1450 строки
36 KiB
C
1450 строки
36 KiB
C
/*
|
|
* Freescale MPC85xx, MPC83xx DMA Engine support
|
|
*
|
|
* Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
|
|
*
|
|
* Author:
|
|
* Zhang Wei <wei.zhang@freescale.com>, Jul 2007
|
|
* Ebony Zhu <ebony.zhu@freescale.com>, May 2007
|
|
*
|
|
* Description:
|
|
* DMA engine driver for Freescale MPC8540 DMA controller, which is
|
|
* also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
|
|
* The support for MPC8349 DMA contorller is also added.
|
|
*
|
|
* This driver instructs the DMA controller to issue the PCI Read Multiple
|
|
* command for PCI read operations, instead of using the default PCI Read Line
|
|
* command. Please be aware that this setting may result in read pre-fetching
|
|
* on some platforms.
|
|
*
|
|
* This is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
#include <asm/fsldma.h>
|
|
#include "fsldma.h"
|
|
|
|
static void dma_init(struct fsldma_chan *chan)
|
|
{
|
|
/* Reset the channel */
|
|
DMA_OUT(chan, &chan->regs->mr, 0, 32);
|
|
|
|
switch (chan->feature & FSL_DMA_IP_MASK) {
|
|
case FSL_DMA_IP_85XX:
|
|
/* Set the channel to below modes:
|
|
* EIE - Error interrupt enable
|
|
* EOSIE - End of segments interrupt enable (basic mode)
|
|
* EOLNIE - End of links interrupt enable
|
|
*/
|
|
DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EIE
|
|
| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
|
|
break;
|
|
case FSL_DMA_IP_83XX:
|
|
/* Set the channel to below modes:
|
|
* EOTIE - End-of-transfer interrupt enable
|
|
* PRC_RM - PCI read multiple
|
|
*/
|
|
DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
|
|
| FSL_DMA_MR_PRC_RM, 32);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void set_sr(struct fsldma_chan *chan, u32 val)
|
|
{
|
|
DMA_OUT(chan, &chan->regs->sr, val, 32);
|
|
}
|
|
|
|
static u32 get_sr(struct fsldma_chan *chan)
|
|
{
|
|
return DMA_IN(chan, &chan->regs->sr, 32);
|
|
}
|
|
|
|
static void set_desc_cnt(struct fsldma_chan *chan,
|
|
struct fsl_dma_ld_hw *hw, u32 count)
|
|
{
|
|
hw->count = CPU_TO_DMA(chan, count, 32);
|
|
}
|
|
|
|
static void set_desc_src(struct fsldma_chan *chan,
|
|
struct fsl_dma_ld_hw *hw, dma_addr_t src)
|
|
{
|
|
u64 snoop_bits;
|
|
|
|
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
|
|
? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
|
|
hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
|
|
}
|
|
|
|
static void set_desc_dst(struct fsldma_chan *chan,
|
|
struct fsl_dma_ld_hw *hw, dma_addr_t dst)
|
|
{
|
|
u64 snoop_bits;
|
|
|
|
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
|
|
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
|
|
hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
|
|
}
|
|
|
|
static void set_desc_next(struct fsldma_chan *chan,
|
|
struct fsl_dma_ld_hw *hw, dma_addr_t next)
|
|
{
|
|
u64 snoop_bits;
|
|
|
|
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
|
|
? FSL_DMA_SNEN : 0;
|
|
hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
|
|
}
|
|
|
|
static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
|
|
{
|
|
DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
|
|
}
|
|
|
|
static dma_addr_t get_cdar(struct fsldma_chan *chan)
|
|
{
|
|
return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
|
|
}
|
|
|
|
static dma_addr_t get_ndar(struct fsldma_chan *chan)
|
|
{
|
|
return DMA_IN(chan, &chan->regs->ndar, 64);
|
|
}
|
|
|
|
static u32 get_bcr(struct fsldma_chan *chan)
|
|
{
|
|
return DMA_IN(chan, &chan->regs->bcr, 32);
|
|
}
|
|
|
|
static int dma_is_idle(struct fsldma_chan *chan)
|
|
{
|
|
u32 sr = get_sr(chan);
|
|
return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
|
|
}
|
|
|
|
static void dma_start(struct fsldma_chan *chan)
|
|
{
|
|
u32 mode;
|
|
|
|
mode = DMA_IN(chan, &chan->regs->mr, 32);
|
|
|
|
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
|
|
if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
|
|
DMA_OUT(chan, &chan->regs->bcr, 0, 32);
|
|
mode |= FSL_DMA_MR_EMP_EN;
|
|
} else {
|
|
mode &= ~FSL_DMA_MR_EMP_EN;
|
|
}
|
|
}
|
|
|
|
if (chan->feature & FSL_DMA_CHAN_START_EXT)
|
|
mode |= FSL_DMA_MR_EMS_EN;
|
|
else
|
|
mode |= FSL_DMA_MR_CS;
|
|
|
|
DMA_OUT(chan, &chan->regs->mr, mode, 32);
|
|
}
|
|
|
|
static void dma_halt(struct fsldma_chan *chan)
|
|
{
|
|
u32 mode;
|
|
int i;
|
|
|
|
mode = DMA_IN(chan, &chan->regs->mr, 32);
|
|
mode |= FSL_DMA_MR_CA;
|
|
DMA_OUT(chan, &chan->regs->mr, mode, 32);
|
|
|
|
mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
|
|
DMA_OUT(chan, &chan->regs->mr, mode, 32);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
if (dma_is_idle(chan))
|
|
return;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
if (!dma_is_idle(chan))
|
|
dev_err(chan->dev, "DMA halt timeout!\n");
|
|
}
|
|
|
|
static void set_ld_eol(struct fsldma_chan *chan,
|
|
struct fsl_desc_sw *desc)
|
|
{
|
|
u64 snoop_bits;
|
|
|
|
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
|
|
? FSL_DMA_SNEN : 0;
|
|
|
|
desc->hw.next_ln_addr = CPU_TO_DMA(chan,
|
|
DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
|
|
| snoop_bits, 64);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_set_src_loop_size - Set source address hold transfer size
|
|
* @chan : Freescale DMA channel
|
|
* @size : Address loop size, 0 for disable loop
|
|
*
|
|
* The set source address hold transfer size. The source
|
|
* address hold or loop transfer size is when the DMA transfer
|
|
* data from source address (SA), if the loop size is 4, the DMA will
|
|
* read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
|
|
* SA + 1 ... and so on.
