WSL2-Linux-Kernel/net/xdp/xsk.c

1231 строка
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* XDP sockets
*
* AF_XDP sockets allows a channel between XDP programs and userspace
* applications.
* Copyright(c) 2018 Intel Corporation.
*
* Author(s): Björn Töpel <bjorn.topel@intel.com>
* Magnus Karlsson <magnus.karlsson@intel.com>
*/
#define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
#include <linux/if_xdp.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/socket.h>
#include <linux/file.h>
#include <linux/uaccess.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/rculist.h>
#include <net/xdp_sock.h>
#include <net/xdp.h>
#include "xsk_queue.h"
#include "xdp_umem.h"
#include "xsk.h"
#define TX_BATCH_SIZE 16
static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
bool xsk_is_setup_for_bpf_map(struct xdp_sock *xs)
{
return READ_ONCE(xs->rx) && READ_ONCE(xs->umem) &&
READ_ONCE(xs->umem->fq);
}
bool xsk_umem_has_addrs(struct xdp_umem *umem, u32 cnt)
{
return xskq_cons_has_entries(umem->fq, cnt);
}
EXPORT_SYMBOL(xsk_umem_has_addrs);
bool xsk_umem_peek_addr(struct xdp_umem *umem, u64 *addr)
{
return xskq_cons_peek_addr(umem->fq, addr, umem);
}
EXPORT_SYMBOL(xsk_umem_peek_addr);
void xsk_umem_release_addr(struct xdp_umem *umem)
{
xskq_cons_release(umem->fq);
}
EXPORT_SYMBOL(xsk_umem_release_addr);
void xsk_set_rx_need_wakeup(struct xdp_umem *umem)
{
if (umem->need_wakeup & XDP_WAKEUP_RX)
return;
umem->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
umem->need_wakeup |= XDP_WAKEUP_RX;
}
EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
void xsk_set_tx_need_wakeup(struct xdp_umem *umem)
{
struct xdp_sock *xs;
if (umem->need_wakeup & XDP_WAKEUP_TX)
return;
rcu_read_lock();
list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
}
rcu_read_unlock();
umem->need_wakeup |= XDP_WAKEUP_TX;
}
EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
void xsk_clear_rx_need_wakeup(struct xdp_umem *umem)
{
if (!(umem->need_wakeup & XDP_WAKEUP_RX))
return;
umem->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
umem->need_wakeup &= ~XDP_WAKEUP_RX;
}
EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
void xsk_clear_tx_need_wakeup(struct xdp_umem *umem)
{
struct xdp_sock *xs;
if (!(umem->need_wakeup & XDP_WAKEUP_TX))
return;
rcu_read_lock();
list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
}
rcu_read_unlock();
umem->need_wakeup &= ~XDP_WAKEUP_TX;
}
EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
bool xsk_umem_uses_need_wakeup(struct xdp_umem *umem)
{
return umem->flags & XDP_UMEM_USES_NEED_WAKEUP;
}
EXPORT_SYMBOL(xsk_umem_uses_need_wakeup);
/* If a buffer crosses a page boundary, we need to do 2 memcpy's, one for
* each page. This is only required in copy mode.
