WSL2-Linux-Kernel/mm/madvise.c

753 строки
18 KiB
C

/*
* linux/mm/madvise.c
*
* Copyright (C) 1999 Linus Torvalds
* Copyright (C) 2002 Christoph Hellwig
*/
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/mempolicy.h>
#include <linux/page-isolation.h>
#include <linux/hugetlb.h>
#include <linux/falloc.h>
#include <linux/sched.h>
#include <linux/ksm.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <asm/tlb.h>
/*
* Any behaviour which results in changes to the vma->vm_flags needs to
* take mmap_sem for writing. Others, which simply traverse vmas, need
* to only take it for reading.
*/
static int madvise_need_mmap_write(int behavior)
{
switch (behavior) {
case MADV_REMOVE:
case MADV_WILLNEED:
case MADV_DONTNEED:
case MADV_FREE:
return 0;
default:
/* be safe, default to 1. list exceptions explicitly */
return 1;
}
}
/*
* We can potentially split a vm area into separate
* areas, each area with its own behavior.
*/
static long madvise_behavior(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end, int behavior)
{
struct mm_struct *mm = vma->vm_mm;
int error = 0;
pgoff_t pgoff;
unsigned long new_flags = vma->vm_flags;
switch (behavior) {
case MADV_NORMAL:
new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
break;
case MADV_SEQUENTIAL:
new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
break;
case MADV_RANDOM:
new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
break;
case MADV_DONTFORK:
new_flags |= VM_DONTCOPY;
break;
case MADV_DOFORK:
if (vma->vm_flags & VM_IO) {
error = -EINVAL;
goto out;
}
new_flags &= ~VM_DONTCOPY;
break;
case MADV_DONTDUMP:
new_flags |= VM_DONTDUMP;
break;
case MADV_DODUMP:
if (new_flags & VM_SPECIAL) {
error = -EINVAL;
goto out;
}
new_flags &= ~VM_DONTDUMP;
break;
case MADV_MERGEABLE:
case MADV_UNMERGEABLE:
error = ksm_madvise(vma, start, end, behavior, &new_flags);
if (error)
goto out;
break;
case MADV_HUGEPAGE:
case MADV_NOHUGEPAGE:
error = hugepage_madvise(vma, &new_flags, behavior);
if (error)
goto out;
break;
}
if (new_flags == vma->vm_flags) {
*prev = vma;
goto out;
}
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
vma->vm_file, pgoff, vma_policy(vma),
vma->vm_userfaultfd_ctx);
if (*prev) {
vma = *prev;
goto success;
}
*prev = vma;
if (start != vma->vm_start) {
error = split_vma(mm, vma, start, 1);
if (error)
goto out;
}
if (end != vma->vm_end) {
error = split_vma(mm, vma, end, 0);
if (error)
goto out;
}
success:
/*
* vm_flags is protected by the mmap_sem held in write mode.
*/
vma->vm_flags = new_flags;
out:
if (error == -ENOMEM)
error = -EAGAIN;
return error;
}
#ifdef CONFIG_SWAP
static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
unsigned long end, struct mm_walk *walk)
{
pte_t *orig_pte;
struct vm_area_struct *vma = walk->private;
unsigned long index;
if (pmd_none_or_trans_huge_or_clear_bad(pmd))
return 0;
for (index = start; index != end; index += PAGE_SIZE) {
pte_t pte;
swp_entry_t entry;
struct page *page;
spinlock_t *ptl;
orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
pte = *(orig_pte + ((index - start) / PAGE_SIZE));
pte_unmap_unlock(orig_pte, ptl);
if (pte_present(pte) || pte_none(pte))
continue;
entry = pte_to_swp_entry(pte);
if (unlikely(non_swap_entry(entry)))
continue;
page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
vma, index);
if (page)
page_cache_release(page);
}
return 0;
}
static void force_swapin_readahead(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
struct mm_walk walk = {
.mm = vma->vm_mm,
.pmd_entry = swapin_walk_pmd_entry,
.private = vma,
};
walk_page_range(start, end, &walk);
lru_add_drain(); /* Push any new pages onto the LRU now */
}
static void force_shm_swapin_readahead(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct address_space *mapping)
{
pgoff_t index;
struct page *page;
swp_entry_t swap;
for (; start < end; start += PAGE_SIZE) {
index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
page = find_get_entry(mapping, index);
if (!radix_tree_exceptional_entry(page)) {
if (page)
page_cache_release(page);
continue;
}
swap = radix_to_swp_entry(page);
page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
NULL, 0);
if (page)
page_cache_release(page);
}
lru_add_drain(); /* Push any new pages onto the LRU now */
}
#endif /* CONFIG_SWAP */
/*
* Schedule all required I/O operations. Do not wait for completion.