|
|
*/
|
|
static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
|
|
{
|
|
u32 mode;
|
|
|
|
mode = DMA_IN(chan, &chan->regs->mr, 32);
|
|
|
|
switch (size) {
|
|
case 0:
|
|
mode &= ~FSL_DMA_MR_SAHE;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
|
|
break;
|
|
}
|
|
|
|
DMA_OUT(chan, &chan->regs->mr, mode, 32);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_set_dst_loop_size - Set destination address hold transfer size
|
|
* @chan : Freescale DMA channel
|
|
* @size : Address loop size, 0 for disable loop
|
|
*
|
|
* The set destination address hold transfer size. The destination
|
|
* address hold or loop transfer size is when the DMA transfer
|
|
* data to destination address (TA), if the loop size is 4, the DMA will
|
|
* write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
|
|
* TA + 1 ... and so on.
|
|
*/
|
|
static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
|
|
{
|
|
u32 mode;
|
|
|
|
mode = DMA_IN(chan, &chan->regs->mr, 32);
|
|
|
|
switch (size) {
|
|
case 0:
|
|
mode &= ~FSL_DMA_MR_DAHE;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
|
|
break;
|
|
}
|
|
|
|
DMA_OUT(chan, &chan->regs->mr, mode, 32);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_set_request_count - Set DMA Request Count for external control
|
|
* @chan : Freescale DMA channel
|
|
* @size : Number of bytes to transfer in a single request
|
|
*
|
|
* The Freescale DMA channel can be controlled by the external signal DREQ#.
|
|
* The DMA request count is how many bytes are allowed to transfer before
|
|
* pausing the channel, after which a new assertion of DREQ# resumes channel
|
|
* operation.
|
|
*
|
|
* A size of 0 disables external pause control. The maximum size is 1024.
|
|
*/
|
|
static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
|
|
{
|
|
u32 mode;
|
|
|
|
BUG_ON(size > 1024);
|
|
|
|
mode = DMA_IN(chan, &chan->regs->mr, 32);
|
|
mode |= (__ilog2(size) << 24) & 0x0f000000;
|
|
|
|
DMA_OUT(chan, &chan->regs->mr, mode, 32);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_toggle_ext_pause - Toggle channel external pause status
|
|
* @chan : Freescale DMA channel
|
|
* @enable : 0 is disabled, 1 is enabled.
|
|
*
|
|
* The Freescale DMA channel can be controlled by the external signal DREQ#.
|
|
* The DMA Request Count feature should be used in addition to this feature
|
|
* to set the number of bytes to transfer before pausing the channel.
|
|
*/
|
|
static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
|
|
{
|
|
if (enable)
|
|
chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
|
|
else
|
|
chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_toggle_ext_start - Toggle channel external start status
|
|
* @chan : Freescale DMA channel
|
|
* @enable : 0 is disabled, 1 is enabled.
|
|
*
|
|
* If enable the external start, the channel can be started by an
|
|
* external DMA start pin. So the dma_start() does not start the
|
|
* transfer immediately. The DMA channel will wait for the
|
|
* control pin asserted.
|
|
*/
|
|
static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
|
|
{
|
|
if (enable)
|
|
chan->feature |= FSL_DMA_CHAN_START_EXT;
|
|
else
|
|
chan->feature &= ~FSL_DMA_CHAN_START_EXT;
|
|
}
|
|
|
|
static void append_ld_queue(struct fsldma_chan *chan,
|
|
struct fsl_desc_sw *desc)
|
|
{
|
|
struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
|
|
|
|
if (list_empty(&chan->ld_pending))
|
|
goto out_splice;
|
|
|
|
/*
|
|
* Add the hardware descriptor to the chain of hardware descriptors
|
|
* that already exists in memory.
|
|
*
|
|
* This will un-set the EOL bit of the existing transaction, and the
|
|
* last link in this transaction will become the EOL descriptor.
|
|
*/
|
|
set_desc_next(chan, &tail->hw, desc->async_tx.phys);
|
|
|
|
/*
|
|
* Add the software descriptor and all children to the list
|
|
* of pending transactions
|
|
*/
|
|
out_splice:
|
|
list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
|
|
}
|
|
|
|
static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(tx->chan);
|
|
struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
|
|
struct fsl_desc_sw *child;
|
|
unsigned long flags;
|
|
dma_cookie_t cookie;
|
|
|
|
spin_lock_irqsave(&chan->desc_lock, flags);
|
|
|
|
/*
|
|
* assign cookies to all of the software descriptors
|
|
* that make up this transaction
|
|
*/
|
|
cookie = chan->common.cookie;
|
|
list_for_each_entry(child, &desc->tx_list, node) {
|
|
cookie++;
|
|
if (cookie < 0)
|
|
cookie = 1;
|
|
|
|
child->async_tx.cookie = cookie;
|
|
}
|
|
|
|
chan->common.cookie = cookie;
|
|
|
|
/* put this transaction onto the tail of the pending queue */
|
|
append_ld_queue(chan, desc);
|
|
|
|
spin_unlock_irqrestore(&chan->desc_lock, flags);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
|
|
* @chan : Freescale DMA channel
|
|
*
|
|
* Return - The descriptor allocated. NULL for failed.