*/
static void __xsk_rcv_memcpy(struct xdp_umem *umem, u64 addr, void *from_buf,
u32 len, u32 metalen)
{
void *to_buf = xdp_umem_get_data(umem, addr);
addr = xsk_umem_add_offset_to_addr(addr);
if (xskq_cons_crosses_non_contig_pg(umem, addr, len + metalen)) {
void *next_pg_addr = umem->pages[(addr >> PAGE_SHIFT) + 1].addr;
u64 page_start = addr & ~(PAGE_SIZE - 1);
u64 first_len = PAGE_SIZE - (addr - page_start);
memcpy(to_buf, from_buf, first_len);
memcpy(next_pg_addr, from_buf + first_len,
len + metalen - first_len);
return;
}
memcpy(to_buf, from_buf, len + metalen);
}
static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
u64 offset = xs->umem->headroom;
u64 addr, memcpy_addr;
void *from_buf;
u32 metalen;
int err;
if (!xskq_cons_peek_addr(xs->umem->fq, &addr, xs->umem) ||
len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
xs->rx_dropped++;
return -ENOSPC;
}
if (unlikely(xdp_data_meta_unsupported(xdp))) {
from_buf = xdp->data;
metalen = 0;
} else {
from_buf = xdp->data_meta;
metalen = xdp->data - xdp->data_meta;
}
memcpy_addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
__xsk_rcv_memcpy(xs->umem, memcpy_addr, from_buf, len, metalen);
offset += metalen;
addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
err = xskq_prod_reserve_desc(xs->rx, addr, len);
if (!err) {
xskq_cons_release(xs->umem->fq);
xdp_return_buff(xdp);
return 0;
}
xs->rx_dropped++;
return err;
}
static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
int err = xskq_prod_reserve_desc(xs->rx, xdp->handle, len);
if (err)
xs->rx_dropped++;
return err;
}
static bool xsk_is_bound(struct xdp_sock *xs)
{
if (READ_ONCE(xs->state) == XSK_BOUND) {
/* Matches smp_wmb() in bind(). */
smp_rmb();
return true;
}
return false;
}
static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
u32 len;
if (!xsk_is_bound(xs))
return -EINVAL;
if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
return -EINVAL;
len = xdp->data_end - xdp->data;
return (xdp->rxq->mem.type == MEM_TYPE_ZERO_COPY) ?
__xsk_rcv_zc(xs, xdp, len) : __xsk_rcv(xs, xdp, len);
}
static void xsk_flush(struct xdp_sock *xs)
{
xskq_prod_submit(xs->rx);
__xskq_cons_release(xs->umem->fq);
sock_def_readable(&xs->sk);
}
int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
u32 metalen = xdp->data - xdp->data_meta;
u32 len = xdp->data_end - xdp->data;
u64 offset = xs->umem->headroom;
void *buffer;
u64 addr;
int err;
spin_lock_bh(&xs->rx_lock);
if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) {
err = -EINVAL;
goto out_unlock;
}
if (!xskq_cons_peek_addr(xs->umem->fq, &addr, xs->umem) ||
len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
err = -ENOSPC;
goto out_drop;
}
addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
buffer = xdp_umem_get_data(xs->umem, addr);
memcpy(buffer, xdp->data_meta, len + metalen);
addr = xsk_umem_adjust_offset(xs->umem, addr, metalen);
err = xskq_prod_reserve_desc(xs->rx, addr, len);
if (err)
goto out_drop;
xskq_cons_release(xs->umem->fq);
xskq_prod_submit(xs->rx);
spin_unlock_bh(&xs->rx_lock);
xs->sk.sk_data_ready(&xs->sk);
return 0;
out_drop:
xs->rx_dropped++;
out_unlock:
spin_unlock_bh(&xs->rx_lock);
return err;
}
int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
{
struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
int err;
err = xsk_rcv(xs, xdp);
if (err)
return err;
if (!xs->flush_node.prev)
list_add(&xs->flush_node, flush_list);
return 0;
}
void __xsk_map_flush(void)
{
struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
struct xdp_sock *xs, *tmp;
list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
xsk_flush(xs);
__list_del_clearprev(&xs->flush_node);
}
}
void xsk_umem_complete_tx(struct xdp_umem *umem, u32 nb_entries)
{
xskq_prod_submit_n(umem->cq, nb_entries);
}
EXPORT_SYMBOL(xsk_umem_complete_tx);
void xsk_umem_consume_tx_done(struct xdp_umem *umem)
{
struct xdp_sock *xs;
rcu_read_lock();
list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
__xskq_cons_release(xs->tx);
xs->sk.sk_write_space(&xs->sk);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(xsk_umem_consume_tx_done);
bool xsk_umem_consume_tx(struct xdp_umem *umem, struct xdp_desc *desc)
{
struct xdp_sock *xs;
rcu_read_lock();
list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
if (!xskq_cons_peek_desc(xs->tx, desc, umem))
continue;
/* This is the backpressure mechanism for the Tx path.
* Reserve space in the completion queue and only proceed
* if there is space in it. This avoids having to implement
* any buffering in the Tx path.
