WSL2-Linux-Kernel/drivers/nvme/host/apple.c

1599 строки
42 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Apple ANS NVM Express device driver
* Copyright The Asahi Linux Contributors
*
* Based on the pci.c NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
* and on the rdma.c NVMe over Fabrics RDMA host code.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#include <linux/async.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/once.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/soc/apple/rtkit.h>
#include <linux/soc/apple/sart.h>
#include <linux/reset.h>
#include <linux/time64.h>
#include "nvme.h"
#define APPLE_ANS_BOOT_TIMEOUT USEC_PER_SEC
#define APPLE_ANS_MAX_QUEUE_DEPTH 64
#define APPLE_ANS_COPROC_CPU_CONTROL 0x44
#define APPLE_ANS_COPROC_CPU_CONTROL_RUN BIT(4)
#define APPLE_ANS_ACQ_DB 0x1004
#define APPLE_ANS_IOCQ_DB 0x100c
#define APPLE_ANS_MAX_PEND_CMDS_CTRL 0x1210
#define APPLE_ANS_BOOT_STATUS 0x1300
#define APPLE_ANS_BOOT_STATUS_OK 0xde71ce55
#define APPLE_ANS_UNKNOWN_CTRL 0x24008
#define APPLE_ANS_PRP_NULL_CHECK BIT(11)
#define APPLE_ANS_LINEAR_SQ_CTRL 0x24908
#define APPLE_ANS_LINEAR_SQ_EN BIT(0)
#define APPLE_ANS_LINEAR_ASQ_DB 0x2490c
#define APPLE_ANS_LINEAR_IOSQ_DB 0x24910
#define APPLE_NVMMU_NUM_TCBS 0x28100
#define APPLE_NVMMU_ASQ_TCB_BASE 0x28108
#define APPLE_NVMMU_IOSQ_TCB_BASE 0x28110
#define APPLE_NVMMU_TCB_INVAL 0x28118
#define APPLE_NVMMU_TCB_STAT 0x28120
/*
* This controller is a bit weird in the way command tags works: Both the
* admin and the IO queue share the same tag space. Additionally, tags
* cannot be higher than 0x40 which effectively limits the combined
* queue depth to 0x40. Instead of wasting half of that on the admin queue
* which gets much less traffic we instead reduce its size here.
* The controller also doesn't support async event such that no space must
* be reserved for NVME_NR_AEN_COMMANDS.
*/
#define APPLE_NVME_AQ_DEPTH 2
#define APPLE_NVME_AQ_MQ_TAG_DEPTH (APPLE_NVME_AQ_DEPTH - 1)
/*
* These can be higher, but we need to ensure that any command doesn't
* require an sg allocation that needs more than a page of data.
*/
#define NVME_MAX_KB_SZ 4096
#define NVME_MAX_SEGS 127
/*
* This controller comes with an embedded IOMMU known as NVMMU.
* The NVMMU is pointed to an array of TCBs indexed by the command tag.
* Each command must be configured inside this structure before it's allowed
* to execute, including commands that don't require DMA transfers.
*
* An exception to this are Apple's vendor-specific commands (opcode 0xD8 on the
* admin queue): Those commands must still be added to the NVMMU but the DMA
* buffers cannot be represented as PRPs and must instead be allowed using SART.
*
* Programming the PRPs to the same values as those in the submission queue
* looks rather silly at first. This hardware is however designed for a kernel
* that runs the NVMMU code in a higher exception level than the NVMe driver.
* In that setting the NVMe driver first programs the submission queue entry
* and then executes a hypercall to the code that is allowed to program the
* NVMMU. The NVMMU driver then creates a shadow copy of the PRPs while
* verifying that they don't point to kernel text, data, pagetables, or similar
* protected areas before programming the TCB to point to this shadow copy.
* Since Linux doesn't do any of that we may as well just point both the queue
* and the TCB PRP pointer to the same memory.
*/
struct apple_nvmmu_tcb {
u8 opcode;
#define APPLE_ANS_TCB_DMA_FROM_DEVICE BIT(0)
#define APPLE_ANS_TCB_DMA_TO_DEVICE BIT(1)
u8 dma_flags;
u8 command_id;
u8 _unk0;
__le16 length;
u8 _unk1[18];
__le64 prp1;
__le64 prp2;
u8 _unk2[16];
u8 aes_iv[8];
u8 _aes_unk[64];
};
/*
* The Apple NVMe controller only supports a single admin and a single IO queue
* which are both limited to 64 entries and share a single interrupt.
*
* The completion queue works as usual. The submission "queue" instead is
* an array indexed by the command tag on this hardware. Commands must also be
* present in the NVMMU's tcb array. They are triggered by writing their tag to
* a MMIO register.
*/
struct apple_nvme_queue {
struct nvme_command *sqes;
struct nvme_completion *cqes;
struct apple_nvmmu_tcb *tcbs;
dma_addr_t sq_dma_addr;
dma_addr_t cq_dma_addr;
dma_addr_t tcb_dma_addr;
u32 __iomem *sq_db;
u32 __iomem *cq_db;
u16 cq_head;
u8 cq_phase;
bool is_adminq;
bool enabled;
};
/*
* The apple_nvme_iod describes the data in an I/O.
*
* The sg pointer contains the list of PRP chunk allocations in addition
* to the actual struct scatterlist.