|
|
*/
|
|
static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
|
|
struct fsldma_chan *chan)
|
|
{
|
|
struct fsl_desc_sw *desc;
|
|
dma_addr_t pdesc;
|
|
|
|
desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
|
|
if (!desc) {
|
|
dev_dbg(chan->dev, "out of memory for link desc\n");
|
|
return NULL;
|
|
}
|
|
|
|
memset(desc, 0, sizeof(*desc));
|
|
INIT_LIST_HEAD(&desc->tx_list);
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = fsl_dma_tx_submit;
|
|
desc->async_tx.phys = pdesc;
|
|
|
|
return desc;
|
|
}
|
|
|
|
|
|
/**
|
|
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
|
|
* @chan : Freescale DMA channel
|
|
*
|
|
* This function will create a dma pool for descriptor allocation.
|
|
*
|
|
* Return - The number of descriptors allocated.
|
|
*/
|
|
static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(dchan);
|
|
|
|
/* Has this channel already been allocated? */
|
|
if (chan->desc_pool)
|
|
return 1;
|
|
|
|
/*
|
|
* We need the descriptor to be aligned to 32bytes
|
|
* for meeting FSL DMA specification requirement.
|
|
*/
|
|
chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
|
|
chan->dev,
|
|
sizeof(struct fsl_desc_sw),
|
|
__alignof__(struct fsl_desc_sw), 0);
|
|
if (!chan->desc_pool) {
|
|
dev_err(chan->dev, "unable to allocate channel %d "
|
|
"descriptor pool\n", chan->id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* there is at least one descriptor free to be allocated */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* fsldma_free_desc_list - Free all descriptors in a queue
|
|
* @chan: Freescae DMA channel
|
|
* @list: the list to free
|
|
*
|
|
* LOCKING: must hold chan->desc_lock
|
|
*/
|
|
static void fsldma_free_desc_list(struct fsldma_chan *chan,
|
|
struct list_head *list)
|
|
{
|
|
struct fsl_desc_sw *desc, *_desc;
|
|
|
|
list_for_each_entry_safe(desc, _desc, list, node) {
|
|
list_del(&desc->node);
|
|
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
|
|
}
|
|
}
|
|
|
|
static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
|
|
struct list_head *list)
|
|
{
|
|
struct fsl_desc_sw *desc, *_desc;
|
|
|
|
list_for_each_entry_safe_reverse(desc, _desc, list, node) {
|
|
list_del(&desc->node);
|
|
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_free_chan_resources - Free all resources of the channel.
|
|
* @chan : Freescale DMA channel
|
|
*/
|
|
static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(dchan);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan->dev, "Free all channel resources.\n");
|
|
spin_lock_irqsave(&chan->desc_lock, flags);
|
|
fsldma_free_desc_list(chan, &chan->ld_pending);
|
|
fsldma_free_desc_list(chan, &chan->ld_running);
|
|
spin_unlock_irqrestore(&chan->desc_lock, flags);
|
|
|
|
dma_pool_destroy(chan->desc_pool);
|
|
chan->desc_pool = NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
struct fsl_desc_sw *new;
|
|
|
|
if (!dchan)
|
|
return NULL;
|
|
|
|
chan = to_fsl_chan(dchan);
|
|
|
|
new = fsl_dma_alloc_descriptor(chan);
|
|
if (!new) {
|
|
dev_err(chan->dev, "No free memory for link descriptor\n");
|
|
return NULL;
|
|
}
|
|
|
|
new->async_tx.cookie = -EBUSY;
|
|
new->async_tx.flags = flags;
|
|
|
|
/* Insert the link descriptor to the LD ring */
|
|
list_add_tail(&new->node, &new->tx_list);
|
|
|
|
/* Set End-of-link to the last link descriptor of new list*/
|
|
set_ld_eol(chan, new);
|
|
|
|
return &new->async_tx;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
|
|
struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
|
|
size_t copy;
|
|
|
|
if (!dchan)
|
|
return NULL;
|
|
|
|
if (!len)
|
|
return NULL;
|
|
|
|
chan = to_fsl_chan(dchan);
|
|
|
|
do {
|
|
|
|
/* Allocate the link descriptor from DMA pool */
|
|
new = fsl_dma_alloc_descriptor(chan);
|
|
if (!new) {
|
|
dev_err(chan->dev,
|
|
"No free memory for link descriptor\n");
|
|
goto fail;
|
|
}
|
|
#ifdef FSL_DMA_LD_DEBUG
|
|
dev_dbg(chan->dev, "new link desc alloc %p\n", new);
|
|
#endif
|
|
|
|
copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
|
|
|
|
set_desc_cnt(chan, &new->hw, copy);
|
|
set_desc_src(chan, &new->hw, dma_src);
|
|
set_desc_dst(chan, &new->hw, dma_dst);
|
|
|
|
if (!first)
|
|
first = new;
|
|
else
|
|
set_desc_next(chan, &prev->hw, new->async_tx.phys);
|
|
|
|
new->async_tx.cookie = 0;
|
|
async_tx_ack(&new->async_tx);
|
|
|
|
prev = new;
|
|
len -= copy;
|
|
dma_src += copy;
|
|
dma_dst += copy;
|
|
|
|
/* Insert the link descriptor to the LD ring */
|
|
list_add_tail(&new->node, &first->tx_list);
|
|
} while (len);
|
|
|
|
new->async_tx.flags = flags; /* client is in control of this ack */
|
|
new->async_tx.cookie = -EBUSY;
|
|
|
|
/* Set End-of-link to the last link descriptor of new list*/
|
|
set_ld_eol(chan, new);
|
|
|
|
return &first->async_tx;
|
|
|
|
fail:
|
|
if (!first)
|
|
return NULL;
|
|
|
|
fsldma_free_desc_list_reverse(chan, &first->tx_list);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
|
|
* @chan: DMA channel
|
|
* @sgl: scatterlist to transfer to/from
|
|
* @sg_len: number of entries in @scatterlist
|
|
* @direction: DMA direction
|
|
* @flags: DMAEngine flags
|
|
*
|
|
* Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
|
|
* DMA_SLAVE API, this gets the device-specific information from the
|
|
* chan->private variable.