*/
static long madvise_willneed(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
struct file *file = vma->vm_file;
#ifdef CONFIG_SWAP
if (!file) {
*prev = vma;
force_swapin_readahead(vma, start, end);
return 0;
}
if (shmem_mapping(file->f_mapping)) {
*prev = vma;
force_shm_swapin_readahead(vma, start, end,
file->f_mapping);
return 0;
}
#else
if (!file)
return -EBADF;
#endif
if (IS_DAX(file_inode(file))) {
/* no bad return value, but ignore advice */
return 0;
}
*prev = vma;
start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
if (end > vma->vm_end)
end = vma->vm_end;
end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
force_page_cache_readahead(file->f_mapping, file, start, end - start);
return 0;
}
static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct mmu_gather *tlb = walk->private;
struct mm_struct *mm = tlb->mm;
struct vm_area_struct *vma = walk->vma;
spinlock_t *ptl;
pte_t *orig_pte, *pte, ptent;
struct page *page;
int nr_swap = 0;
unsigned long next;
next = pmd_addr_end(addr, end);
if (pmd_trans_huge(*pmd))
if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
goto next;
if (pmd_trans_unstable(pmd))
return 0;
orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
arch_enter_lazy_mmu_mode();
for (; addr != end; pte++, addr += PAGE_SIZE) {
ptent = *pte;
if (pte_none(ptent))
continue;
/*
* If the pte has swp_entry, just clear page table to
* prevent swap-in which is more expensive rather than
* (page allocation + zeroing).
*/
if (!pte_present(ptent)) {
swp_entry_t entry;
entry = pte_to_swp_entry(ptent);
if (non_swap_entry(entry))
continue;
nr_swap--;
free_swap_and_cache(entry);
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
continue;
}
page = vm_normal_page(vma, addr, ptent);
if (!page)
continue;
/*
* If pmd isn't transhuge but the page is THP and
* is owned by only this process, split it and
* deactivate all pages.
*/
if (PageTransCompound(page)) {
if (page_mapcount(page) != 1)
goto out;
get_page(page);
if (!trylock_page(page)) {
put_page(page);
goto out;
}
pte_unmap_unlock(orig_pte, ptl);
if (split_huge_page(page)) {
unlock_page(page);
put_page(page);
pte_offset_map_lock(mm, pmd, addr, &ptl);
goto out;
}
put_page(page);
unlock_page(page);
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
pte--;
addr -= PAGE_SIZE;
continue;
}
VM_BUG_ON_PAGE(PageTransCompound(page), page);
if (PageSwapCache(page) || PageDirty(page)) {
if (!trylock_page(page))
continue;
/*
* If page is shared with others, we couldn't clear
* PG_dirty of the page.
*/
if (page_mapcount(page) != 1) {
unlock_page(page);
continue;
}
if (PageSwapCache(page) && !try_to_free_swap(page)) {
unlock_page(page);
continue;
}
ClearPageDirty(page);
unlock_page(page);
}
if (pte_young(ptent) || pte_dirty(ptent)) {
/*
* Some of architecture(ex, PPC) don't update TLB
* with set_pte_at and tlb_remove_tlb_entry so for
* the portability, remap the pte with old|clean
* after pte clearing.