*/
struct apple_nvme_iod {
struct nvme_request req;
struct nvme_command cmd;
struct apple_nvme_queue *q;
int npages; /* In the PRP list. 0 means small pool in use */
int nents; /* Used in scatterlist */
dma_addr_t first_dma;
unsigned int dma_len; /* length of single DMA segment mapping */
struct scatterlist *sg;
};
struct apple_nvme {
struct device *dev;
void __iomem *mmio_coproc;
void __iomem *mmio_nvme;
struct device **pd_dev;
struct device_link **pd_link;
int pd_count;
struct apple_sart *sart;
struct apple_rtkit *rtk;
struct reset_control *reset;
struct dma_pool *prp_page_pool;
struct dma_pool *prp_small_pool;
mempool_t *iod_mempool;
struct nvme_ctrl ctrl;
struct work_struct remove_work;
struct apple_nvme_queue adminq;
struct apple_nvme_queue ioq;
struct blk_mq_tag_set admin_tagset;
struct blk_mq_tag_set tagset;
int irq;
spinlock_t lock;
};
static_assert(sizeof(struct nvme_command) == 64);
static_assert(sizeof(struct apple_nvmmu_tcb) == 128);
static inline struct apple_nvme *ctrl_to_apple_nvme(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct apple_nvme, ctrl);
}
static inline struct apple_nvme *queue_to_apple_nvme(struct apple_nvme_queue *q)
{
if (q->is_adminq)
return container_of(q, struct apple_nvme, adminq);
else
return container_of(q, struct apple_nvme, ioq);
}
static unsigned int apple_nvme_queue_depth(struct apple_nvme_queue *q)
{
if (q->is_adminq)
return APPLE_NVME_AQ_DEPTH;
else
return APPLE_ANS_MAX_QUEUE_DEPTH;
}
static void apple_nvme_rtkit_crashed(void *cookie)
{
struct apple_nvme *anv = cookie;
dev_warn(anv->dev, "RTKit crashed; unable to recover without a reboot");
nvme_reset_ctrl(&anv->ctrl);
}
static int apple_nvme_sart_dma_setup(void *cookie,
struct apple_rtkit_shmem *bfr)
{
struct apple_nvme *anv = cookie;
int ret;
if (bfr->iova)
return -EINVAL;
if (!bfr->size)
return -EINVAL;
bfr->buffer =
dma_alloc_coherent(anv->dev, bfr->size, &bfr->iova, GFP_KERNEL);
if (!bfr->buffer)
return -ENOMEM;
ret = apple_sart_add_allowed_region(anv->sart, bfr->iova, bfr->size);
if (ret) {
dma_free_coherent(anv->dev, bfr->size, bfr->buffer, bfr->iova);
bfr->buffer = NULL;
return -ENOMEM;
}
return 0;
}
static void apple_nvme_sart_dma_destroy(void *cookie,
struct apple_rtkit_shmem *bfr)
{
struct apple_nvme *anv = cookie;
apple_sart_remove_allowed_region(anv->sart, bfr->iova, bfr->size);
dma_free_coherent(anv->dev, bfr->size, bfr->buffer, bfr->iova);
}
static const struct apple_rtkit_ops apple_nvme_rtkit_ops = {
.crashed = apple_nvme_rtkit_crashed,
.shmem_setup = apple_nvme_sart_dma_setup,
.shmem_destroy = apple_nvme_sart_dma_destroy,
};
static void apple_nvmmu_inval(struct apple_nvme_queue *q, unsigned int tag)
{
struct apple_nvme *anv = queue_to_apple_nvme(q);
writel(tag, anv->mmio_nvme + APPLE_NVMMU_TCB_INVAL);
if (readl(anv->mmio_nvme + APPLE_NVMMU_TCB_STAT))
dev_warn_ratelimited(anv->dev,
"NVMMU TCB invalidation failed\n");
}
static void apple_nvme_submit_cmd(struct apple_nvme_queue *q,
struct nvme_command *cmd)
{
struct apple_nvme *anv = queue_to_apple_nvme(q);
u32 tag = nvme_tag_from_cid(cmd->common.command_id);
struct apple_nvmmu_tcb *tcb = &q->tcbs[tag];
tcb->opcode = cmd->common.opcode;
tcb->prp1 = cmd->common.dptr.prp1;
tcb->prp2 = cmd->common.dptr.prp2;
tcb->length = cmd->rw.length;
tcb->command_id = tag;
if (nvme_is_write(cmd))
tcb->dma_flags = APPLE_ANS_TCB_DMA_TO_DEVICE;
else
tcb->dma_flags = APPLE_ANS_TCB_DMA_FROM_DEVICE;
memcpy(&q->sqes[tag], cmd, sizeof(*cmd));
/*
* This lock here doesn't make much sense at a first glace but
* removing it will result in occasional missed completetion
* interrupts even though the commands still appear on the CQ.
* It's unclear why this happens but our best guess is that
* there is a bug in the firmware triggered when a new command
* is issued while we're inside the irq handler between the
* NVMMU invalidation (and making the tag available again)
* and the final CQ update.
*/
spin_lock_irq(&anv->lock);
writel(tag, q->sq_db);
spin_unlock_irq(&anv->lock);
}
/*
* From pci.c:
* Will slightly overestimate the number of pages needed. This is OK
* as it only leads to a small amount of wasted memory for the lifetime of
* the I/O.
*/
static inline size_t apple_nvme_iod_alloc_size(void)
{
const unsigned int nprps = DIV_ROUND_UP(
NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE);
const int npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
const size_t alloc_size = sizeof(__le64 *) * npages +
sizeof(struct scatterlist) * NVME_MAX_SEGS;
return alloc_size;
}
static void **apple_nvme_iod_list(struct request *req)
{
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
}
static void apple_nvme_free_prps(struct apple_nvme *anv, struct request *req)
{
const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
dma_addr_t dma_addr = iod->first_dma;
int i;
for (i = 0; i < iod->npages; i++) {
__le64 *prp_list = apple_nvme_iod_list(req)[i];
dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
dma_pool_free(anv->prp_page_pool, prp_list, dma_addr);
dma_addr = next_dma_addr;
}
}
static void apple_nvme_unmap_data(struct apple_nvme *anv, struct request *req)
{
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
if (iod->dma_len) {
dma_unmap_page(anv->dev, iod->first_dma, iod->dma_len,
rq_dma_dir(req));
return;
}
WARN_ON_ONCE(!iod->nents);
dma_unmap_sg(anv->dev, iod->sg, iod->nents, rq_dma_dir(req));
if (iod->npages == 0)
dma_pool_free(anv->prp_small_pool, apple_nvme_iod_list(req)[0],
iod->first_dma);
else
apple_nvme_free_prps(anv, req);
mempool_free(iod->sg, anv->iod_mempool);
}
static void apple_nvme_print_sgl(struct scatterlist *sgl, int nents)
{
int i;
struct scatterlist *sg;
for_each_sg(sgl, sg, nents, i) {
dma_addr_t phys = sg_phys(sg);
pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d dma_address:%pad dma_length:%d\n",
i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
sg_dma_len(sg));
}
}
static blk_status_t apple_nvme_setup_prps(struct apple_nvme *anv,
struct request *req,
struct nvme_rw_command *cmnd)
{
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct dma_pool *pool;
int length = blk_rq_payload_bytes(req);
struct scatterlist *sg = iod->sg;
int dma_len = sg_dma_len(sg);
u64 dma_addr = sg_dma_address(sg);
int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