|
|
*/
|
|
static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
|
|
struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
|
|
enum dma_data_direction direction, unsigned long flags)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
|
|
struct fsl_dma_slave *slave;
|
|
size_t copy;
|
|
|
|
int i;
|
|
struct scatterlist *sg;
|
|
size_t sg_used;
|
|
size_t hw_used;
|
|
struct fsl_dma_hw_addr *hw;
|
|
dma_addr_t dma_dst, dma_src;
|
|
|
|
if (!dchan)
|
|
return NULL;
|
|
|
|
if (!dchan->private)
|
|
return NULL;
|
|
|
|
chan = to_fsl_chan(dchan);
|
|
slave = dchan->private;
|
|
|
|
if (list_empty(&slave->addresses))
|
|
return NULL;
|
|
|
|
hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
|
|
hw_used = 0;
|
|
|
|
/*
|
|
* Build the hardware transaction to copy from the scatterlist to
|
|
* the hardware, or from the hardware to the scatterlist
|
|
*
|
|
* If you are copying from the hardware to the scatterlist and it
|
|
* takes two hardware entries to fill an entire page, then both
|
|
* hardware entries will be coalesced into the same page
|
|
*
|
|
* If you are copying from the scatterlist to the hardware and a
|
|
* single page can fill two hardware entries, then the data will
|
|
* be read out of the page into the first hardware entry, and so on
|
|
*/
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
sg_used = 0;
|
|
|
|
/* Loop until the entire scatterlist entry is used */
|
|
while (sg_used < sg_dma_len(sg)) {
|
|
|
|
/*
|
|
* If we've used up the current hardware address/length
|
|
* pair, we need to load a new one
|
|
*
|
|
* This is done in a while loop so that descriptors with
|
|
* length == 0 will be skipped
|
|
*/
|
|
while (hw_used >= hw->length) {
|
|
|
|
/*
|
|
* If the current hardware entry is the last
|
|
* entry in the list, we're finished
|
|
*/
|
|
if (list_is_last(&hw->entry, &slave->addresses))
|
|
goto finished;
|
|
|
|
/* Get the next hardware address/length pair */
|
|
hw = list_entry(hw->entry.next,
|
|
struct fsl_dma_hw_addr, entry);
|
|
hw_used = 0;
|
|
}
|
|
|
|
/* Allocate the link descriptor from DMA pool */
|
|
new = fsl_dma_alloc_descriptor(chan);
|
|
if (!new) {
|
|
dev_err(chan->dev, "No free memory for "
|
|
"link descriptor\n");
|
|
goto fail;
|
|
}
|
|
#ifdef FSL_DMA_LD_DEBUG
|
|
dev_dbg(chan->dev, "new link desc alloc %p\n", new);
|
|
#endif
|
|
|
|
/*
|
|
* Calculate the maximum number of bytes to transfer,
|
|
* making sure it is less than the DMA controller limit
|
|
*/
|
|
copy = min_t(size_t, sg_dma_len(sg) - sg_used,
|
|
hw->length - hw_used);
|
|
copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
|
|
|
|
/*
|
|
* DMA_FROM_DEVICE
|
|
* from the hardware to the scatterlist
|
|
*
|
|
* DMA_TO_DEVICE
|
|
* from the scatterlist to the hardware
|
|
*/
|
|
if (direction == DMA_FROM_DEVICE) {
|
|
dma_src = hw->address + hw_used;
|
|
dma_dst = sg_dma_address(sg) + sg_used;
|
|
} else {
|
|
dma_src = sg_dma_address(sg) + sg_used;
|
|
dma_dst = hw->address + hw_used;
|
|
}
|
|
|
|
/* Fill in the descriptor */
|
|
set_desc_cnt(chan, &new->hw, copy);
|
|
set_desc_src(chan, &new->hw, dma_src);
|
|
set_desc_dst(chan, &new->hw, dma_dst);
|
|
|
|
/*
|
|
* If this is not the first descriptor, chain the
|
|
* current descriptor after the previous descriptor
|
|
*/
|
|
if (!first) {
|
|
first = new;
|
|
} else {
|
|
set_desc_next(chan, &prev->hw,
|
|
new->async_tx.phys);
|
|
}
|
|
|
|
new->async_tx.cookie = 0;
|
|
async_tx_ack(&new->async_tx);
|
|
|
|
prev = new;
|
|
sg_used += copy;
|
|
hw_used += copy;
|
|
|
|
/* Insert the link descriptor into the LD ring */
|
|
list_add_tail(&new->node, &first->tx_list);
|
|
}
|
|
}
|
|
|
|
finished:
|
|
|
|
/* All of the hardware address/length pairs had length == 0 */
|
|
if (!first || !new)
|
|
return NULL;
|
|
|
|
new->async_tx.flags = flags;
|
|
new->async_tx.cookie = -EBUSY;
|
|
|
|
/* Set End-of-link to the last link descriptor of new list */
|
|
set_ld_eol(chan, new);
|
|
|
|
/* Enable extra controller features */
|
|
if (chan->set_src_loop_size)
|
|
chan->set_src_loop_size(chan, slave->src_loop_size);
|
|
|
|
if (chan->set_dst_loop_size)
|
|
chan->set_dst_loop_size(chan, slave->dst_loop_size);
|
|
|
|
if (chan->toggle_ext_start)
|
|
chan->toggle_ext_start(chan, slave->external_start);
|
|
|
|
