goto out_err;
|
|
set_nid(page, i, 0, false);
|
|
}
|
|
} else {
|
|
child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
|
|
for (i = ofs; i < NIDS_PER_BLOCK; i++) {
|
|
child_nid = le32_to_cpu(rn->in.nid[i]);
|
|
if (child_nid == 0) {
|
|
child_nofs += NIDS_PER_BLOCK + 1;
|
|
continue;
|
|
}
|
|
rdn.nid = child_nid;
|
|
ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
|
|
if (ret == (NIDS_PER_BLOCK + 1)) {
|
|
set_nid(page, i, 0, false);
|
|
child_nofs += ret;
|
|
} else if (ret < 0 && ret != -ENOENT) {
|
|
goto out_err;
|
|
}
|
|
}
|
|
freed = child_nofs;
|
|
}
|
|
|
|
if (!ofs) {
|
|
/* remove current indirect node */
|
|
dn->node_page = page;
|
|
truncate_node(dn);
|
|
freed++;
|
|
} else {
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
trace_f2fs_truncate_nodes_exit(dn->inode, freed);
|
|
return freed;
|
|
|
|
out_err:
|
|
f2fs_put_page(page, 1);
|
|
trace_f2fs_truncate_nodes_exit(dn->inode, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int truncate_partial_nodes(struct dnode_of_data *dn,
|
|
struct f2fs_inode *ri, int *offset, int depth)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
|
|
struct page *pages[2];
|
|
nid_t nid[3];
|
|
nid_t child_nid;
|
|
int err = 0;
|
|
int i;
|
|
int idx = depth - 2;
|
|
|
|
nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
|
|
if (!nid[0])
|
|
return 0;
|
|
|
|
/* get indirect nodes in the path */
|
|
for (i = 0; i < depth - 1; i++) {
|
|
/* refernece count'll be increased */
|
|
pages[i] = get_node_page(sbi, nid[i]);
|
|
if (IS_ERR(pages[i])) {
|
|
depth = i + 1;
|
|
err = PTR_ERR(pages[i]);
|
|
goto fail;
|
|
}
|
|
nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
|
|
}
|
|
|
|
/* free direct nodes linked to a partial indirect node */
|
|
for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
|
|
child_nid = get_nid(pages[idx], i, false);
|
|
if (!child_nid)
|
|
continue;
|
|
dn->nid = child_nid;
|
|
err = truncate_dnode(dn);
|
|
if (err < 0)
|
|
goto fail;
|
|
set_nid(pages[idx], i, 0, false);
|
|
}
|
|
|
|
if (offset[depth - 1] == 0) {
|
|
dn->node_page = pages[idx];
|
|
dn->nid = nid[idx];
|
|
truncate_node(dn);
|
|
} else {
|
|
f2fs_put_page(pages[idx], 1);
|
|
}
|
|
offset[idx]++;
|
|
offset[depth - 1] = 0;
|
|
fail:
|
|
for (i = depth - 3; i >= 0; i--)
|
|
f2fs_put_page(pages[i], 1);
|
|
|
|
trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* All the block addresses of data and nodes should be nullified.