__le64 *prp_list;
void **list = apple_nvme_iod_list(req);
dma_addr_t prp_dma;
int nprps, i;
length -= (NVME_CTRL_PAGE_SIZE - offset);
if (length <= 0) {
iod->first_dma = 0;
goto done;
}
dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
if (dma_len) {
dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
} else {
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
if (length <= NVME_CTRL_PAGE_SIZE) {
iod->first_dma = dma_addr;
goto done;
}
nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
if (nprps <= (256 / 8)) {
pool = anv->prp_small_pool;
iod->npages = 0;
} else {
pool = anv->prp_page_pool;
iod->npages = 1;
}
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
if (!prp_list) {
iod->first_dma = dma_addr;
iod->npages = -1;
return BLK_STS_RESOURCE;
}
list[0] = prp_list;
iod->first_dma = prp_dma;
i = 0;
for (;;) {
if (i == NVME_CTRL_PAGE_SIZE >> 3) {
__le64 *old_prp_list = prp_list;
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
if (!prp_list)
goto free_prps;
list[iod->npages++] = prp_list;
prp_list[0] = old_prp_list[i - 1];
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
i = 1;
}
prp_list[i++] = cpu_to_le64(dma_addr);
dma_len -= NVME_CTRL_PAGE_SIZE;
dma_addr += NVME_CTRL_PAGE_SIZE;
length -= NVME_CTRL_PAGE_SIZE;
if (length <= 0)
break;
if (dma_len > 0)
continue;
if (unlikely(dma_len < 0))
goto bad_sgl;
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
done:
cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
return BLK_STS_OK;
free_prps:
apple_nvme_free_prps(anv, req);
return BLK_STS_RESOURCE;
bad_sgl:
WARN(DO_ONCE(apple_nvme_print_sgl, iod->sg, iod->nents),
"Invalid SGL for payload:%d nents:%d\n", blk_rq_payload_bytes(req),
iod->nents);
return BLK_STS_IOERR;
}
static blk_status_t apple_nvme_setup_prp_simple(struct apple_nvme *anv,
struct request *req,
struct nvme_rw_command *cmnd,
struct bio_vec *bv)
{
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
iod->first_dma = dma_map_bvec(anv->dev, bv, rq_dma_dir(req), 0);
if (dma_mapping_error(anv->dev, iod->first_dma))
return BLK_STS_RESOURCE;
iod->dma_len = bv->bv_len;
cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
if (bv->bv_len > first_prp_len)
cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
return BLK_STS_OK;
}
static blk_status_t apple_nvme_map_data(struct apple_nvme *anv,
struct request *req,
struct nvme_command *cmnd)
{
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
blk_status_t ret = BLK_STS_RESOURCE;
int nr_mapped;
if (blk_rq_nr_phys_segments(req) == 1) {
struct bio_vec bv = req_bvec(req);
if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
return apple_nvme_setup_prp_simple(anv, req, &cmnd->rw,
&bv);
}
iod->dma_len = 0;
iod->sg = mempool_alloc(anv->iod_mempool, GFP_ATOMIC);
if (!iod->sg)
return BLK_STS_RESOURCE;
sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
if (!iod->nents)
goto out_free_sg;
nr_mapped = dma_map_sg_attrs(anv->dev, iod->sg, iod->nents,
rq_dma_dir(req), DMA_ATTR_NO_WARN);
if (!nr_mapped)
goto out_free_sg;
ret = apple_nvme_setup_prps(anv, req, &cmnd->rw);
if (ret != BLK_STS_OK)
goto out_unmap_sg;
return BLK_STS_OK;
out_unmap_sg:
dma_unmap_sg(anv->dev, iod->sg, iod->nents, rq_dma_dir(req));
out_free_sg:
mempool_free(iod->sg, anv->iod_mempool);
return ret;
}
static __always_inline void apple_nvme_unmap_rq(struct request *req)
{
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct apple_nvme *anv = queue_to_apple_nvme(iod->q);
if (blk_rq_nr_phys_segments(req))
apple_nvme_unmap_data(anv, req);
}
static void apple_nvme_complete_rq(struct request *req)
{
apple_nvme_unmap_rq(req);
nvme_complete_rq(req);
}
static void apple_nvme_complete_batch(struct io_comp_batch *iob)
{
nvme_complete_batch(iob, apple_nvme_unmap_rq);
}
static inline bool apple_nvme_cqe_pending(struct apple_nvme_queue *q)
{
struct nvme_completion *hcqe = &q->cqes[q->cq_head];
return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == q->cq_phase;
}
static inline struct blk_mq_tags *
apple_nvme_queue_tagset(struct apple_nvme *anv, struct apple_nvme_queue *q)
{
if (q->is_adminq)
return anv->admin_tagset.tags[0];
else
return anv->tagset.tags[0];
}
static inline void apple_nvme_handle_cqe(struct apple_nvme_queue *q,
struct io_comp_batch *iob, u16 idx)
{
struct apple_nvme *anv = queue_to_apple_nvme(q);
struct nvme_completion *cqe = &q->cqes[idx];
__u16 command_id = READ_ONCE(cqe->command_id);
struct request *req;
apple_nvmmu_inval(q, command_id);
req = nvme_find_rq(apple_nvme_queue_tagset(anv, q), command_id);
if (unlikely(!req)) {
dev_warn(anv->dev, "invalid id %d completed", command_id);
return;
}
if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
!blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
apple_nvme_complete_batch))
apple_nvme_complete_rq(req);
}
static inline void apple_nvme_update_cq_head(struct apple_nvme_queue *q)
{
u32 tmp = q->cq_head + 1;
if (tmp == apple_nvme_queue_depth(q)) {
q->cq_head = 0;
q->cq_phase ^= 1;
} else {
q->cq_head = tmp;
}
}
static bool apple_nvme_poll_cq(struct apple_nvme_queue *q,
struct io_comp_batch *iob)
{
bool found = false;
while (apple_nvme_cqe_pending(q)) {
found = true;
/*
* load-load control dependency between phase and the rest of
* the cqe requires a full read memory barrier
*/
dma_rmb();
apple_nvme_handle_cqe(q, iob, q->cq_head);
apple_nvme_update_cq_head(q);
}
if (found)
writel(q->cq_head, q->cq_db);
return found;
}
static bool apple_nvme_handle_cq(struct apple_nvme_queue *q, bool force)
{
bool found;
DEFINE_IO_COMP_BATCH(iob);
if (!READ_ONCE(q->enabled) && !force)
return false;
found = apple_nvme_poll_cq(q, &iob);
if (!rq_list_empty(iob.req_list))
apple_nvme_complete_batch(&iob);
return found;
}
static irqreturn_t apple_nvme_irq(int irq, void *data)
{
struct apple_nvme *anv = data;
bool handled = false;
unsigned long flags;
spin_lock_irqsave(&anv->lock, flags);
if (apple_nvme_handle_cq(&anv->ioq, false))
handled = true;
if (apple_nvme_handle_cq(&anv->adminq, false))
handled = true;
spin_unlock_irqrestore(&anv->lock, flags);
if (handled)
return IRQ_HANDLED;
return IRQ_NONE;
}
static int apple_nvme_create_cq(struct apple_nvme *anv)
{
struct nvme_command c = {};
/*
* Note: we (ab)use the fact that the prp fields survive if no data
* is attached to the request.