*/
ptent = ptep_get_and_clear_full(mm, addr, pte,
tlb->fullmm);
ptent = pte_mkold(ptent);
ptent = pte_mkclean(ptent);
set_pte_at(mm, addr, pte, ptent);
if (PageActive(page))
deactivate_page(page);
tlb_remove_tlb_entry(tlb, pte, addr);
}
}
out:
if (nr_swap) {
if (current->mm == mm)
sync_mm_rss(mm);
add_mm_counter(mm, MM_SWAPENTS, nr_swap);
}
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(orig_pte, ptl);
cond_resched();
next:
return 0;
}
static void madvise_free_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
struct mm_walk free_walk = {
.pmd_entry = madvise_free_pte_range,
.mm = vma->vm_mm,
.private = tlb,
};
tlb_start_vma(tlb, vma);
walk_page_range(addr, end, &free_walk);
tlb_end_vma(tlb, vma);
}
static int madvise_free_single_vma(struct vm_area_struct *vma,
unsigned long start_addr, unsigned long end_addr)
{
unsigned long start, end;
struct mm_struct *mm = vma->vm_mm;
struct mmu_gather tlb;
if (vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP))
return -EINVAL;
/* MADV_FREE works for only anon vma at the moment */
if (!vma_is_anonymous(vma))
return -EINVAL;
start = max(vma->vm_start, start_addr);
if (start >= vma->vm_end)
return -EINVAL;
end = min(vma->vm_end, end_addr);
if (end <= vma->vm_start)
return -EINVAL;
lru_add_drain();
tlb_gather_mmu(&tlb, mm, start, end);
update_hiwater_rss(mm);
mmu_notifier_invalidate_range_start(mm, start, end);
madvise_free_page_range(&tlb, vma, start, end);
mmu_notifier_invalidate_range_end(mm, start, end);
tlb_finish_mmu(&tlb, start, end);
return 0;
}
static long madvise_free(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
*prev = vma;
return madvise_free_single_vma(vma, start, end);
}
/*
* Application no longer needs these pages. If the pages are dirty,
* it's OK to just throw them away. The app will be more careful about
* data it wants to keep. Be sure to free swap resources too. The
* zap_page_range call sets things up for shrink_active_list to actually free
* these pages later if no one else has touched them in the meantime,
* although we could add these pages to a global reuse list for
* shrink_active_list to pick up before reclaiming other pages.
*
* NB: This interface discards data rather than pushes it out to swap,
* as some implementations do. This has performance implications for
* applications like large transactional databases which want to discard
* pages in anonymous maps after committing to backing store the data
* that was kept in them. There is no reason to write this data out to
* the swap area if the application is discarding it.
*
* An interface that causes the system to free clean pages and flush
* dirty pages is already available as msync(MS_INVALIDATE).
*/
static long madvise_dontneed(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
*prev = vma;
if (vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP))
return -EINVAL;
zap_page_range(vma, start, end - start, NULL);
return 0;
}
/*
* Application wants to free up the pages and associated backing store.
* This is effectively punching a hole into the middle of a file.
*/
static long madvise_remove(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
loff_t offset;
int error;
struct file *f;
*prev = NULL; /* tell sys_madvise we drop mmap_sem */
if (vma->vm_flags & VM_LOCKED)
return -EINVAL;
f = vma->vm_file;
if (!f || !f->f_mapping || !f->f_mapping->host) {
return -EINVAL;
}
if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
return -EACCES;
offset = (loff_t)(start - vma->vm_start)
+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
/*
* Filesystem's fallocate may need to take i_mutex. We need to
* explicitly grab a reference because the vma (and hence the
* vma's reference to the file) can go away as soon as we drop
* mmap_sem.
*/
get_file(f);
up_read(&current->mm->mmap_sem);
error = vfs_fallocate(f,
FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
offset, end - start);
fput(f);
down_read(&current->mm->mmap_sem);
return error;
}
#ifdef CONFIG_MEMORY_FAILURE
/*
* Error injection support for memory error handling.
*/
static int madvise_hwpoison(int bhv, unsigned long start, unsigned long end)
{
struct page *p;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
for (; start < end; start += PAGE_SIZE <<
compound_order(compound_head(p))) {
int ret;
ret = get_user_pages_fast(start, 1, 0, &p);
if (ret != 1)
return ret;
if (PageHWPoison(p)) {
put_page(p);
continue;
}
if (bhv == MADV_SOFT_OFFLINE) {
pr_info("Soft offlining page %#lx at %#lx\n",
page_to_pfn(p), start);
ret = soft_offline_page(p, MF_COUNT_INCREASED);
if (ret)
return ret;
continue;
}
pr_info("Injecting memory failure for page %#lx at %#lx\n",
page_to_pfn(p), start);
/* Ignore return value for now */
memory_failure(page_to_pfn(p), 0, MF_COUNT_INCREASED);
}
return 0;
}
#endif
static long
madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
unsigned long start, unsigned long end, int behavior)
{
switch (behavior) {
case MADV_REMOVE:
return madvise_remove(vma, prev, start, end);
case MADV_WILLNEED:
return madvise_willneed(vma, prev, start, end);
case MADV_FREE:
/*
* XXX: In this implementation, MADV_FREE works like
* MADV_DONTNEED on swapless system or full swap.