*/
if (xskq_prod_reserve_addr(umem->cq, desc->addr))
goto out;
xskq_cons_release(xs->tx);
rcu_read_unlock();
return true;
}
out:
rcu_read_unlock();
return false;
}
EXPORT_SYMBOL(xsk_umem_consume_tx);
static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
{
struct net_device *dev = xs->dev;
int err;
rcu_read_lock();
err = dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
rcu_read_unlock();
return err;
}
static int xsk_zc_xmit(struct xdp_sock *xs)
{
return xsk_wakeup(xs, XDP_WAKEUP_TX);
}
static void xsk_destruct_skb(struct sk_buff *skb)
{
u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg;
struct xdp_sock *xs = xdp_sk(skb->sk);
unsigned long flags;
spin_lock_irqsave(&xs->tx_completion_lock, flags);
xskq_prod_submit_addr(xs->umem->cq, addr);
spin_unlock_irqrestore(&xs->tx_completion_lock, flags);
sock_wfree(skb);
}
static int xsk_generic_xmit(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
u32 max_batch = TX_BATCH_SIZE;
bool sent_frame = false;
struct xdp_desc desc;
struct sk_buff *skb;
int err = 0;
mutex_lock(&xs->mutex);
if (xs->queue_id >= xs->dev->real_num_tx_queues)
goto out;
while (xskq_cons_peek_desc(xs->tx, &desc, xs->umem)) {
char *buffer;
u64 addr;
u32 len;
if (max_batch-- == 0) {
err = -EAGAIN;
goto out;
}
len = desc.len;
skb = sock_alloc_send_skb(sk, len, 1, &err);
if (unlikely(!skb)) {
err = -EAGAIN;
goto out;
}
skb_put(skb, len);
addr = desc.addr;
buffer = xdp_umem_get_data(xs->umem, addr);
err = skb_store_bits(skb, 0, buffer, len);
/* This is the backpressure mechanism for the Tx path.
* Reserve space in the completion queue and only proceed
* if there is space in it. This avoids having to implement
* any buffering in the Tx path.
*/
if (unlikely(err) || xskq_prod_reserve(xs->umem->cq)) {
kfree_skb(skb);
goto out;
}
skb->dev = xs->dev;
skb->priority = sk->sk_priority;
skb->mark = sk->sk_mark;
skb_shinfo(skb)->destructor_arg = (void *)(long)desc.addr;
skb->destructor = xsk_destruct_skb;
err = dev_direct_xmit(skb, xs->queue_id);
xskq_cons_release(xs->tx);
/* Ignore NET_XMIT_CN as packet might have been sent */
if (err == NET_XMIT_DROP || err == NETDEV_TX_BUSY) {
/* SKB completed but not sent */
err = -EBUSY;
goto out;
}
sent_frame = true;
}
out:
if (sent_frame)
sk->sk_write_space(sk);
mutex_unlock(&xs->mutex);
return err;
}
static int __xsk_sendmsg(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
if (unlikely(!(xs->dev->flags & IFF_UP)))
return -ENETDOWN;
if (unlikely(!xs->tx))
return -ENOBUFS;
return xs->zc ? xsk_zc_xmit(xs) : xsk_generic_xmit(sk);
}
static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
{
bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
if (unlikely(!xsk_is_bound(xs)))
return -ENXIO;
if (unlikely(need_wait))
return -EOPNOTSUPP;
return __xsk_sendmsg(sk);
}
static __poll_t xsk_poll(struct file *file, struct socket *sock,
struct poll_table_struct *wait)
{
__poll_t mask = datagram_poll(file, sock, wait);
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct xdp_umem *umem;
if (unlikely(!xsk_is_bound(xs)))
return mask;
umem = xs->umem;
if (umem->need_wakeup) {
if (xs->zc)
xsk_wakeup(xs, umem->need_wakeup);
else
/* Poll needs to drive Tx also in copy mode */
__xsk_sendmsg(sk);
}
if (xs->rx && !xskq_prod_is_empty(xs->rx))
mask |= EPOLLIN | EPOLLRDNORM;
if (xs->tx && !xskq_cons_is_full(xs->tx))