if (chan->toggle_ext_pause)
|
|
chan->toggle_ext_pause(chan, slave->external_pause);
|
|
|
|
if (chan->set_request_count)
|
|
chan->set_request_count(chan, slave->request_count);
|
|
|
|
return &first->async_tx;
|
|
|
|
fail:
|
|
/* If first was not set, then we failed to allocate the very first
|
|
* descriptor, and we're done */
|
|
if (!first)
|
|
return NULL;
|
|
|
|
/*
|
|
* First is set, so all of the descriptors we allocated have been added
|
|
* to first->tx_list, INCLUDING "first" itself. Therefore we
|
|
* must traverse the list backwards freeing each descriptor in turn
|
|
*
|
|
* We're re-using variables for the loop, oh well
|
|
*/
|
|
fsldma_free_desc_list_reverse(chan, &first->tx_list);
|
|
return NULL;
|
|
}
|
|
|
|
static int fsl_dma_device_control(struct dma_chan *dchan,
|
|
enum dma_ctrl_cmd cmd, unsigned long arg)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
unsigned long flags;
|
|
|
|
/* Only supports DMA_TERMINATE_ALL */
|
|
if (cmd != DMA_TERMINATE_ALL)
|
|
return -ENXIO;
|
|
|
|
if (!dchan)
|
|
return -EINVAL;
|
|
|
|
chan = to_fsl_chan(dchan);
|
|
|
|
/* Halt the DMA engine */
|
|
dma_halt(chan);
|
|
|
|
spin_lock_irqsave(&chan->desc_lock, flags);
|
|
|
|
/* Remove and free all of the descriptors in the LD queue */
|
|
fsldma_free_desc_list(chan, &chan->ld_pending);
|
|
fsldma_free_desc_list(chan, &chan->ld_running);
|
|
|
|
spin_unlock_irqrestore(&chan->desc_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_update_completed_cookie - Update the completed cookie.
|
|
* @chan : Freescale DMA channel
|
|
*
|
|
* CONTEXT: hardirq
|
|
*/
|
|
static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
|
|
{
|
|
struct fsl_desc_sw *desc;
|
|
unsigned long flags;
|
|
dma_cookie_t cookie;
|
|
|
|
spin_lock_irqsave(&chan->desc_lock, flags);
|
|
|
|
if (list_empty(&chan->ld_running)) {
|
|
dev_dbg(chan->dev, "no running descriptors\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Get the last descriptor, update the cookie to that */
|
|
desc = to_fsl_desc(chan->ld_running.prev);
|
|
if (dma_is_idle(chan))
|
|
cookie = desc->async_tx.cookie;
|
|
else {
|
|
cookie = desc->async_tx.cookie - 1;
|
|
if (unlikely(cookie < DMA_MIN_COOKIE))
|
|
cookie = DMA_MAX_COOKIE;
|
|
}
|
|
|
|
chan->completed_cookie = cookie;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&chan->desc_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* fsldma_desc_status - Check the status of a descriptor
|
|
* @chan: Freescale DMA channel
|
|
* @desc: DMA SW descriptor
|
|
*
|
|
* This function will return the status of the given descriptor
|
|
*/
|
|
static enum dma_status fsldma_desc_status(struct fsldma_chan *chan,
|
|
struct fsl_desc_sw *desc)
|
|
{
|
|
return dma_async_is_complete(desc->async_tx.cookie,
|
|
chan->completed_cookie,
|
|
chan->common.cookie);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_ld_cleanup - Clean up link descriptors
|
|
* @chan : Freescale DMA channel
|
|
*
|
|
* This function clean up the ld_queue of DMA channel.
|
|
*/
|
|
static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
|
|
{
|
|
struct fsl_desc_sw *desc, *_desc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->desc_lock, flags);
|
|
|
|
dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
|
|
list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
|
|
dma_async_tx_callback callback;
|
|
void *callback_param;
|
|
|
|
if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
|
|
break;
|
|
|
|
/* Remove from the list of running transactions */
|
|
list_del(&desc->node);
|
|
|
|
/* Run the link descriptor callback function */
|
|
callback = desc->async_tx.callback;
|
|
callback_param = desc->async_tx.callback_param;
|
|
if (callback) {
|
|
spin_unlock_irqrestore(&chan->desc_lock, flags);
|
|
dev_dbg(chan->dev, "LD %p callback\n", desc);
|
|
callback(callback_param);
|
|
spin_lock_irqsave(&chan->desc_lock, flags);
|
|
}
|
|
|
|
/* Run any dependencies, then free the descriptor */
|
|
dma_run_dependencies(&desc->async_tx);
|
|
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->desc_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_xfer_ld_queue - transfer any pending transactions
|
|
* @chan : Freescale DMA channel
|
|
*
|
|
* This will make sure that any pending transactions will be run.