*/
if (get_nr_swap_pages() > 0)
return madvise_free(vma, prev, start, end);
/* passthrough */
case MADV_DONTNEED:
return madvise_dontneed(vma, prev, start, end);
default:
return madvise_behavior(vma, prev, start, end, behavior);
}
}
static bool
madvise_behavior_valid(int behavior)
{
switch (behavior) {
case MADV_DOFORK:
case MADV_DONTFORK:
case MADV_NORMAL:
case MADV_SEQUENTIAL:
case MADV_RANDOM:
case MADV_REMOVE:
case MADV_WILLNEED:
case MADV_DONTNEED:
case MADV_FREE:
#ifdef CONFIG_KSM
case MADV_MERGEABLE:
case MADV_UNMERGEABLE:
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
case MADV_HUGEPAGE:
case MADV_NOHUGEPAGE:
#endif
case MADV_DONTDUMP:
case MADV_DODUMP:
return true;
default:
return false;
}
}
/*
* The madvise(2) system call.
*
* Applications can use madvise() to advise the kernel how it should
* handle paging I/O in this VM area. The idea is to help the kernel
* use appropriate read-ahead and caching techniques. The information
* provided is advisory only, and can be safely disregarded by the
* kernel without affecting the correct operation of the application.
*
* behavior values:
* MADV_NORMAL - the default behavior is to read clusters. This
* results in some read-ahead and read-behind.
* MADV_RANDOM - the system should read the minimum amount of data
* on any access, since it is unlikely that the appli-
* cation will need more than what it asks for.
* MADV_SEQUENTIAL - pages in the given range will probably be accessed
* once, so they can be aggressively read ahead, and
* can be freed soon after they are accessed.
* MADV_WILLNEED - the application is notifying the system to read
* some pages ahead.
* MADV_DONTNEED - the application is finished with the given range,
* so the kernel can free resources associated with it.
* MADV_REMOVE - the application wants to free up the given range of
* pages and associated backing store.
* MADV_DONTFORK - omit this area from child's address space when forking:
* typically, to avoid COWing pages pinned by get_user_pages().
* MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
* MADV_MERGEABLE - the application recommends that KSM try to merge pages in
* this area with pages of identical content from other such areas.
* MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
*
* return values:
* zero - success
* -EINVAL - start + len < 0, start is not page-aligned,
* "behavior" is not a valid value, or application
* is attempting to release locked or shared pages.
* -ENOMEM - addresses in the specified range are not currently
* mapped, or are outside the AS of the process.
* -EIO - an I/O error occurred while paging in data.
* -EBADF - map exists, but area maps something that isn't a file.
* -EAGAIN - a kernel resource was temporarily unavailable.
*/
SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
{
unsigned long end, tmp;
struct vm_area_struct *vma, *prev;
int unmapped_error = 0;
int error = -EINVAL;
int write;
size_t len;
struct blk_plug plug;
#ifdef CONFIG_MEMORY_FAILURE
if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
return madvise_hwpoison(behavior, start, start+len_in);
#endif
if (!madvise_behavior_valid(behavior))
return error;
if (start & ~PAGE_MASK)
return error;
len = (len_in + ~PAGE_MASK) & PAGE_MASK;
/* Check to see whether len was rounded up from small -ve to zero */
if (len_in && !len)
return error;
end = start + len;
if (end < start)
return error;
error = 0;
if (end == start)
return error;
write = madvise_need_mmap_write(behavior);
if (write)
down_write(&current->mm->mmap_sem);
else
down_read(&current->mm->mmap_sem);
/*
* If the interval [start,end) covers some unmapped address
* ranges, just ignore them, but return -ENOMEM at the end.
* - different from the way of handling in mlock etc.
*/
vma = find_vma_prev(current->mm, start, &prev);
if (vma && start > vma->vm_start)
prev = vma;
blk_start_plug(&plug);
for (;;) {
/* Still start < end. */
error = -ENOMEM;
if (!vma)
goto out;
/* Here start < (end|vma->vm_end). */
if (start < vma->vm_start) {
unmapped_error = -ENOMEM;
start = vma->vm_start;
if (start >= end)
goto out;
}
/* Here vma->vm_start <= start < (end|vma->vm_end) */
tmp = vma->vm_end;
if (end < tmp)
tmp = end;
/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
error = madvise_vma(vma, &prev, start, tmp, behavior);
if (error)
goto out;
start = tmp;
if (prev && start < prev->vm_end)
start = prev->vm_end;
error = unmapped_error;
if (start >= end)
goto out;
if (prev)
vma = prev->vm_next;
else /* madvise_remove dropped mmap_sem */
vma = find_vma(current->mm, start);
}
out:
blk_finish_plug(&plug);
if (write)
up_write(&current->mm->mmap_sem);
else
up_read(&current->mm->mmap_sem);
return error;
}