mask |= EPOLLOUT | EPOLLWRNORM;
return mask;
}
static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
bool umem_queue)
{
struct xsk_queue *q;
if (entries == 0 || *queue || !is_power_of_2(entries))
return -EINVAL;
q = xskq_create(entries, umem_queue);
if (!q)
return -ENOMEM;
/* Make sure queue is ready before it can be seen by others */
smp_wmb();
WRITE_ONCE(*queue, q);
return 0;
}
static void xsk_unbind_dev(struct xdp_sock *xs)
{
struct net_device *dev = xs->dev;
if (xs->state != XSK_BOUND)
return;
WRITE_ONCE(xs->state, XSK_UNBOUND);
/* Wait for driver to stop using the xdp socket. */
xdp_del_sk_umem(xs->umem, xs);
xs->dev = NULL;
synchronize_net();
dev_put(dev);
}
static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
struct xdp_sock ***map_entry)
{
struct xsk_map *map = NULL;
struct xsk_map_node *node;
*map_entry = NULL;
spin_lock_bh(&xs->map_list_lock);
node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
node);
if (node) {
WARN_ON(xsk_map_inc(node->map));
map = node->map;
*map_entry = node->map_entry;
}
spin_unlock_bh(&xs->map_list_lock);
return map;
}
static void xsk_delete_from_maps(struct xdp_sock *xs)
{
/* This function removes the current XDP socket from all the
* maps it resides in. We need to take extra care here, due to
* the two locks involved. Each map has a lock synchronizing
* updates to the entries, and each socket has a lock that
* synchronizes access to the list of maps (map_list). For
* deadlock avoidance the locks need to be taken in the order
* "map lock"->"socket map list lock". We start off by
* accessing the socket map list, and take a reference to the
* map to guarantee existence between the
* xsk_get_map_list_entry() and xsk_map_try_sock_delete()
* calls. Then we ask the map to remove the socket, which
* tries to remove the socket from the map. Note that there
* might be updates to the map between
* xsk_get_map_list_entry() and xsk_map_try_sock_delete().
*/
struct xdp_sock **map_entry = NULL;
struct xsk_map *map;
while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
xsk_map_try_sock_delete(map, xs, map_entry);
xsk_map_put(map);
}
}
static int xsk_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct net *net;
if (!sk)
return 0;
net = sock_net(sk);
mutex_lock(&net->xdp.lock);
sk_del_node_init_rcu(sk);
mutex_unlock(&net->xdp.lock);
local_bh_disable();
sock_prot_inuse_add(net, sk->sk_prot, -1);
local_bh_enable();
xsk_delete_from_maps(xs);
mutex_lock(&xs->mutex);
xsk_unbind_dev(xs);
mutex_unlock(&xs->mutex);
xskq_destroy(xs->rx);
xskq_destroy(xs->tx);
sock_orphan(sk);
sock->sk = NULL;
sk_refcnt_debug_release(sk);
sock_put(sk);
return 0;
}
static struct socket *xsk_lookup_xsk_from_fd(int fd)
{
struct socket *sock;
int err;
sock = sockfd_lookup(fd, &err);
if (!sock)
return ERR_PTR(-ENOTSOCK);
if (sock->sk->sk_family != PF_XDP) {
sockfd_put(sock);
return ERR_PTR(-ENOPROTOOPT);
}
return sock;
}
/* Check if umem pages are contiguous.
* If zero-copy mode, use the DMA address to do the page contiguity check
* For all other modes we use addr (kernel virtual address)
* Store the result in the low bits of addr.
*/
static void xsk_check_page_contiguity(struct xdp_umem *umem, u32 flags)
{
struct xdp_umem_page *pgs = umem->pages;
int i, is_contig;
for (i = 0; i < umem->npgs - 1; i++) {
is_contig = (flags & XDP_ZEROCOPY) ?