|
|
*/
|
|
int truncate_inode_blocks(struct inode *inode, pgoff_t from)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct address_space *node_mapping = sbi->node_inode->i_mapping;
|
|
int err = 0, cont = 1;
|
|
int level, offset[4], noffset[4];
|
|
unsigned int nofs = 0;
|
|
struct f2fs_node *rn;
|
|
struct dnode_of_data dn;
|
|
struct page *page;
|
|
|
|
trace_f2fs_truncate_inode_blocks_enter(inode, from);
|
|
|
|
level = get_node_path(from, offset, noffset);
|
|
restart:
|
|
page = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(page)) {
|
|
trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, page, NULL, 0);
|
|
unlock_page(page);
|
|
|
|
rn = page_address(page);
|
|
switch (level) {
|
|
case 0:
|
|
case 1:
|
|
nofs = noffset[1];
|
|
break;
|
|
case 2:
|
|
nofs = noffset[1];
|
|
if (!offset[level - 1])
|
|
goto skip_partial;
|
|
err = truncate_partial_nodes(&dn, &rn->i, offset, level);
|
|
if (err < 0 && err != -ENOENT)
|
|
goto fail;
|
|
nofs += 1 + NIDS_PER_BLOCK;
|
|
break;
|
|
case 3:
|
|
nofs = 5 + 2 * NIDS_PER_BLOCK;
|
|
if (!offset[level - 1])
|
|
goto skip_partial;
|
|
err = truncate_partial_nodes(&dn, &rn->i, offset, level);
|
|
if (err < 0 && err != -ENOENT)
|
|
goto fail;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
skip_partial:
|
|
while (cont) {
|
|
dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
|
|
switch (offset[0]) {
|
|
case NODE_DIR1_BLOCK:
|
|
case NODE_DIR2_BLOCK:
|
|
err = truncate_dnode(&dn);
|
|
break;
|
|
|
|
case NODE_IND1_BLOCK:
|
|
case NODE_IND2_BLOCK:
|
|
err = truncate_nodes(&dn, nofs, offset[1], 2);
|
|
break;
|
|
|
|
case NODE_DIND_BLOCK:
|
|
err = truncate_nodes(&dn, nofs, offset[1], 3);
|
|
cont = 0;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
if (err < 0 && err != -ENOENT)
|
|
goto fail;
|
|
if (offset[1] == 0 &&
|
|
rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
|
|
lock_page(page);
|
|
if (page->mapping != node_mapping) {
|
|
f2fs_put_page(page, 1);
|
|
goto restart;
|
|
}
|
|
wait_on_page_writeback(page);
|
|
rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
|
|
set_page_dirty(page);
|
|
unlock_page(page);
|
|
}
|
|
offset[1] = 0;
|
|
offset[0]++;
|
|
nofs += err;
|
|
}
|
|
fail:
|
|
f2fs_put_page(page, 0);
|
|
trace_f2fs_truncate_inode_blocks_exit(inode, err);
|
|
return err > 0 ? 0 : err;
|
|
}
|
|
|
|
/*
|
|
* Caller should grab and release a mutex by calling mutex_lock_op() and
|
|
* mutex_unlock_op().
|
|
*/
|
|
int remove_inode_page(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct page *page;
|
|
nid_t ino = inode->i_ino;
|
|
struct dnode_of_data dn;
|
|
|
|
page = get_node_page(sbi, ino);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
if (F2FS_I(inode)->i_xattr_nid) {
|
|
nid_t nid = F2FS_I(inode)->i_xattr_nid;
|
|
struct page *npage = get_node_page(sbi, nid);
|
|
|
|
if (IS_ERR(npage))
|
|
return PTR_ERR(npage);
|
|
|
|
F2FS_I(inode)->i_xattr_nid = 0;
|
|
set_new_dnode(&dn, inode, page, npage, nid);
|
|
dn.inode_page_locked = 1;
|
|
truncate_node(&dn);
|
|
}
|
|
|
|
/* 0 is possible, after f2fs_new_inode() is failed */
|
|
BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
|
|
set_new_dnode(&dn, inode, page, page, ino);
|
|
truncate_node(&dn);
|
|
return 0;
|
|
}
|
|
|
|
struct page *new_inode_page(struct inode *inode, const struct qstr *name)
|
|
{
|
|
struct dnode_of_data dn;
|
|
|
|
/* allocate inode page for new inode */
|
|
set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
|
|
|
|
/* caller should f2fs_put_page(page, 1); */
|
|
return new_node_page(&dn, 0, NULL);
|
|
}
|
|
|
|
struct page *new_node_page(struct dnode_of_data *dn,
|
|
unsigned int ofs, struct page *ipage)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
|
|
struct address_space *mapping = sbi->node_inode->i_mapping;
|
|
struct node_info old_ni, new_ni;
|
|
struct page *page;
|
|
int err;
|
|
|
|
if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
|
|
return ERR_PTR(-EPERM);
|
|
|
|
page = grab_cache_page(mapping, dn->nid);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
get_node_info(sbi, dn->nid, &old_ni);
|
|
|
|
SetPageUptodate(page);
|
|
fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
|
|
|
|
/* Reinitialize old_ni with new node page */
|
|
BUG_ON(old_ni.blk_addr != NULL_ADDR);
|
|
new_ni = old_ni;
|
|
new_ni.ino = dn->inode->i_ino;
|
|
|
|
if (!inc_valid_node_count(sbi, dn->inode, 1)) {
|
|
err = -ENOSPC;
|
|
goto fail;
|
|
}
|
|
set_node_addr(sbi, &new_ni, NEW_ADDR);
|
|
set_cold_node(dn->inode, page);
|
|
|
|
dn->node_page = page;
|
|
if (ipage)
|
|
update_inode(dn->inode, ipage);
|
|
else
|
|
sync_inode_page(dn);
|
|
set_page_dirty(page);
|
|
if (ofs == 0)
|
|
inc_valid_inode_count(sbi);
|
|
|
|
return page;
|
|
|
|
fail:
|
|
clear_node_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/*
|
|
* Caller should do after getting the following values.