*/
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64(anv->ioq.cq_dma_addr);
c.create_cq.cqid = cpu_to_le16(1);
c.create_cq.qsize = cpu_to_le16(APPLE_ANS_MAX_QUEUE_DEPTH - 1);
c.create_cq.cq_flags = cpu_to_le16(NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED);
c.create_cq.irq_vector = cpu_to_le16(0);
return nvme_submit_sync_cmd(anv->ctrl.admin_q, &c, NULL, 0);
}
static int apple_nvme_remove_cq(struct apple_nvme *anv)
{
struct nvme_command c = {};
c.delete_queue.opcode = nvme_admin_delete_cq;
c.delete_queue.qid = cpu_to_le16(1);
return nvme_submit_sync_cmd(anv->ctrl.admin_q, &c, NULL, 0);
}
static int apple_nvme_create_sq(struct apple_nvme *anv)
{
struct nvme_command c = {};
/*
* Note: we (ab)use the fact that the prp fields survive if no data
* is attached to the request.
*/
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64(anv->ioq.sq_dma_addr);
c.create_sq.sqid = cpu_to_le16(1);
c.create_sq.qsize = cpu_to_le16(APPLE_ANS_MAX_QUEUE_DEPTH - 1);
c.create_sq.sq_flags = cpu_to_le16(NVME_QUEUE_PHYS_CONTIG);
c.create_sq.cqid = cpu_to_le16(1);
return nvme_submit_sync_cmd(anv->ctrl.admin_q, &c, NULL, 0);
}
static int apple_nvme_remove_sq(struct apple_nvme *anv)
{
struct nvme_command c = {};
c.delete_queue.opcode = nvme_admin_delete_sq;
c.delete_queue.qid = cpu_to_le16(1);
return nvme_submit_sync_cmd(anv->ctrl.admin_q, &c, NULL, 0);
}
static blk_status_t apple_nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct apple_nvme_queue *q = hctx->driver_data;
struct apple_nvme *anv = queue_to_apple_nvme(q);
struct request *req = bd->rq;
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_command *cmnd = &iod->cmd;
blk_status_t ret;
iod->npages = -1;
iod->nents = 0;
/*
* We should not need to do this, but we're still using this to
* ensure we can drain requests on a dying queue.
*/
if (unlikely(!READ_ONCE(q->enabled)))
return BLK_STS_IOERR;
if (!nvme_check_ready(&anv->ctrl, req, true))
return nvme_fail_nonready_command(&anv->ctrl, req);
ret = nvme_setup_cmd(ns, req);
if (ret)
return ret;
if (blk_rq_nr_phys_segments(req)) {
ret = apple_nvme_map_data(anv, req, cmnd);
if (ret)
goto out_free_cmd;
}
blk_mq_start_request(req);
apple_nvme_submit_cmd(q, cmnd);
return BLK_STS_OK;
out_free_cmd:
nvme_cleanup_cmd(req);
return ret;
}
static int apple_nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
hctx->driver_data = data;
return 0;
}
static int apple_nvme_init_request(struct blk_mq_tag_set *set,
struct request *req, unsigned int hctx_idx,
unsigned int numa_node)
{
struct apple_nvme_queue *q = set->driver_data;
struct apple_nvme *anv = queue_to_apple_nvme(q);
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_request *nreq = nvme_req(req);
iod->q = q;
nreq->ctrl = &anv->ctrl;
nreq->cmd = &iod->cmd;
return 0;
}
static void apple_nvme_disable(struct apple_nvme *anv, bool shutdown)
{
u32 csts = readl(anv->mmio_nvme + NVME_REG_CSTS);
bool dead = false, freeze = false;
unsigned long flags;
if (apple_rtkit_is_crashed(anv->rtk))
dead = true;
if (!(csts & NVME_CSTS_RDY))
dead = true;
if (csts & NVME_CSTS_CFS)
dead = true;
if (anv->ctrl.state == NVME_CTRL_LIVE ||
anv->ctrl.state == NVME_CTRL_RESETTING) {
freeze = true;
nvme_start_freeze(&anv->ctrl);
}
/*
* Give the controller a chance to complete all entered requests if
* doing a safe shutdown.
*/
if (!dead && shutdown && freeze)
nvme_wait_freeze_timeout(&anv->ctrl, NVME_IO_TIMEOUT);
nvme_stop_queues(&anv->ctrl);
if (!dead) {
if (READ_ONCE(anv->ioq.enabled)) {
apple_nvme_remove_sq(anv);
apple_nvme_remove_cq(anv);
}
if (shutdown)
nvme_shutdown_ctrl(&anv->ctrl);
nvme_disable_ctrl(&anv->ctrl);
}
WRITE_ONCE(anv->ioq.enabled, false);
WRITE_ONCE(anv->adminq.enabled, false);
mb(); /* ensure that nvme_queue_rq() sees that enabled is cleared */
nvme_stop_admin_queue(&anv->ctrl);
/* last chance to complete any requests before nvme_cancel_request */
spin_lock_irqsave(&anv->lock, flags);
apple_nvme_handle_cq(&anv->ioq, true);
apple_nvme_handle_cq(&anv->adminq, true);
spin_unlock_irqrestore(&anv->lock, flags);
nvme_cancel_tagset(&anv->ctrl);
nvme_cancel_admin_tagset(&anv->ctrl);
/*
* The driver will not be starting up queues again if shutting down so
* must flush all entered requests to their failed completion to avoid
* deadlocking blk-mq hot-cpu notifier.