(pgs[i].dma + PAGE_SIZE == pgs[i + 1].dma) :
(pgs[i].addr + PAGE_SIZE == pgs[i + 1].addr);
pgs[i].addr += is_contig << XSK_NEXT_PG_CONTIG_SHIFT;
}
}
static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
{
struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct net_device *dev;
u32 flags, qid;
int err = 0;
if (addr_len < sizeof(struct sockaddr_xdp))
return -EINVAL;
if (sxdp->sxdp_family != AF_XDP)
return -EINVAL;
flags = sxdp->sxdp_flags;
if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
XDP_USE_NEED_WAKEUP))
return -EINVAL;
rtnl_lock();
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
err = -EBUSY;
goto out_release;
}
dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
if (!dev) {
err = -ENODEV;
goto out_release;
}
if (!xs->rx && !xs->tx) {
err = -EINVAL;
goto out_unlock;
}
qid = sxdp->sxdp_queue_id;
if (flags & XDP_SHARED_UMEM) {
struct xdp_sock *umem_xs;
struct socket *sock;
if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
(flags & XDP_USE_NEED_WAKEUP)) {
/* Cannot specify flags for shared sockets. */
err = -EINVAL;
goto out_unlock;
}
if (xs->umem) {
/* We have already our own. */
err = -EINVAL;
goto out_unlock;
}
sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
if (IS_ERR(sock)) {
err = PTR_ERR(sock);
goto out_unlock;
}
umem_xs = xdp_sk(sock->sk);
if (!xsk_is_bound(umem_xs)) {
err = -EBADF;
sockfd_put(sock);
goto out_unlock;
}
if (umem_xs->dev != dev || umem_xs->queue_id != qid) {
err = -EINVAL;
sockfd_put(sock);
goto out_unlock;
}
xdp_get_umem(umem_xs->umem);
WRITE_ONCE(xs->umem, umem_xs->umem);
sockfd_put(sock);
} else if (!xs->umem || !xdp_umem_validate_queues(xs->umem)) {
err = -EINVAL;
goto out_unlock;
} else {
/* This xsk has its own umem. */
xskq_set_umem(xs->umem->fq, xs->umem->size,
xs->umem->chunk_mask);
xskq_set_umem(xs->umem->cq, xs->umem->size,
xs->umem->chunk_mask);
err = xdp_umem_assign_dev(xs->umem, dev, qid, flags);
if (err)
goto out_unlock;
xsk_check_page_contiguity(xs->umem, flags);
}
xs->dev = dev;
xs->zc = xs->umem->zc;
xs->queue_id = qid;
xskq_set_umem(xs->rx, xs->umem->size, xs->umem->chunk_mask);
xskq_set_umem(xs->tx, xs->umem->size, xs->umem->chunk_mask);
xdp_add_sk_umem(xs->umem, xs);
out_unlock:
if (err) {
dev_put(dev);
} else {
/* Matches smp_rmb() in bind() for shared umem
* sockets, and xsk_is_bound().
*/
smp_wmb();
WRITE_ONCE(xs->state, XSK_BOUND);
}
out_release:
mutex_unlock(&xs->mutex);
rtnl_unlock();
return err;
}
struct xdp_umem_reg_v1 {
__u64 addr; /* Start of packet data area */
__u64 len; /* Length of packet data area */
__u32 chunk_size;
__u32 headroom;
};
static int xsk_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int err;
if (level != SOL_XDP)
return -ENOPROTOOPT;
switch (optname) {
case XDP_RX_RING:
case XDP_TX_RING:
{
struct xsk_queue **q;
int entries;
if (optlen < sizeof(entries))
return -EINVAL;
if (copy_from_user(&entries, optval, sizeof(entries)))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
err = xsk_init_queue(entries, q, false);
if (!err && optname == XDP_TX_RING)
/* Tx needs to be explicitly woken up the first time */
xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
mutex_unlock(&xs->mutex);
return err;
}
case XDP_UMEM_REG:
{
size_t mr_size = sizeof(struct xdp_umem_reg);
struct xdp_umem_reg mr = {};
struct xdp_umem *umem;
if (optlen < sizeof(struct xdp_umem_reg_v1))
return -EINVAL;
else if (optlen < sizeof(mr))
mr_size = sizeof(struct xdp_umem_reg_v1);
if (copy_from_user(&mr, optval, mr_size))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY || xs->umem) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
umem = xdp_umem_create(&mr);
if (IS_ERR(umem)) {
mutex_unlock(&xs->mutex);
