WSL2-Linux-Kernel/sound/soc/sof/topology.c

2074 строки
57 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
//
// This file is provided under a dual BSD/GPLv2 license. When using or
// redistributing this file, you may do so under either license.
//
// Copyright(c) 2018 Intel Corporation. All rights reserved.
//
// Author: Liam Girdwood <liam.r.girdwood@linux.intel.com>
//
#include <linux/bits.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/firmware.h>
#include <linux/workqueue.h>
#include <sound/tlv.h>
#include <uapi/sound/sof/tokens.h>
#include "sof-priv.h"
#include "sof-audio.h"
#include "ops.h"
#define COMP_ID_UNASSIGNED 0xffffffff
/*
* Constants used in the computation of linear volume gain
* from dB gain 20th root of 10 in Q1.16 fixed-point notation
*/
#define VOL_TWENTIETH_ROOT_OF_TEN 73533
/* 40th root of 10 in Q1.16 fixed-point notation*/
#define VOL_FORTIETH_ROOT_OF_TEN 69419
/* 0.5 dB step value in topology TLV */
#define VOL_HALF_DB_STEP 50
/* TLV data items */
#define TLV_ITEMS 3
#define TLV_MIN 0
#define TLV_STEP 1
#define TLV_MUTE 2
/* size of tplg abi in byte */
#define SOF_TPLG_ABI_SIZE 3
/**
* sof_update_ipc_object - Parse multiple sets of tokens within the token array associated with the
* token ID.
* @scomp: pointer to SOC component
* @object: target IPC struct to save the parsed values
* @token_id: token ID for the token array to be searched
* @tuples: pointer to the tuples array
* @num_tuples: number of tuples in the tuples array
* @object_size: size of the object
* @token_instance_num: number of times the same @token_id needs to be parsed i.e. the function
* looks for @token_instance_num of each token in the token array associated
* with the @token_id
*/
int sof_update_ipc_object(struct snd_soc_component *scomp, void *object, enum sof_tokens token_id,
struct snd_sof_tuple *tuples, int num_tuples,
size_t object_size, int token_instance_num)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg;
const struct sof_token_info *token_list = ipc_tplg_ops->token_list;
const struct sof_topology_token *tokens;
int i, j;
if (token_list[token_id].count < 0) {
dev_err(scomp->dev, "Invalid token count for token ID: %d\n", token_id);
return -EINVAL;
}
/* No tokens to match */
if (!token_list[token_id].count)
return 0;
tokens = token_list[token_id].tokens;
if (!tokens) {
dev_err(scomp->dev, "Invalid tokens for token id: %d\n", token_id);
return -EINVAL;
}
for (i = 0; i < token_list[token_id].count; i++) {
int offset = 0;
int num_tokens_matched = 0;
for (j = 0; j < num_tuples; j++) {
if (tokens[i].token == tuples[j].token) {
switch (tokens[i].type) {
case SND_SOC_TPLG_TUPLE_TYPE_WORD:
{
u32 *val = (u32 *)((u8 *)object + tokens[i].offset +
offset);
*val = tuples[j].value.v;
break;
}
case SND_SOC_TPLG_TUPLE_TYPE_SHORT:
case SND_SOC_TPLG_TUPLE_TYPE_BOOL:
{
u16 *val = (u16 *)((u8 *)object + tokens[i].offset +
offset);
*val = (u16)tuples[j].value.v;
break;
}
case SND_SOC_TPLG_TUPLE_TYPE_STRING:
{
if (!tokens[i].get_token) {
dev_err(scomp->dev,
"get_token not defined for token %d in %s\n",
tokens[i].token, token_list[token_id].name);
return -EINVAL;
}
tokens[i].get_token((void *)tuples[j].value.s, object,
tokens[i].offset + offset);
break;
}
default:
break;
}
num_tokens_matched++;
/* found all required sets of current token. Move to the next one */
if (!(num_tokens_matched % token_instance_num))
break;
/* move to the next object */
offset += object_size;
}
}
}
return 0;
}
static inline int get_tlv_data(const int *p, int tlv[TLV_ITEMS])
{
/* we only support dB scale TLV type at the moment */
if ((int)p[SNDRV_CTL_TLVO_TYPE] != SNDRV_CTL_TLVT_DB_SCALE)
return -EINVAL;
/* min value in topology tlv data is multiplied by 100 */
tlv[TLV_MIN] = (int)p[SNDRV_CTL_TLVO_DB_SCALE_MIN] / 100;
/* volume steps */
tlv[TLV_STEP] = (int)(p[SNDRV_CTL_TLVO_DB_SCALE_MUTE_AND_STEP] &
TLV_DB_SCALE_MASK);
/* mute ON/OFF */
if ((p[SNDRV_CTL_TLVO_DB_SCALE_MUTE_AND_STEP] &
TLV_DB_SCALE_MUTE) == 0)
tlv[TLV_MUTE] = 0;
else
tlv[TLV_MUTE] = 1;
return 0;
}
/*
* Function to truncate an unsigned 64-bit number
* by x bits and return 32-bit unsigned number. This
* function also takes care of rounding while truncating
*/
static inline u32 vol_shift_64(u64 i, u32 x)
{
/* do not truncate more than 32 bits */
if (x > 32)
x = 32;
if (x == 0)
return (u32)i;
return (u32)(((i >> (x - 1)) + 1) >> 1);
}
/*
* Function to compute a ^ exp where,
* a is a fractional number represented by a fixed-point
* integer with a fractional world length of "fwl"
* exp is an integer
* fwl is the fractional word length
* Return value is a fractional number represented by a
* fixed-point integer with a fractional word length of "fwl"
*/
static u32 vol_pow32(u32 a, int exp, u32 fwl)
{
int i, iter;
u32 power = 1 << fwl;
u64 numerator;
/* if exponent is 0, return 1 */
if (exp == 0)
return power;
/* determine the number of iterations based on the exponent */
if (exp < 0)
iter = exp * -1;
else
iter = exp;
/* mutiply a "iter" times to compute power */
for (i = 0; i < iter; i++) {
/*
* Product of 2 Qx.fwl fixed-point numbers yields a Q2*x.2*fwl
* Truncate product back to fwl fractional bits with rounding
*/
power = vol_shift_64((u64)power * a, fwl);
}
if (exp > 0) {
/* if exp is positive, return the result */
return power;
}
/* if exp is negative, return the multiplicative inverse */
numerator = (u64)1 << (fwl << 1);
do_div(numerator, power);
return (u32)numerator;
}
/*
* Function to calculate volume gain from TLV data.