*/
if (shutdown) {
nvme_start_queues(&anv->ctrl);
nvme_start_admin_queue(&anv->ctrl);
}
}
static enum blk_eh_timer_return apple_nvme_timeout(struct request *req)
{
struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct apple_nvme_queue *q = iod->q;
struct apple_nvme *anv = queue_to_apple_nvme(q);
unsigned long flags;
u32 csts = readl(anv->mmio_nvme + NVME_REG_CSTS);
if (anv->ctrl.state != NVME_CTRL_LIVE) {
/*
* From rdma.c:
* If we are resetting, connecting or deleting we should
* complete immediately because we may block controller
* teardown or setup sequence
* - ctrl disable/shutdown fabrics requests
* - connect requests
* - initialization admin requests
* - I/O requests that entered after unquiescing and
* the controller stopped responding
*
* All other requests should be cancelled by the error
* recovery work, so it's fine that we fail it here.
*/
dev_warn(anv->dev,
"I/O %d(aq:%d) timeout while not in live state\n",
req->tag, q->is_adminq);
if (blk_mq_request_started(req) &&
!blk_mq_request_completed(req)) {
nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
blk_mq_complete_request(req);
}
return BLK_EH_DONE;
}
/* check if we just missed an interrupt if we're still alive */
if (!apple_rtkit_is_crashed(anv->rtk) && !(csts & NVME_CSTS_CFS)) {
spin_lock_irqsave(&anv->lock, flags);
apple_nvme_handle_cq(q, false);
spin_unlock_irqrestore(&anv->lock, flags);
if (blk_mq_request_completed(req)) {
dev_warn(anv->dev,
"I/O %d(aq:%d) timeout: completion polled\n",
req->tag, q->is_adminq);
return BLK_EH_DONE;
}
}
/*
* aborting commands isn't supported which leaves a full reset as our
* only option here
*/
dev_warn(anv->dev, "I/O %d(aq:%d) timeout: resetting controller\n",
req->tag, q->is_adminq);
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
apple_nvme_disable(anv, false);
nvme_reset_ctrl(&anv->ctrl);
return BLK_EH_DONE;
}
static int apple_nvme_poll(struct blk_mq_hw_ctx *hctx,
struct io_comp_batch *iob)
{
struct apple_nvme_queue *q = hctx->driver_data;
struct apple_nvme *anv = queue_to_apple_nvme(q);
bool found;
unsigned long flags;
spin_lock_irqsave(&anv->lock, flags);
found = apple_nvme_poll_cq(q, iob);
spin_unlock_irqrestore(&anv->lock, flags);
return found;
}
static const struct blk_mq_ops apple_nvme_mq_admin_ops = {
.queue_rq = apple_nvme_queue_rq,
.complete = apple_nvme_complete_rq,
.init_hctx = apple_nvme_init_hctx,
.init_request = apple_nvme_init_request,
.timeout = apple_nvme_timeout,
};
static const struct blk_mq_ops apple_nvme_mq_ops = {
.queue_rq = apple_nvme_queue_rq,
.complete = apple_nvme_complete_rq,
.init_hctx = apple_nvme_init_hctx,
.init_request = apple_nvme_init_request,
.timeout = apple_nvme_timeout,
.poll = apple_nvme_poll,
};
static void apple_nvme_init_queue(struct apple_nvme_queue *q)
{
unsigned int depth = apple_nvme_queue_depth(q);
q->cq_head = 0;
q->cq_phase = 1;
memset(q->tcbs, 0,
APPLE_ANS_MAX_QUEUE_DEPTH * sizeof(struct apple_nvmmu_tcb));
memset(q->cqes, 0, depth * sizeof(struct nvme_completion));
WRITE_ONCE(q->enabled, true);
wmb(); /* ensure the first interrupt sees the initialization */
}
static void apple_nvme_reset_work(struct work_struct *work)
{
unsigned int nr_io_queues = 1;
int ret;
u32 boot_status, aqa;
struct apple_nvme *anv =
container_of(work, struct apple_nvme, ctrl.reset_work);
if (anv->ctrl.state != NVME_CTRL_RESETTING) {
dev_warn(anv->dev, "ctrl state %d is not RESETTING\n",
anv->ctrl.state);
ret = -ENODEV;
goto out;
}
/* there's unfortunately no known way to recover if RTKit crashed :( */
if (apple_rtkit_is_crashed(anv->rtk)) {
dev_err(anv->dev,
"RTKit has crashed without any way to recover.");
ret = -EIO;
goto out;
}
if (anv->ctrl.ctrl_config & NVME_CC_ENABLE)
apple_nvme_disable(anv, false);
/* RTKit must be shut down cleanly for the (soft)-reset to work */
if (apple_rtkit_is_running(anv->rtk)) {
dev_dbg(anv->dev, "Trying to shut down RTKit before reset.");
ret = apple_rtkit_shutdown(anv->rtk);
if (ret)
goto out;
}
writel(0, anv->mmio_coproc + APPLE_ANS_COPROC_CPU_CONTROL);
ret = reset_control_assert(anv->reset);
if (ret)
goto out;
ret = apple_rtkit_reinit(anv->rtk);
if (ret)
goto out;
ret = reset_control_deassert(anv->reset);
if (ret)
goto out;
writel(APPLE_ANS_COPROC_CPU_CONTROL_RUN,
anv->mmio_coproc + APPLE_ANS_COPROC_CPU_CONTROL);
ret = apple_rtkit_boot(anv->rtk);
if (ret) {
dev_err(anv->dev, "ANS did not boot");
goto out;
}
ret = readl_poll_timeout(anv->mmio_nvme + APPLE_ANS_BOOT_STATUS,
boot_status,
boot_status == APPLE_ANS_BOOT_STATUS_OK,
USEC_PER_MSEC, APPLE_ANS_BOOT_TIMEOUT);
if (ret) {
dev_err(anv->dev, "ANS did not initialize");
goto out;
}
dev_dbg(anv->dev, "ANS booted successfully.");
/*
* Limit the max command size to prevent iod->sg allocations going
* over a single page.
*/
anv->ctrl.max_hw_sectors = min_t(u32, NVME_MAX_KB_SZ << 1,
dma_max_mapping_size(anv->dev) >> 9);
anv->ctrl.max_segments = NVME_MAX_SEGS;
/*
* Enable NVMMU and linear submission queues.
* While we could keep those disabled and pretend this is slightly
* more common NVMe controller we'd still need some quirks (e.g.