|
|
* If the DMA controller is idle, it will be started. Otherwise,
|
|
* the DMA controller's interrupt handler will start any pending
|
|
* transactions when it becomes idle.
|
|
*/
|
|
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
|
|
{
|
|
struct fsl_desc_sw *desc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->desc_lock, flags);
|
|
|
|
/*
|
|
* If the list of pending descriptors is empty, then we
|
|
* don't need to do any work at all
|
|
*/
|
|
if (list_empty(&chan->ld_pending)) {
|
|
dev_dbg(chan->dev, "no pending LDs\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* The DMA controller is not idle, which means the interrupt
|
|
* handler will start any queued transactions when it runs
|
|
* at the end of the current transaction
|
|
*/
|
|
if (!dma_is_idle(chan)) {
|
|
dev_dbg(chan->dev, "DMA controller still busy\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* TODO:
|
|
* make sure the dma_halt() function really un-wedges the
|
|
* controller as much as possible
|
|
*/
|
|
dma_halt(chan);
|
|
|
|
/*
|
|
* If there are some link descriptors which have not been
|
|
* transferred, we need to start the controller
|
|
*/
|
|
|
|
/*
|
|
* Move all elements from the queue of pending transactions
|
|
* onto the list of running transactions
|
|
*/
|
|
desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
|
|
list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
|
|
|
|
/*
|
|
* Program the descriptor's address into the DMA controller,
|
|
* then start the DMA transaction
|
|
*/
|
|
set_cdar(chan, desc->async_tx.phys);
|
|
dma_start(chan);
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&chan->desc_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_memcpy_issue_pending - Issue the DMA start command
|
|
* @chan : Freescale DMA channel
|
|
*/
|
|
static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(dchan);
|
|
fsl_chan_xfer_ld_queue(chan);
|
|
}
|
|
|
|
/**
|
|
* fsl_tx_status - Determine the DMA status
|
|
* @chan : Freescale DMA channel
|
|
*/
|
|
static enum dma_status fsl_tx_status(struct dma_chan *dchan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(dchan);
|
|
dma_cookie_t last_used;
|
|
dma_cookie_t last_complete;
|
|
|
|
fsl_chan_ld_cleanup(chan);
|
|
|
|
last_used = dchan->cookie;
|
|
last_complete = chan->completed_cookie;
|
|
|
|
dma_set_tx_state(txstate, last_complete, last_used, 0);
|
|
|
|
return dma_async_is_complete(cookie, last_complete, last_used);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
/* Interrupt Handling */
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
static irqreturn_t fsldma_chan_irq(int irq, void *data)
|
|
{
|
|
struct fsldma_chan *chan = data;
|
|
int update_cookie = 0;
|
|
int xfer_ld_q = 0;
|
|
u32 stat;
|
|
|
|
/* save and clear the status register */
|
|
stat = get_sr(chan);
|
|
set_sr(chan, stat);
|
|
dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat);
|
|
|
|
stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
|
|
if (!stat)
|
|
return IRQ_NONE;
|
|
|
|
if (stat & FSL_DMA_SR_TE)
|
|
dev_err(chan->dev, "Transfer Error!\n");
|
|
|
|
/*
|
|
* Programming Error
|
|
* The DMA_INTERRUPT async_tx is a NULL transfer, which will
|
|
* triger a PE interrupt.
|
|
*/
|
|
if (stat & FSL_DMA_SR_PE) {
|
|
dev_dbg(chan->dev, "irq: Programming Error INT\n");
|
|
if (get_bcr(chan) == 0) {
|
|
/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
|
|
* Now, update the completed cookie, and continue the
|
|
* next uncompleted transfer.
|
|
*/
|
|
update_cookie = 1;
|
|
xfer_ld_q = 1;
|
|
}
|
|
stat &= ~FSL_DMA_SR_PE;
|
|
}
|
|
|
|
/*
|
|
* If the link descriptor segment transfer finishes,
|
|
* we will recycle the used descriptor.
|
|
*/
|
|
if (stat & FSL_DMA_SR_EOSI) {
|
|
dev_dbg(chan->dev, "irq: End-of-segments INT\n");
|
|
dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
|
|
(unsigned long long)get_cdar(chan),
|
|
(unsigned long long)get_ndar(chan));
|
|
stat &= ~FSL_DMA_SR_EOSI;
|
|
update_cookie = 1;
|
|
}
|
|
|
|
/*
|
|
* For MPC8349, EOCDI event need to update cookie
|
|
* and start the next transfer if it exist.
|
|
*/
|
|
if (stat & FSL_DMA_SR_EOCDI) {
|
|
dev_dbg(chan->dev, "irq: End-of-Chain link INT\n");
|
|
stat &= ~FSL_DMA_SR_EOCDI;
|
|
update_cookie = 1;
|
|
xfer_ld_q = 1;
|
|
}
|
|
|
|
/*
|
|
* If it current transfer is the end-of-transfer,
|
|
* we should clear the Channel Start bit for
|
|
* prepare next transfer.