|
|
* 0: f2fs_put_page(page, 0)
|
|
* LOCKED_PAGE: f2fs_put_page(page, 1)
|
|
* error: nothing
|
|
*/
|
|
static int read_node_page(struct page *page, int type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
|
|
struct node_info ni;
|
|
|
|
get_node_info(sbi, page->index, &ni);
|
|
|
|
if (ni.blk_addr == NULL_ADDR) {
|
|
f2fs_put_page(page, 1);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (PageUptodate(page))
|
|
return LOCKED_PAGE;
|
|
|
|
return f2fs_readpage(sbi, page, ni.blk_addr, type);
|
|
}
|
|
|
|
/*
|
|
* Readahead a node page
|
|
*/
|
|
void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct address_space *mapping = sbi->node_inode->i_mapping;
|
|
struct page *apage;
|
|
int err;
|
|
|
|
apage = find_get_page(mapping, nid);
|
|
if (apage && PageUptodate(apage)) {
|
|
f2fs_put_page(apage, 0);
|
|
return;
|
|
}
|
|
f2fs_put_page(apage, 0);
|
|
|
|
apage = grab_cache_page(mapping, nid);
|
|
if (!apage)
|
|
return;
|
|
|
|
err = read_node_page(apage, READA);
|
|
if (err == 0)
|
|
f2fs_put_page(apage, 0);
|
|
else if (err == LOCKED_PAGE)
|
|
f2fs_put_page(apage, 1);
|
|
return;
|
|
}
|
|
|
|
struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
|
|
{
|
|
struct address_space *mapping = sbi->node_inode->i_mapping;
|
|
struct page *page;
|
|
int err;
|
|
repeat:
|
|
page = grab_cache_page(mapping, nid);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = read_node_page(page, READ_SYNC);
|
|
if (err < 0)
|
|
return ERR_PTR(err);
|
|
else if (err == LOCKED_PAGE)
|
|
goto got_it;
|
|
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
if (page->mapping != mapping) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
got_it:
|
|
BUG_ON(nid != nid_of_node(page));
|
|
mark_page_accessed(page);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Return a locked page for the desired node page.
|
|
* And, readahead MAX_RA_NODE number of node pages.
|
|
*/
|
|
struct page *get_node_page_ra(struct page *parent, int start)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
|
|
struct address_space *mapping = sbi->node_inode->i_mapping;
|
|
struct blk_plug plug;
|
|
struct page *page;
|
|
int err, i, end;
|
|
nid_t nid;
|
|
|
|
/* First, try getting the desired direct node. */
|
|
nid = get_nid(parent, start, false);
|
|
if (!nid)
|
|
return ERR_PTR(-ENOENT);
|
|
repeat:
|
|
page = grab_cache_page(mapping, nid);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = read_node_page(page, READ_SYNC);
|
|
if (err < 0)
|
|
return ERR_PTR(err);
|
|
else if (err == LOCKED_PAGE)
|
|
goto page_hit;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
/* Then, try readahead for siblings of the desired node */
|
|
end = start + MAX_RA_NODE;
|
|
end = min(end, NIDS_PER_BLOCK);
|
|
for (i = start + 1; i < end; i++) {
|
|
nid = get_nid(parent, i, false);
|
|
if (!nid)
|
|
continue;
|
|
ra_node_page(sbi, nid);
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
page_hit:
|
|
if (!PageUptodate(page)) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
mark_page_accessed(page);
|
|
return page;
|
|
}
|
|
|
|
void sync_inode_page(struct dnode_of_data *dn)
|
|
{
|
|
if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
|
|
update_inode(dn->inode, dn->node_page);
|
|
} else if (dn->inode_page) {
|
|
if (!dn->inode_page_locked)
|
|
lock_page(dn->inode_page);
|
|
update_inode(dn->inode, dn->inode_page);
|
|
if (!dn->inode_page_locked)
|
|
unlock_page(dn->inode_page);
|
|
} else {
|
|
update_inode_page(dn->inode);
|
|
}
|
|
}
|
|
|
|
int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct address_space *mapping = sbi->node_inode->i_mapping;
|
|
pgoff_t index, end;
|
|
struct pagevec pvec;
|
|
int step = ino ? 2 : 0;
|
|
int nwritten = 0, wrote = 0;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
|
|
next_step:
|
|
index = 0;
|
|
end = LONG_MAX;
|
|
|
|
while (index <= end) {
|
|
int i, nr_pages;
|
|
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
|
|
PAGECACHE_TAG_DIRTY,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
|
|
if (nr_pages == 0)
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
/*
|
|
* flushing sequence with step:
|
|
* 0. indirect nodes
|
|
* 1. dentry dnodes
|
|
* 2. file dnodes
|
|
*/
|
|
if (step == 0 && IS_DNODE(page))
|
|
continue;
|
|
if (step == 1 && (!IS_DNODE(page) ||
|
|
is_cold_node(page)))
|
|
continue;
|
|
if (step == 2 && (!IS_DNODE(page) ||
|
|
!is_cold_node(page)))
|
|
continue;
|
|
|
|
/*
|
|
* If an fsync mode,
|
|
* we should not skip writing node pages.