return PTR_ERR(umem);
}
/* Make sure umem is ready before it can be seen by others */
smp_wmb();
WRITE_ONCE(xs->umem, umem);
mutex_unlock(&xs->mutex);
return 0;
}
case XDP_UMEM_FILL_RING:
case XDP_UMEM_COMPLETION_RING:
{
struct xsk_queue **q;
int entries;
if (copy_from_user(&entries, optval, sizeof(entries)))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
if (!xs->umem) {
mutex_unlock(&xs->mutex);
return -EINVAL;
}
q = (optname == XDP_UMEM_FILL_RING) ? &xs->umem->fq :
&xs->umem->cq;
err = xsk_init_queue(entries, q, true);
mutex_unlock(&xs->mutex);
return err;
}
default:
break;
}
return -ENOPROTOOPT;
}
static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
{
ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
ring->desc = offsetof(struct xdp_rxtx_ring, desc);
}
static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
{
ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
ring->desc = offsetof(struct xdp_umem_ring, desc);
}
static int xsk_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int len;
if (level != SOL_XDP)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case XDP_STATISTICS:
{
struct xdp_statistics stats;
if (len < sizeof(stats))
return -EINVAL;
mutex_lock(&xs->mutex);
stats.rx_dropped = xs->rx_dropped;
stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
mutex_unlock(&xs->mutex);
if (copy_to_user(optval, &stats, sizeof(stats)))
return -EFAULT;
if (put_user(sizeof(stats), optlen))
return -EFAULT;
return 0;
}
case XDP_MMAP_OFFSETS:
{
struct xdp_mmap_offsets off;
struct xdp_mmap_offsets_v1 off_v1;
bool flags_supported = true;
void *to_copy;
if (len < sizeof(off_v1))
return -EINVAL;
else if (len < sizeof(off))
flags_supported = false;
if (flags_supported) {
/* xdp_ring_offset is identical to xdp_ring_offset_v1
* except for the flags field added to the end.
*/
xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
&off.rx);
xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
&off.tx);
xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
&off.fr);
xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
&off.cr);
off.rx.flags = offsetof(struct xdp_rxtx_ring,
ptrs.flags);
off.tx.flags = offsetof(struct xdp_rxtx_ring,
ptrs.flags);
off.fr.flags = offsetof(struct xdp_umem_ring,
ptrs.flags);
off.cr.flags = offsetof(struct xdp_umem_ring,
ptrs.flags);
len = sizeof(off);
to_copy = &off;
} else {
xsk_enter_rxtx_offsets(&off_v1.rx);
xsk_enter_rxtx_offsets(&off_v1.tx);
xsk_enter_umem_offsets(&off_v1.fr);
xsk_enter_umem_offsets(&off_v1.cr);
len = sizeof(off_v1);
to_copy = &off_v1;
}
if (copy_to_user(optval, to_copy, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
case XDP_OPTIONS:
{
struct xdp_options opts = {};
if (len < sizeof(opts))
return -EINVAL;
mutex_lock(&xs->mutex);
if (xs->zc)
opts.flags |= XDP_OPTIONS_ZEROCOPY;
mutex_unlock(&xs->mutex);
len = sizeof(opts);
if (copy_to_user(optval, &opts, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
default:
break;
}
return -EOPNOTSUPP;
}
static int xsk_mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma)
{
loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
unsigned long size = vma->vm_end - vma->vm_start;
struct xdp_sock *xs = xdp_sk(sock->sk);
struct xsk_queue *q = NULL;
struct xdp_umem *umem;
unsigned long pfn;
struct page *qpg;
if (READ_ONCE(xs->state) != XSK_READY)
return -EBUSY;
if (offset == XDP_PGOFF_RX_RING) {
q = READ_ONCE(xs->rx);
} else if (offset == XDP_PGOFF_TX_RING) {
q = READ_ONCE(xs->tx);
} else {
umem = READ_ONCE(xs->umem);
if (!umem)
return -EINVAL;
/* Matches the smp_wmb() in XDP_UMEM_REG */
smp_rmb();
if (offset == XDP_UMEM_PGOFF_FILL_RING)
q = READ_ONCE(umem->fq);