|
|
*/
|
|
if (stat & FSL_DMA_SR_EOLNI) {
|
|
dev_dbg(chan->dev, "irq: End-of-link INT\n");
|
|
stat &= ~FSL_DMA_SR_EOLNI;
|
|
xfer_ld_q = 1;
|
|
}
|
|
|
|
if (update_cookie)
|
|
fsl_dma_update_completed_cookie(chan);
|
|
if (xfer_ld_q)
|
|
fsl_chan_xfer_ld_queue(chan);
|
|
if (stat)
|
|
dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
|
|
|
|
dev_dbg(chan->dev, "irq: Exit\n");
|
|
tasklet_schedule(&chan->tasklet);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void dma_do_tasklet(unsigned long data)
|
|
{
|
|
struct fsldma_chan *chan = (struct fsldma_chan *)data;
|
|
fsl_chan_ld_cleanup(chan);
|
|
}
|
|
|
|
static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
|
|
{
|
|
struct fsldma_device *fdev = data;
|
|
struct fsldma_chan *chan;
|
|
unsigned int handled = 0;
|
|
u32 gsr, mask;
|
|
int i;
|
|
|
|
gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
|
|
: in_le32(fdev->regs);
|
|
mask = 0xff000000;
|
|
dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
|
|
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
|
|
if (gsr & mask) {
|
|
dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
|
|
fsldma_chan_irq(irq, chan);
|
|
handled++;
|
|
}
|
|
|
|
gsr &= ~mask;
|
|
mask >>= 8;
|
|
}
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static void fsldma_free_irqs(struct fsldma_device *fdev)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
int i;
|
|
|
|
if (fdev->irq != NO_IRQ) {
|
|
dev_dbg(fdev->dev, "free per-controller IRQ\n");
|
|
free_irq(fdev->irq, fdev);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
chan = fdev->chan[i];
|
|
if (chan && chan->irq != NO_IRQ) {
|
|
dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
|
|
free_irq(chan->irq, chan);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int fsldma_request_irqs(struct fsldma_device *fdev)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
int ret;
|
|
int i;
|
|
|
|
/* if we have a per-controller IRQ, use that */
|
|
if (fdev->irq != NO_IRQ) {
|
|
dev_dbg(fdev->dev, "request per-controller IRQ\n");
|
|
ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
|
|
"fsldma-controller", fdev);
|
|
return ret;
|
|
}
|
|
|
|
/* no per-controller IRQ, use the per-channel IRQs */
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
|
|
if (chan->irq == NO_IRQ) {
|
|
dev_err(fdev->dev, "no interrupts property defined for "
|
|
"DMA channel %d. Please fix your "
|
|
"device tree\n", chan->id);
|
|
ret = -ENODEV;
|
|
goto out_unwind;
|
|
}
|
|
|
|
dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
|
|
ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
|
|
"fsldma-chan", chan);
|
|
if (ret) {
|
|
dev_err(fdev->dev, "unable to request IRQ for DMA "
|
|
"channel %d\n", chan->id);
|
|
goto out_unwind;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_unwind:
|
|
for (/* none */; i >= 0; i--) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
|
|
if (chan->irq == NO_IRQ)
|
|
continue;
|
|
|
|
free_irq(chan->irq, chan);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
/* OpenFirmware Subsystem */
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
|
|
struct device_node *node, u32 feature, const char *compatible)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
struct resource res;
|
|
int err;
|
|
|
|
/* alloc channel */
|
|
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
|
|
if (!chan) {
|
|
dev_err(fdev->dev, "no free memory for DMA channels!\n");
|
|
err = -ENOMEM;
|
|
goto out_return;
|
|
}
|
|
|
|
/* ioremap registers for use */
|
|
chan->regs = of_iomap(node, 0);
|
|
if (!chan->regs) {
|
|
dev_err(fdev->dev, "unable to ioremap registers\n");
|
|
err = -ENOMEM;
|
|
goto out_free_chan;
|
|
}
|
|
|
|
err = of_address_to_resource(node, 0, &res);
|
|
if (err) {
|
|
dev_err(fdev->dev, "unable to find 'reg' property\n");
|
|
goto out_iounmap_regs;
|
|
}
|
|
|
|
chan->feature = feature;
|
|
if (!fdev->feature)
|
|
fdev->feature = chan->feature;
|
|
|
|
/*
|
|
* If the DMA device's feature is different than the feature
|
|
* of its channels, report the bug
|
|
*/
|
|
WARN_ON(fdev->feature != chan->feature);
|
|
|
|
chan->dev = fdev->dev;
|
|
chan->id = ((res.start - 0x100) & 0xfff) >> 7;
|
|
if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
|
|
dev_err(fdev->dev, "too many channels for device\n");
|
|
err = -EINVAL;
|
|
goto out_iounmap_regs;
|
|
}
|
|
|
|
fdev->chan[chan->id] = chan;
|
|
tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
|
|
|
|
/* Initialize the channel */
|
|
dma_init(chan);
|
|
|
|
/* Clear cdar registers */
|
|
set_cdar(chan, 0);
|
|
|
|
switch (chan->feature & FSL_DMA_IP_MASK) {
|
|
case FSL_DMA_IP_85XX:
|
|
chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
|
|
case FSL_DMA_IP_83XX:
|
|
chan->toggle_ext_start = fsl_chan_toggle_ext_start;
|
|
chan->set_src_loop_size = fsl_chan_set_src_loop_size;
|
|
chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
|
|
chan->set_request_count = fsl_chan_set_request_count;
|
|
}
|
|
|
|
spin_lock_init(&chan->desc_lock);
|
|