|
|
*/
|
|
if (ino && ino_of_node(page) == ino)
|
|
lock_page(page);
|
|
else if (!trylock_page(page))
|
|
continue;
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
if (ino && ino_of_node(page) != ino)
|
|
goto continue_unlock;
|
|
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
/* called by fsync() */
|
|
if (ino && IS_DNODE(page)) {
|
|
int mark = !is_checkpointed_node(sbi, ino);
|
|
set_fsync_mark(page, 1);
|
|
if (IS_INODE(page))
|
|
set_dentry_mark(page, mark);
|
|
nwritten++;
|
|
} else {
|
|
set_fsync_mark(page, 0);
|
|
set_dentry_mark(page, 0);
|
|
}
|
|
mapping->a_ops->writepage(page, wbc);
|
|
wrote++;
|
|
|
|
if (--wbc->nr_to_write == 0)
|
|
break;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
|
|
if (wbc->nr_to_write == 0) {
|
|
step = 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (step < 2) {
|
|
step++;
|
|
goto next_step;
|
|
}
|
|
|
|
if (wrote)
|
|
f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
|
|
|
|
return nwritten;
|
|
}
|
|
|
|
static int f2fs_write_node_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
|
|
nid_t nid;
|
|
block_t new_addr;
|
|
struct node_info ni;
|
|
|
|
wait_on_page_writeback(page);
|
|
|
|
/* get old block addr of this node page */
|
|
nid = nid_of_node(page);
|
|
BUG_ON(page->index != nid);
|
|
|
|
get_node_info(sbi, nid, &ni);
|
|
|
|
/* This page is already truncated */
|
|
if (ni.blk_addr == NULL_ADDR) {
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
if (wbc->for_reclaim) {
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
wbc->pages_skipped++;
|
|
set_page_dirty(page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
mutex_lock(&sbi->node_write);
|
|
set_page_writeback(page);
|
|
write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
|
|
set_node_addr(sbi, &ni, new_addr);
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
mutex_unlock(&sbi->node_write);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It is very important to gather dirty pages and write at once, so that we can
|
|
* submit a big bio without interfering other data writes.
|
|
* Be default, 512 pages (2MB), a segment size, is quite reasonable.