* sq entries will be 128 bytes) and Apple might drop support for
* that mode in the future.
*/
writel(APPLE_ANS_LINEAR_SQ_EN,
anv->mmio_nvme + APPLE_ANS_LINEAR_SQ_CTRL);
/* Allow as many pending command as possible for both queues */
writel(APPLE_ANS_MAX_QUEUE_DEPTH | (APPLE_ANS_MAX_QUEUE_DEPTH << 16),
anv->mmio_nvme + APPLE_ANS_MAX_PEND_CMDS_CTRL);
/* Setup the NVMMU for the maximum admin and IO queue depth */
writel(APPLE_ANS_MAX_QUEUE_DEPTH - 1,
anv->mmio_nvme + APPLE_NVMMU_NUM_TCBS);
/*
* This is probably a chicken bit: without it all commands where any PRP
* is set to zero (including those that don't use that field) fail and
* the co-processor complains about "completed with err BAD_CMD-" or
* a "NULL_PRP_PTR_ERR" in the syslog
*/
writel(readl(anv->mmio_nvme + APPLE_ANS_UNKNOWN_CTRL) &
~APPLE_ANS_PRP_NULL_CHECK,
anv->mmio_nvme + APPLE_ANS_UNKNOWN_CTRL);
/* Setup the admin queue */
aqa = APPLE_NVME_AQ_DEPTH - 1;
aqa |= aqa << 16;
writel(aqa, anv->mmio_nvme + NVME_REG_AQA);
writeq(anv->adminq.sq_dma_addr, anv->mmio_nvme + NVME_REG_ASQ);
writeq(anv->adminq.cq_dma_addr, anv->mmio_nvme + NVME_REG_ACQ);
/* Setup NVMMU for both queues */
writeq(anv->adminq.tcb_dma_addr,
anv->mmio_nvme + APPLE_NVMMU_ASQ_TCB_BASE);
writeq(anv->ioq.tcb_dma_addr,
anv->mmio_nvme + APPLE_NVMMU_IOSQ_TCB_BASE);
anv->ctrl.sqsize =
APPLE_ANS_MAX_QUEUE_DEPTH - 1; /* 0's based queue depth */
anv->ctrl.cap = readq(anv->mmio_nvme + NVME_REG_CAP);
dev_dbg(anv->dev, "Enabling controller now");
ret = nvme_enable_ctrl(&anv->ctrl);
if (ret)
goto out;
dev_dbg(anv->dev, "Starting admin queue");
apple_nvme_init_queue(&anv->adminq);
nvme_start_admin_queue(&anv->ctrl);
if (!nvme_change_ctrl_state(&anv->ctrl, NVME_CTRL_CONNECTING)) {
dev_warn(anv->ctrl.device,
"failed to mark controller CONNECTING\n");
ret = -ENODEV;
goto out;
}
ret = nvme_init_ctrl_finish(&anv->ctrl);
if (ret)
goto out;
dev_dbg(anv->dev, "Creating IOCQ");
ret = apple_nvme_create_cq(anv);
if (ret)
goto out;
dev_dbg(anv->dev, "Creating IOSQ");
ret = apple_nvme_create_sq(anv);
if (ret)
goto out_remove_cq;
apple_nvme_init_queue(&anv->ioq);
nr_io_queues = 1;
ret = nvme_set_queue_count(&anv->ctrl, &nr_io_queues);
if (ret)
goto out_remove_sq;
if (nr_io_queues != 1) {
ret = -ENXIO;
goto out_remove_sq;
}
anv->ctrl.queue_count = nr_io_queues + 1;
nvme_start_queues(&anv->ctrl);
nvme_wait_freeze(&anv->ctrl);
blk_mq_update_nr_hw_queues(&anv->tagset, 1);
nvme_unfreeze(&anv->ctrl);
if (!nvme_change_ctrl_state(&anv->ctrl, NVME_CTRL_LIVE)) {
dev_warn(anv->ctrl.device,
"failed to mark controller live state\n");
ret = -ENODEV;
goto out_remove_sq;
}
nvme_start_ctrl(&anv->ctrl);
dev_dbg(anv->dev, "ANS boot and NVMe init completed.");
return;
out_remove_sq:
apple_nvme_remove_sq(anv);
out_remove_cq:
apple_nvme_remove_cq(anv);
out:
dev_warn(anv->ctrl.device, "Reset failure status: %d\n", ret);
nvme_change_ctrl_state(&anv->ctrl, NVME_CTRL_DELETING);
nvme_get_ctrl(&anv->ctrl);
apple_nvme_disable(anv, false);
nvme_kill_queues(&anv->ctrl);
if (!queue_work(nvme_wq, &anv->remove_work))
nvme_put_ctrl(&anv->ctrl);
}
static void apple_nvme_remove_dead_ctrl_work(struct work_struct *work)
{
struct apple_nvme *anv =
container_of(work, struct apple_nvme, remove_work);
nvme_put_ctrl(&anv->ctrl);
device_release_driver(anv->dev);
}
static int apple_nvme_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
{
*val = readl(ctrl_to_apple_nvme(ctrl)->mmio_nvme + off);
return 0;
}
static int apple_nvme_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
{
writel(val, ctrl_to_apple_nvme(ctrl)->mmio_nvme + off);
return 0;
}
static int apple_nvme_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
{
*val = readq(ctrl_to_apple_nvme(ctrl)->mmio_nvme + off);
return 0;
}
static int apple_nvme_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
{
struct device *dev = ctrl_to_apple_nvme(ctrl)->dev;
return snprintf(buf, size, "%s\n", dev_name(dev));
}
static void apple_nvme_free_ctrl(struct nvme_ctrl *ctrl)
{
struct apple_nvme *anv = ctrl_to_apple_nvme(ctrl);
if (anv->ctrl.admin_q)
blk_put_queue(anv->ctrl.admin_q);
put_device(anv->dev);
}
static const struct nvme_ctrl_ops nvme_ctrl_ops = {
.name = "apple-nvme",
.module = THIS_MODULE,
.flags = 0,
.reg_read32 = apple_nvme_reg_read32,
.reg_write32 = apple_nvme_reg_write32,
.reg_read64 = apple_nvme_reg_read64,
.free_ctrl = apple_nvme_free_ctrl,
.get_address = apple_nvme_get_address,
};
static void apple_nvme_async_probe(void *data, async_cookie_t cookie)
{
struct apple_nvme *anv = data;
flush_work(&anv->ctrl.reset_work);
flush_work(&anv->ctrl.scan_work);
nvme_put_ctrl(&anv->ctrl);
}
static void devm_apple_nvme_put_tag_set(void *data)
{
blk_mq_free_tag_set(data);
}
static int apple_nvme_alloc_tagsets(struct apple_nvme *anv)
{
int ret;
anv->admin_tagset.ops = &apple_nvme_mq_admin_ops;
anv->admin_tagset.nr_hw_queues = 1;
anv->admin_tagset.queue_depth = APPLE_NVME_AQ_MQ_TAG_DEPTH;
anv->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
anv->admin_tagset.numa_node = NUMA_NO_NODE;
anv->admin_tagset.cmd_size = sizeof(struct apple_nvme_iod);
anv->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
anv->admin_tagset.driver_data = &anv->adminq;
ret = blk_mq_alloc_tag_set(&anv->admin_tagset);
if (ret)
return ret;
ret = devm_add_action_or_reset(anv->dev, devm_apple_nvme_put_tag_set,
&anv->admin_tagset);
if (ret)
return ret;
anv->tagset.ops = &apple_nvme_mq_ops;
anv->tagset.nr_hw_queues = 1;
anv->tagset.nr_maps = 1;
/*
* Tags are used as an index to the NVMMU and must be unique across
* both queues. The admin queue gets the first APPLE_NVME_AQ_DEPTH which
* must be marked as reserved in the IO queue.