INIT_LIST_HEAD(&chan->ld_pending);
|
|
INIT_LIST_HEAD(&chan->ld_running);
|
|
|
|
chan->common.device = &fdev->common;
|
|
|
|
/* find the IRQ line, if it exists in the device tree */
|
|
chan->irq = irq_of_parse_and_map(node, 0);
|
|
|
|
/* Add the channel to DMA device channel list */
|
|
list_add_tail(&chan->common.device_node, &fdev->common.channels);
|
|
fdev->common.chancnt++;
|
|
|
|
dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
|
|
chan->irq != NO_IRQ ? chan->irq : fdev->irq);
|
|
|
|
return 0;
|
|
|
|
out_iounmap_regs:
|
|
iounmap(chan->regs);
|
|
out_free_chan:
|
|
kfree(chan);
|
|
out_return:
|
|
return err;
|
|
}
|
|
|
|
static void fsl_dma_chan_remove(struct fsldma_chan *chan)
|
|
{
|
|
irq_dispose_mapping(chan->irq);
|
|
list_del(&chan->common.device_node);
|
|
iounmap(chan->regs);
|
|
kfree(chan);
|
|
}
|
|
|
|
static int __devinit fsldma_of_probe(struct of_device *op,
|
|
const struct of_device_id *match)
|
|
{
|
|
struct fsldma_device *fdev;
|
|
struct device_node *child;
|
|
int err;
|
|
|
|
fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
|
|
if (!fdev) {
|
|
dev_err(&op->dev, "No enough memory for 'priv'\n");
|
|
err = -ENOMEM;
|
|
goto out_return;
|
|
}
|
|
|
|
fdev->dev = &op->dev;
|
|
INIT_LIST_HEAD(&fdev->common.channels);
|
|
|
|
/* ioremap the registers for use */
|
|
fdev->regs = of_iomap(op->dev.of_node, 0);
|
|
if (!fdev->regs) {
|
|
dev_err(&op->dev, "unable to ioremap registers\n");
|
|
err = -ENOMEM;
|
|
goto out_free_fdev;
|
|
}
|
|
|
|
/* map the channel IRQ if it exists, but don't hookup the handler yet */
|
|
fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
|
|
|
|
dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
|
|
dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
|
|
fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
|
|
fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
|
|
fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
|
|
fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
|
|
fdev->common.device_tx_status = fsl_tx_status;
|
|
fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
|
|
fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
|
|
fdev->common.device_control = fsl_dma_device_control;
|
|
fdev->common.dev = &op->dev;
|
|
|
|
dev_set_drvdata(&op->dev, fdev);
|
|
|
|
/*
|
|
* We cannot use of_platform_bus_probe() because there is no
|
|
* of_platform_bus_remove(). Instead, we manually instantiate every DMA
|
|
* channel object.
|
|
*/
|
|
for_each_child_of_node(op->dev.of_node, child) {
|
|
if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
|
|
fsl_dma_chan_probe(fdev, child,
|
|
FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
|
|
"fsl,eloplus-dma-channel");
|
|
}
|
|
|
|
if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
|
|
fsl_dma_chan_probe(fdev, child,
|
|
FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
|
|
"fsl,elo-dma-channel");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hookup the IRQ handler(s)
|
|
*
|
|
* If we have a per-controller interrupt, we prefer that to the
|
|
* per-channel interrupts to reduce the number of shared interrupt
|
|
* handlers on the same IRQ line
|
|
*/
|
|
err = fsldma_request_irqs(fdev);
|
|
if (err) {
|
|
dev_err(fdev->dev, "unable to request IRQs\n");
|
|
goto out_free_fdev;
|
|
}
|
|
|
|
dma_async_device_register(&fdev->common);
|
|
return 0;
|
|
|
|
out_free_fdev:
|
|
irq_dispose_mapping(fdev->irq);
|
|
kfree(fdev);
|
|
out_return:
|
|
return err;
|
|
}
|
|
|
|
static int fsldma_of_remove(struct of_device *op)
|
|
{
|
|
struct fsldma_device *fdev;
|
|
unsigned int i;
|
|
|
|
fdev = dev_get_drvdata(&op->dev);
|
|
dma_async_device_unregister(&fdev->common);
|
|
|
|
fsldma_free_irqs(fdev);
|
|
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
if (fdev->chan[i])
|
|
fsl_dma_chan_remove(fdev->chan[i]);
|
|
}
|
|
|
|
iounmap(fdev->regs);
|
|
dev_set_drvdata(&op->dev, NULL);
|
|
kfree(fdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id fsldma_of_ids[] = {
|
|
{ .compatible = "fsl,eloplus-dma", },
|
|
{ .compatible = "fsl,elo-dma", },
|
|
{}
|
|
};
|
|
|
|
static struct of_platform_driver fsldma_of_driver = {
|
|
.driver = {
|
|
.name = "fsl-elo-dma",
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = fsldma_of_ids,
|
|
},
|
|
.probe = fsldma_of_probe,
|
|
.remove = fsldma_of_remove,
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
/* Module Init / Exit */
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
static __init int fsldma_init(void)
|
|
{
|
|
int ret;
|
|
|
|
pr_info("Freescale Elo / Elo Plus DMA driver\n");
|
|
|
|
ret = of_register_platform_driver(&fsldma_of_driver);
|
|
if (ret)
|
|
pr_err("fsldma: failed to register platform driver\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit fsldma_exit(void)
|
|
{
|
|
of_unregister_platform_driver(&fsldma_of_driver);
|
|
}
|
|
|
|
subsys_initcall(fsldma_init);
|
|
module_exit(fsldma_exit);
|
|
|
|
MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
|
|
MODULE_LICENSE("GPL");
|