|
|
*/
|
|
#define COLLECT_DIRTY_NODES 512
|
|
static int f2fs_write_node_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
|
|
long nr_to_write = wbc->nr_to_write;
|
|
|
|
/* First check balancing cached NAT entries */
|
|
if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
|
|
f2fs_sync_fs(sbi->sb, true);
|
|
return 0;
|
|
}
|
|
|
|
/* collect a number of dirty node pages and write together */
|
|
if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
|
|
return 0;
|
|
|
|
/* if mounting is failed, skip writing node pages */
|
|
wbc->nr_to_write = max_hw_blocks(sbi);
|
|
sync_node_pages(sbi, 0, wbc);
|
|
wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_set_node_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
|
|
|
|
SetPageUptodate(page);
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
inc_page_count(sbi, F2FS_DIRTY_NODES);
|
|
SetPagePrivate(page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
if (PageDirty(page))
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
ClearPagePrivate(page);
|
|
}
|
|
|
|
static int f2fs_release_node_page(struct page *page, gfp_t wait)
|
|
{
|
|
ClearPagePrivate(page);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Structure of the f2fs node operations
|
|
*/
|
|
const struct address_space_operations f2fs_node_aops = {
|
|
.writepage = f2fs_write_node_page,
|
|
.writepages = f2fs_write_node_pages,
|
|
.set_page_dirty = f2fs_set_node_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_node_page,
|
|
.releasepage = f2fs_release_node_page,
|
|
};
|
|
|
|
static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
|
|
{
|
|
struct list_head *this;
|
|
struct free_nid *i;
|
|
list_for_each(this, head) {
|
|
i = list_entry(this, struct free_nid, list);
|
|
if (i->nid == n)
|
|
return i;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void __del_from_free_nid_list(struct free_nid *i)
|
|
{
|
|
list_del(&i->list);
|
|
kmem_cache_free(free_nid_slab, i);
|
|
}
|
|
|
|
static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
|
|
{
|
|
struct free_nid *i;
|
|
struct nat_entry *ne;
|
|
bool allocated = false;
|
|
|
|
if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
|
|
return -1;
|
|
|
|
/* 0 nid should not be used */
|
|
if (nid == 0)
|
|
return 0;
|
|
|
|
if (!build)
|
|
goto retry;
|
|
|
|
/* do not add allocated nids */
|
|
read_lock(&nm_i->nat_tree_lock);
|
|
ne = __lookup_nat_cache(nm_i, nid);
|
|
if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
|
|
allocated = true;
|
|
read_unlock(&nm_i->nat_tree_lock);
|
|
if (allocated)
|
|
return 0;
|
|
retry:
|
|
i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
|
|
if (!i) {
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
i->nid = nid;
|
|
i->state = NID_NEW;
|
|
|
|
spin_lock(&nm_i->free_nid_list_lock);
|
|
if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
kmem_cache_free(free_nid_slab, i);
|
|
return 0;
|
|
}
|
|
list_add_tail(&i->list, &nm_i->free_nid_list);
|
|
nm_i->fcnt++;
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
return 1;
|
|
}
|
|
|
|
static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
|
|
{
|
|
struct free_nid *i;
|
|
spin_lock(&nm_i->free_nid_list_lock);
|
|
i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
|
|
if (i && i->state == NID_NEW) {
|
|
__del_from_free_nid_list(i);
|
|
nm_i->fcnt--;
|
|
}
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
}
|
|
|
|
static void scan_nat_page(struct f2fs_nm_info *nm_i,
|
|
struct page *nat_page, nid_t start_nid)
|
|
{
|
|
struct f2fs_nat_block *nat_blk = page_address(nat_page);
|
|
block_t blk_addr;
|
|
int i;
|
|
|
|
i = start_nid % NAT_ENTRY_PER_BLOCK;
|
|
|
|
for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
|
|
|
|
if (start_nid >= nm_i->max_nid)
|
|
break;
|
|
|
|
blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
|
|
BUG_ON(blk_addr == NEW_ADDR);
|
|
if (blk_addr == NULL_ADDR) {
|
|
if (add_free_nid(nm_i, start_nid, true) < 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void build_free_nids(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_summary_block *sum = curseg->sum_blk;
|
|
int i = 0;
|
|
nid_t nid = nm_i->next_scan_nid;
|
|
|
|
/* Enough entries */
|
|
if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
|
|
return;
|
|
|
|
/* readahead nat pages to be scanned */
|
|
ra_nat_pages(sbi, nid);
|
|
|
|
while (1) {
|
|
struct page *page = get_current_nat_page(sbi, nid);
|
|
|
|
scan_nat_page(nm_i, page, nid);
|
|
f2fs_put_page(page, 1);
|
|
|
|
nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
|
|
if (nid >= nm_i->max_nid)
|
|
nid = 0;
|
|
|
|
if (i++ == FREE_NID_PAGES)
|
|
break;
|
|
}
|
|
|
|
/* go to the next free nat pages to find free nids abundantly */
|
|
nm_i->next_scan_nid = nid;
|
|
|
|
/* find free nids from current sum_pages */
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
for (i = 0; i < nats_in_cursum(sum); i++) {
|
|
block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
|
|
nid = le32_to_cpu(nid_in_journal(sum, i));
|
|
if (addr == NULL_ADDR)
|
|
add_free_nid(nm_i, nid, true);
|
|
else
|
|
remove_free_nid(nm_i, nid);
|
|
}
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
}
|
|
|
|
/*
|
|
* If this function returns success, caller can obtain a new nid
|
|
* from second parameter of this function.