else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
q = READ_ONCE(umem->cq);
}
if (!q)
return -EINVAL;
/* Matches the smp_wmb() in xsk_init_queue */
smp_rmb();
qpg = virt_to_head_page(q->ring);
if (size > page_size(qpg))
return -EINVAL;
pfn = virt_to_phys(q->ring) >> PAGE_SHIFT;
return remap_pfn_range(vma, vma->vm_start, pfn,
size, vma->vm_page_prot);
}
static int xsk_notifier(struct notifier_block *this,
unsigned long msg, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct net *net = dev_net(dev);
struct sock *sk;
switch (msg) {
case NETDEV_UNREGISTER:
mutex_lock(&net->xdp.lock);
sk_for_each(sk, &net->xdp.list) {
struct xdp_sock *xs = xdp_sk(sk);
mutex_lock(&xs->mutex);
if (xs->dev == dev) {
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
xsk_unbind_dev(xs);
/* Clear device references in umem. */
xdp_umem_clear_dev(xs->umem);
}
mutex_unlock(&xs->mutex);
}
mutex_unlock(&net->xdp.lock);
break;
}
return NOTIFY_DONE;
}
static struct proto xsk_proto = {
.name = "XDP",
.owner = THIS_MODULE,
.obj_size = sizeof(struct xdp_sock),
};
static const struct proto_ops xsk_proto_ops = {
.family = PF_XDP,
.owner = THIS_MODULE,
.release = xsk_release,
.bind = xsk_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = sock_no_getname,
.poll = xsk_poll,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = xsk_setsockopt,
.getsockopt = xsk_getsockopt,
.sendmsg = xsk_sendmsg,
.recvmsg = sock_no_recvmsg,
.mmap = xsk_mmap,
.sendpage = sock_no_sendpage,
};
static void xsk_destruct(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
if (!sock_flag(sk, SOCK_DEAD))
return;
xdp_put_umem(xs->umem);
sk_refcnt_debug_dec(sk);
}
static int xsk_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
struct xdp_sock *xs;
if (!ns_capable(net->user_ns, CAP_NET_RAW))
return -EPERM;
if (sock->type != SOCK_RAW)
return -ESOCKTNOSUPPORT;
if (protocol)
return -EPROTONOSUPPORT;
sock->state = SS_UNCONNECTED;
sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
if (!sk)
return -ENOBUFS;
sock->ops = &xsk_proto_ops;
sock_init_data(sock, sk);
sk->sk_family = PF_XDP;
sk->sk_destruct = xsk_destruct;
sk_refcnt_debug_inc(sk);
sock_set_flag(sk, SOCK_RCU_FREE);
xs = xdp_sk(sk);
xs->state = XSK_READY;
mutex_init(&xs->mutex);
spin_lock_init(&xs->rx_lock);
spin_lock_init(&xs->tx_completion_lock);
INIT_LIST_HEAD(&xs->map_list);
spin_lock_init(&xs->map_list_lock);
mutex_lock(&net->xdp.lock);
sk_add_node_rcu(sk, &net->xdp.list);
mutex_unlock(&net->xdp.lock);
local_bh_disable();
sock_prot_inuse_add(net, &xsk_proto, 1);
local_bh_enable();
return 0;
}
static const struct net_proto_family xsk_family_ops = {
.family = PF_XDP,
.create = xsk_create,
.owner = THIS_MODULE,
};
static struct notifier_block xsk_netdev_notifier = {
.notifier_call = xsk_notifier,
};
static int __net_init xsk_net_init(struct net *net)
{
mutex_init(&net->xdp.lock);
INIT_HLIST_HEAD(&net->xdp.list);
return 0;
}
static void __net_exit xsk_net_exit(struct net *net)
{
WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
}
static struct pernet_operations xsk_net_ops = {
.init = xsk_net_init,
.exit = xsk_net_exit,
};
static int __init xsk_init(void)
{
int err, cpu;
err = proto_register(&xsk_proto, 0 /* no slab */);
if (err)
goto out;
err = sock_register(&xsk_family_ops);
if (err)
goto out_proto;
err = register_pernet_subsys(&xsk_net_ops);
if (err)
goto out_sk;
err = register_netdevice_notifier(&xsk_netdev_notifier);
if (err)
goto out_pernet;
for_each_possible_cpu(cpu)
INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
return 0;
out_pernet:
unregister_pernet_subsys(&xsk_net_ops);
out_sk:
sock_unregister(PF_XDP);
out_proto:
proto_unregister(&xsk_proto);
out:
return err;
}
fs_initcall(xsk_init);