*/
anv->tagset.reserved_tags = APPLE_NVME_AQ_DEPTH;
anv->tagset.queue_depth = APPLE_ANS_MAX_QUEUE_DEPTH - 1;
anv->tagset.timeout = NVME_IO_TIMEOUT;
anv->tagset.numa_node = NUMA_NO_NODE;
anv->tagset.cmd_size = sizeof(struct apple_nvme_iod);
anv->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
anv->tagset.driver_data = &anv->ioq;
ret = blk_mq_alloc_tag_set(&anv->tagset);
if (ret)
return ret;
ret = devm_add_action_or_reset(anv->dev, devm_apple_nvme_put_tag_set,
&anv->tagset);
if (ret)
return ret;
anv->ctrl.admin_tagset = &anv->admin_tagset;
anv->ctrl.tagset = &anv->tagset;
return 0;
}
static int apple_nvme_queue_alloc(struct apple_nvme *anv,
struct apple_nvme_queue *q)
{
unsigned int depth = apple_nvme_queue_depth(q);
q->cqes = dmam_alloc_coherent(anv->dev,
depth * sizeof(struct nvme_completion),
&q->cq_dma_addr, GFP_KERNEL);
if (!q->cqes)
return -ENOMEM;
q->sqes = dmam_alloc_coherent(anv->dev,
depth * sizeof(struct nvme_command),
&q->sq_dma_addr, GFP_KERNEL);
if (!q->sqes)
return -ENOMEM;
/*
* We need the maximum queue depth here because the NVMMU only has a
* single depth configuration shared between both queues.
*/
q->tcbs = dmam_alloc_coherent(anv->dev,
APPLE_ANS_MAX_QUEUE_DEPTH *
sizeof(struct apple_nvmmu_tcb),
&q->tcb_dma_addr, GFP_KERNEL);
if (!q->tcbs)
return -ENOMEM;
/*
* initialize phase to make sure the allocated and empty memory
* doesn't look like a full cq already.
*/
q->cq_phase = 1;
return 0;
}
static void apple_nvme_detach_genpd(struct apple_nvme *anv)
{
int i;
if (anv->pd_count <= 1)
return;
for (i = anv->pd_count - 1; i >= 0; i--) {
if (anv->pd_link[i])
device_link_del(anv->pd_link[i]);
if (!IS_ERR_OR_NULL(anv->pd_dev[i]))
dev_pm_domain_detach(anv->pd_dev[i], true);
}
}
static int apple_nvme_attach_genpd(struct apple_nvme *anv)
{
struct device *dev = anv->dev;
int i;
anv->pd_count = of_count_phandle_with_args(
dev->of_node, "power-domains", "#power-domain-cells");
if (anv->pd_count <= 1)
return 0;
anv->pd_dev = devm_kcalloc(dev, anv->pd_count, sizeof(*anv->pd_dev),
GFP_KERNEL);
if (!anv->pd_dev)
return -ENOMEM;
anv->pd_link = devm_kcalloc(dev, anv->pd_count, sizeof(*anv->pd_link),
GFP_KERNEL);
if (!anv->pd_link)
return -ENOMEM;
for (i = 0; i < anv->pd_count; i++) {
anv->pd_dev[i] = dev_pm_domain_attach_by_id(dev, i);
if (IS_ERR(anv->pd_dev[i])) {
apple_nvme_detach_genpd(anv);
return PTR_ERR(anv->pd_dev[i]);
}
anv->pd_link[i] = device_link_add(dev, anv->pd_dev[i],
DL_FLAG_STATELESS |
DL_FLAG_PM_RUNTIME |
DL_FLAG_RPM_ACTIVE);
if (!anv->pd_link[i]) {
apple_nvme_detach_genpd(anv);
return -EINVAL;
}
}
return 0;
}
static void devm_apple_nvme_mempool_destroy(void *data)
{
mempool_destroy(data);
}
static int apple_nvme_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct apple_nvme *anv;
int ret;
anv = devm_kzalloc(dev, sizeof(*anv), GFP_KERNEL);
if (!anv)
return -ENOMEM;
anv->dev = get_device(dev);
anv->adminq.is_adminq = true;
platform_set_drvdata(pdev, anv);
ret = apple_nvme_attach_genpd(anv);
if (ret < 0) {
dev_err_probe(dev, ret, "Failed to attach power domains");
goto put_dev;
}
if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) {
ret = -ENXIO;
goto put_dev;
}
anv->irq = platform_get_irq(pdev, 0);
if (anv->irq < 0) {
ret = anv->irq;
goto put_dev;
}
if (!anv->irq) {
ret = -ENXIO;
goto put_dev;
}
anv->mmio_coproc = devm_platform_ioremap_resource_byname(pdev, "ans");
if (IS_ERR(anv->mmio_coproc)) {
ret = PTR_ERR(anv->mmio_coproc);
goto put_dev;
}
anv->mmio_nvme = devm_platform_ioremap_resource_byname(pdev, "nvme");
if (IS_ERR(anv->mmio_nvme)) {
ret = PTR_ERR(anv->mmio_nvme);
goto put_dev;
}
anv->adminq.sq_db = anv->mmio_nvme + APPLE_ANS_LINEAR_ASQ_DB;
anv->adminq.cq_db = anv->mmio_nvme + APPLE_ANS_ACQ_DB;
anv->ioq.sq_db = anv->mmio_nvme + APPLE_ANS_LINEAR_IOSQ_DB;
anv->ioq.cq_db = anv->mmio_nvme + APPLE_ANS_IOCQ_DB;
anv->sart = devm_apple_sart_get(dev);
if (IS_ERR(anv->sart)) {