|
|
* The returned nid could be used ino as well as nid when inode is created.
|
|
*/
|
|
bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i = NULL;
|
|
struct list_head *this;
|
|
retry:
|
|
if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
|
|
return false;
|
|
|
|
spin_lock(&nm_i->free_nid_list_lock);
|
|
|
|
/* We should not use stale free nids created by build_free_nids */
|
|
if (nm_i->fcnt && !sbi->on_build_free_nids) {
|
|
BUG_ON(list_empty(&nm_i->free_nid_list));
|
|
list_for_each(this, &nm_i->free_nid_list) {
|
|
i = list_entry(this, struct free_nid, list);
|
|
if (i->state == NID_NEW)
|
|
break;
|
|
}
|
|
|
|
BUG_ON(i->state != NID_NEW);
|
|
*nid = i->nid;
|
|
i->state = NID_ALLOC;
|
|
nm_i->fcnt--;
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
return true;
|
|
}
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
|
|
/* Let's scan nat pages and its caches to get free nids */
|
|
mutex_lock(&nm_i->build_lock);
|
|
sbi->on_build_free_nids = 1;
|
|
build_free_nids(sbi);
|
|
sbi->on_build_free_nids = 0;
|
|
mutex_unlock(&nm_i->build_lock);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* alloc_nid() should be called prior to this function.
|
|
*/
|
|
void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i;
|
|
|
|
spin_lock(&nm_i->free_nid_list_lock);
|
|
i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
|
|
BUG_ON(!i || i->state != NID_ALLOC);
|
|
__del_from_free_nid_list(i);
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
}
|
|
|
|
/*
|
|
* alloc_nid() should be called prior to this function.
|
|
*/
|
|
void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i;
|
|
|
|
spin_lock(&nm_i->free_nid_list_lock);
|
|
i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
|
|
BUG_ON(!i || i->state != NID_ALLOC);
|
|
if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
|
|
__del_from_free_nid_list(i);
|
|
} else {
|
|
i->state = NID_NEW;
|
|
nm_i->fcnt++;
|
|
}
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
}
|
|
|
|
void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
|
|
struct f2fs_summary *sum, struct node_info *ni,
|
|
block_t new_blkaddr)
|
|
{
|
|
rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
|
|
set_node_addr(sbi, ni, new_blkaddr);
|
|
clear_node_page_dirty(page);
|
|
}
|
|
|
|
int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
|
|
{
|
|
struct address_space *mapping = sbi->node_inode->i_mapping;
|
|
struct f2fs_node *src, *dst;
|
|
nid_t ino = ino_of_node(page);
|
|
struct node_info old_ni, new_ni;
|
|
struct page *ipage;
|
|
|
|
ipage = grab_cache_page(mapping, ino);
|
|
if (!ipage)
|
|
return -ENOMEM;
|
|
|
|
/* Should not use this inode from free nid list */
|
|
remove_free_nid(NM_I(sbi), ino);
|
|
|
|
get_node_info(sbi, ino, &old_ni);
|
|
SetPageUptodate(ipage);
|
|
fill_node_footer(ipage, ino, ino, 0, true);
|
|
|
|
src = (struct f2fs_node *)page_address(page);
|
|
dst = (struct f2fs_node *)page_address(ipage);
|
|
|
|
memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
|
|
dst->i.i_size = 0;
|
|
dst->i.i_blocks = cpu_to_le64(1);
|
|
dst->i.i_links = cpu_to_le32(1);
|
|
dst->i.i_xattr_nid = 0;
|
|
|
|
new_ni = old_ni;
|
|
new_ni.ino = ino;
|
|
|
|
if (!inc_valid_node_count(sbi, NULL, 1))
|
|
WARN_ON(1);
|
|
set_node_addr(sbi, &new_ni, NEW_ADDR);
|
|
inc_valid_inode_count(sbi);
|
|
f2fs_put_page(ipage, 1);
|
|
return 0;
|
|
}
|
|
|
|
int restore_node_summary(struct f2fs_sb_info *sbi,
|
|
unsigned int segno, struct f2fs_summary_block *sum)
|
|
{
|
|
struct f2fs_node *rn;
|
|
struct f2fs_summary *sum_entry;
|
|
struct page *page;
|
|
block_t addr;
|
|
int i, last_offset;
|
|
|
|
/* alloc temporal page for read node */
|
|
page = alloc_page(GFP_NOFS | __GFP_ZERO);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
lock_page(page);
|
|
|
|
/* scan the node segment */
|
|
last_offset = sbi->blocks_per_seg;
|
|
addr = START_BLOCK(sbi, segno);
|
|
sum_entry = &sum->entries[0];
|
|
|
|
for (i = 0; i < last_offset; i++, sum_entry++) {
|
|
/*
|
|
* In order to read next node page,
|
|
* we must clear PageUptodate flag.
|
|
*/
|
|
ClearPageUptodate(page);
|
|
|
|
if (f2fs_readpage(sbi, page, addr, READ_SYNC))
|
|
goto out;
|
|
|
|
lock_page(page);
|
|
rn = (struct f2fs_node *)page_address(page);
|
|
sum_entry->nid = rn->footer.nid;
|
|
sum_entry->version = 0;
|
|
sum_entry->ofs_in_node = 0;
|
|
addr++;
|
|
}
|
|
unlock_page(page);
|
|
out:
|
|
__free_pages(page, 0);
|
|
return 0;
|
|
}
|
|
|
|
static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_summary_block *sum = curseg->sum_blk;
|
|
int i;
|
|
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
|
|
if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < nats_in_cursum(sum); i++) {
|
|
struct nat_entry *ne;
|
|
struct f2fs_nat_entry raw_ne;
|
|
nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
|
|
|
|
raw_ne = nat_in_journal(sum, i);
|
|
retry:
|
|
write_lock(&nm_i->nat_tree_lock);
|
|
ne = __lookup_nat_cache(nm_i, nid);
|
|
if (ne) {
|
|
__set_nat_cache_dirty(nm_i, ne);
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
continue;
|
|
}
|
|
ne = grab_nat_entry(nm_i, nid);
|
|
if (!ne) {
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
goto retry;
|
|
}
|
|
nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
|
|
nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
|
|
nat_set_version(ne, raw_ne.version);
|
|
__set_nat_cache_dirty(nm_i, ne);
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
}
|
|
update_nats_in_cursum(sum, -i);
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This function is called during the checkpointing process.
|
|
*/
|
|
void flush_nat_entries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_summary_block *sum = curseg->sum_blk;
|
|
struct list_head *cur, *n;
|
|
struct page *page = NULL;
|
|
struct f2fs_nat_block *nat_blk = NULL;
|
|
nid_t start_nid = 0, end_nid = 0;
|
|
bool flushed;
|
|
|
|
flushed = flush_nats_in_journal(sbi);
|
|
|
|
if (!flushed)
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
|
|
/* 1) flush dirty nat caches */
|
|
list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
|
|
struct nat_entry *ne;
|
|
nid_t nid;
|
|
struct f2fs_nat_entry raw_ne;
|
|
int offset = -1;
|
|
block_t new_blkaddr;
|
|
|
|
ne = list_entry(cur, struct nat_entry, list);
|
|
nid = nat_get_nid(ne);
|
|
|
|
if (nat_get_blkaddr(ne) == NEW_ADDR)
|
|
continue;
|
|
if (flushed)
|
|
goto to_nat_page;
|
|
|
|
/* if there is room for nat enries in curseg->sumpage */
|
|
offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
|
|
if (offset >= 0) {
|
|
raw_ne = nat_in_journal(sum, offset);
|
|
goto flush_now;
|
|
}
|
|
to_nat_page:
|
|
if (!page || (start_nid > nid || nid > end_nid)) {
|
|
if (page) {
|
|
f2fs_put_page(page, 1);
|
|
page = NULL;
|
|
}
|
|
start_nid = START_NID(nid);
|
|
end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
|
|
|
|
/*
|
|
* get nat block with dirty flag, increased reference
|
|
* count, mapped and lock
|
|
*/
|
|
page = get_next_nat_page(sbi, start_nid);
|
|
nat_blk = page_address(page);
|
|
}
|
|
|
|
BUG_ON(!nat_blk);
|
|
raw_ne = nat_blk->entries[nid - start_nid];
|
|
flush_now:
|
|
new_blkaddr = nat_get_blkaddr(ne);
|
|
|
|
raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
|
|
raw_ne.block_addr = cpu_to_le32(new_blkaddr);
|
|
raw_ne.version = nat_get_version(ne);
|
|
|
|
if (offset < 0) {
|
|
nat_blk->entries[nid - start_nid] = raw_ne;
|
|
} else {
|
|
nat_in_journal(sum, offset) = raw_ne;
|
|
nid_in_journal(sum, offset) = cpu_to_le32(nid);
|
|
}
|
|
|
|
if (nat_get_blkaddr(ne) == NULL_ADDR &&
|
|
add_free_nid(NM_I(sbi), nid, false) <= 0) {
|
|
write_lock(&nm_i->nat_tree_lock);