ret = dev_err_probe(dev, PTR_ERR(anv->sart),
"Failed to initialize SART");
goto put_dev;
}
anv->reset = devm_reset_control_array_get_exclusive(anv->dev);
if (IS_ERR(anv->reset)) {
ret = dev_err_probe(dev, PTR_ERR(anv->reset),
"Failed to get reset control");
goto put_dev;
}
INIT_WORK(&anv->ctrl.reset_work, apple_nvme_reset_work);
INIT_WORK(&anv->remove_work, apple_nvme_remove_dead_ctrl_work);
spin_lock_init(&anv->lock);
ret = apple_nvme_queue_alloc(anv, &anv->adminq);
if (ret)
goto put_dev;
ret = apple_nvme_queue_alloc(anv, &anv->ioq);
if (ret)
goto put_dev;
anv->prp_page_pool = dmam_pool_create("prp list page", anv->dev,
NVME_CTRL_PAGE_SIZE,
NVME_CTRL_PAGE_SIZE, 0);
if (!anv->prp_page_pool) {
ret = -ENOMEM;
goto put_dev;
}
anv->prp_small_pool =
dmam_pool_create("prp list 256", anv->dev, 256, 256, 0);
if (!anv->prp_small_pool) {
ret = -ENOMEM;
goto put_dev;
}
WARN_ON_ONCE(apple_nvme_iod_alloc_size() > PAGE_SIZE);
anv->iod_mempool =
mempool_create_kmalloc_pool(1, apple_nvme_iod_alloc_size());
if (!anv->iod_mempool) {
ret = -ENOMEM;
goto put_dev;
}
ret = devm_add_action_or_reset(anv->dev,
devm_apple_nvme_mempool_destroy, anv->iod_mempool);
if (ret)
goto put_dev;
ret = apple_nvme_alloc_tagsets(anv);
if (ret)
goto put_dev;
ret = devm_request_irq(anv->dev, anv->irq, apple_nvme_irq, 0,
"nvme-apple", anv);
if (ret) {
dev_err_probe(dev, ret, "Failed to request IRQ");
goto put_dev;
}
anv->rtk =
devm_apple_rtkit_init(dev, anv, NULL, 0, &apple_nvme_rtkit_ops);
if (IS_ERR(anv->rtk)) {
ret = dev_err_probe(dev, PTR_ERR(anv->rtk),
"Failed to initialize RTKit");
goto put_dev;
}
ret = nvme_init_ctrl(&anv->ctrl, anv->dev, &nvme_ctrl_ops,
NVME_QUIRK_SKIP_CID_GEN);
if (ret) {
dev_err_probe(dev, ret, "Failed to initialize nvme_ctrl");
goto put_dev;
}
anv->ctrl.admin_q = blk_mq_init_queue(&anv->admin_tagset);
if (IS_ERR(anv->ctrl.admin_q)) {
ret = -ENOMEM;
goto put_dev;
}
if (!blk_get_queue(anv->ctrl.admin_q)) {
nvme_start_admin_queue(&anv->ctrl);
blk_mq_destroy_queue(anv->ctrl.admin_q);
anv->ctrl.admin_q = NULL;
ret = -ENODEV;
goto put_dev;
}
nvme_reset_ctrl(&anv->ctrl);
async_schedule(apple_nvme_async_probe, anv);
return 0;
put_dev:
put_device(anv->dev);
return ret;
}
static int apple_nvme_remove(struct platform_device *pdev)
{
struct apple_nvme *anv = platform_get_drvdata(pdev);
nvme_change_ctrl_state(&anv->ctrl, NVME_CTRL_DELETING);
flush_work(&anv->ctrl.reset_work);
nvme_stop_ctrl(&anv->ctrl);
nvme_remove_namespaces(&anv->ctrl);
apple_nvme_disable(anv, true);
nvme_uninit_ctrl(&anv->ctrl);
if (apple_rtkit_is_running(anv->rtk))
apple_rtkit_shutdown(anv->rtk);
apple_nvme_detach_genpd(anv);
return 0;
}
static void apple_nvme_shutdown(struct platform_device *pdev)
{
struct apple_nvme *anv = platform_get_drvdata(pdev);
apple_nvme_disable(anv, true);
if (apple_rtkit_is_running(anv->rtk))
apple_rtkit_shutdown(anv->rtk);
}
static int apple_nvme_resume(struct device *dev)
{
struct apple_nvme *anv = dev_get_drvdata(dev);
return nvme_reset_ctrl(&anv->ctrl);
}
static int apple_nvme_suspend(struct device *dev)
{
struct apple_nvme *anv = dev_get_drvdata(dev);
int ret = 0;
apple_nvme_disable(anv, true);
if (apple_rtkit_is_running(anv->rtk))
ret = apple_rtkit_shutdown(anv->rtk);
writel(0, anv->mmio_coproc + APPLE_ANS_COPROC_CPU_CONTROL);
return ret;
}
static DEFINE_SIMPLE_DEV_PM_OPS(apple_nvme_pm_ops, apple_nvme_suspend,
apple_nvme_resume);
static const struct of_device_id apple_nvme_of_match[] = {
{ .compatible = "apple,nvme-ans2" },
{},
};
MODULE_DEVICE_TABLE(of, apple_nvme_of_match);
static struct platform_driver apple_nvme_driver = {
.driver = {
.name = "nvme-apple",
.of_match_table = apple_nvme_of_match,
.pm = pm_sleep_ptr(&apple_nvme_pm_ops),
},
.probe = apple_nvme_probe,
.remove = apple_nvme_remove,
.shutdown = apple_nvme_shutdown,
};
module_platform_driver(apple_nvme_driver);
MODULE_AUTHOR("Sven Peter <sven@svenpeter.dev>");
MODULE_LICENSE("GPL");