|
|
__del_from_nat_cache(nm_i, ne);
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
} else {
|
|
write_lock(&nm_i->nat_tree_lock);
|
|
__clear_nat_cache_dirty(nm_i, ne);
|
|
ne->checkpointed = true;
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
}
|
|
}
|
|
if (!flushed)
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
f2fs_put_page(page, 1);
|
|
|
|
/* 2) shrink nat caches if necessary */
|
|
try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
|
|
}
|
|
|
|
static int init_node_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned char *version_bitmap;
|
|
unsigned int nat_segs, nat_blocks;
|
|
|
|
nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
|
|
|
|
/* segment_count_nat includes pair segment so divide to 2. */
|
|
nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
|
|
nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
|
|
nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
|
|
nm_i->fcnt = 0;
|
|
nm_i->nat_cnt = 0;
|
|
|
|
INIT_LIST_HEAD(&nm_i->free_nid_list);
|
|
INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
|
|
INIT_LIST_HEAD(&nm_i->nat_entries);
|
|
INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
|
|
|
|
mutex_init(&nm_i->build_lock);
|
|
spin_lock_init(&nm_i->free_nid_list_lock);
|
|
rwlock_init(&nm_i->nat_tree_lock);
|
|
|
|
nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
|
|
nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
|
|
version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
|
|
if (!version_bitmap)
|
|
return -EFAULT;
|
|
|
|
nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
|
|
GFP_KERNEL);
|
|
if (!nm_i->nat_bitmap)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
int build_node_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
int err;
|
|
|
|
sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
|
|
if (!sbi->nm_info)
|
|
return -ENOMEM;
|
|
|
|
err = init_node_manager(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
build_free_nids(sbi);
|
|
return 0;
|
|
}
|
|
|
|
void destroy_node_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i, *next_i;
|
|
struct nat_entry *natvec[NATVEC_SIZE];
|
|
nid_t nid = 0;
|
|
unsigned int found;
|
|
|
|
if (!nm_i)
|
|
return;
|
|
|
|
/* destroy free nid list */
|
|
spin_lock(&nm_i->free_nid_list_lock);
|
|
list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
|
|
BUG_ON(i->state == NID_ALLOC);
|
|
__del_from_free_nid_list(i);
|
|
nm_i->fcnt--;
|
|
}
|
|
BUG_ON(nm_i->fcnt);
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
|
|
/* destroy nat cache */
|
|
write_lock(&nm_i->nat_tree_lock);
|
|
while ((found = __gang_lookup_nat_cache(nm_i,
|
|
nid, NATVEC_SIZE, natvec))) {
|
|
unsigned idx;
|
|
for (idx = 0; idx < found; idx++) {
|
|
struct nat_entry *e = natvec[idx];
|
|
nid = nat_get_nid(e) + 1;
|
|
__del_from_nat_cache(nm_i, e);
|
|
}
|
|
}
|
|
BUG_ON(nm_i->nat_cnt);
|
|
write_unlock(&nm_i->nat_tree_lock);
|
|
|
|
kfree(nm_i->nat_bitmap);
|
|
sbi->nm_info = NULL;
|
|
kfree(nm_i);
|
|
}
|
|
|
|
int __init create_node_manager_caches(void)
|
|
{
|
|
nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
|
|
sizeof(struct nat_entry), NULL);
|
|
if (!nat_entry_slab)
|
|
return -ENOMEM;
|
|
|
|
free_nid_slab = f2fs_kmem_cache_create("free_nid",
|
|
sizeof(struct free_nid), NULL);
|
|
if (!free_nid_slab) {
|
|
kmem_cache_destroy(nat_entry_slab);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void destroy_node_manager_caches(void)
|
|
{
|
|
kmem_cache_destroy(free_nid_slab);
|
|
kmem_cache_destroy(nat_entry_slab);
|
|
}
|