* This function can only handle gain steps that are multiples of 0.5 dB
*/
static u32 vol_compute_gain(u32 value, int *tlv)
{
int dB_gain;
u32 linear_gain;
int f_step;
/* mute volume */
if (value == 0 && tlv[TLV_MUTE])
return 0;
/*
* compute dB gain from tlv. tlv_step
* in topology is multiplied by 100
*/
dB_gain = tlv[TLV_MIN] + (value * tlv[TLV_STEP]) / 100;
/*
* compute linear gain represented by fixed-point
* int with VOLUME_FWL fractional bits
*/
linear_gain = vol_pow32(VOL_TWENTIETH_ROOT_OF_TEN, dB_gain, VOLUME_FWL);
/* extract the fractional part of volume step */
f_step = tlv[TLV_STEP] - (tlv[TLV_STEP] / 100);
/* if volume step is an odd multiple of 0.5 dB */
if (f_step == VOL_HALF_DB_STEP && (value & 1))
linear_gain = vol_shift_64((u64)linear_gain *
VOL_FORTIETH_ROOT_OF_TEN,
VOLUME_FWL);
return linear_gain;
}
/*
* Set up volume table for kcontrols from tlv data
* "size" specifies the number of entries in the table
*/
static int set_up_volume_table(struct snd_sof_control *scontrol,
int tlv[TLV_ITEMS], int size)
{
int j;
/* init the volume table */
scontrol->volume_table = kcalloc(size, sizeof(u32), GFP_KERNEL);
if (!scontrol->volume_table)
return -ENOMEM;
/* populate the volume table */
for (j = 0; j < size ; j++)
scontrol->volume_table[j] = vol_compute_gain(j, tlv);
return 0;
}
struct sof_dai_types {
const char *name;
enum sof_ipc_dai_type type;
};
static const struct sof_dai_types sof_dais[] = {
{"SSP", SOF_DAI_INTEL_SSP},
{"HDA", SOF_DAI_INTEL_HDA},
{"DMIC", SOF_DAI_INTEL_DMIC},
{"ALH", SOF_DAI_INTEL_ALH},
{"SAI", SOF_DAI_IMX_SAI},
{"ESAI", SOF_DAI_IMX_ESAI},
{"ACP", SOF_DAI_AMD_BT},
{"ACPSP", SOF_DAI_AMD_SP},
{"ACPDMIC", SOF_DAI_AMD_DMIC},
{"AFE", SOF_DAI_MEDIATEK_AFE},
};
static enum sof_ipc_dai_type find_dai(const char *name)
{
int i;
for (i = 0; i < ARRAY_SIZE(sof_dais); i++) {
if (strcmp(name, sof_dais[i].name) == 0)
return sof_dais[i].type;
}
return SOF_DAI_INTEL_NONE;
}
/*
* Supported Frame format types and lookup, add new ones to end of list.
*/
struct sof_frame_types {
const char *name;
enum sof_ipc_frame frame;
};
static const struct sof_frame_types sof_frames[] = {
{"s16le", SOF_IPC_FRAME_S16_LE},
{"s24le", SOF_IPC_FRAME_S24_4LE},
{"s32le", SOF_IPC_FRAME_S32_LE},
{"float", SOF_IPC_FRAME_FLOAT},
};
static enum sof_ipc_frame find_format(const char *name)
{
int i;
for (i = 0; i < ARRAY_SIZE(sof_frames); i++) {
if (strcmp(name, sof_frames[i].name) == 0)
return sof_frames[i].frame;
}
/* use s32le if nothing is specified */
return SOF_IPC_FRAME_S32_LE;
}
int get_token_u32(void *elem, void *object, u32 offset)
{
struct snd_soc_tplg_vendor_value_elem *velem = elem;
u32 *val = (u32 *)((u8 *)object + offset);
*val = le32_to_cpu(velem->value);
return 0;
}
int get_token_u16(void *elem, void *object, u32 offset)
{
struct snd_soc_tplg_vendor_value_elem *velem = elem;
u16 *val = (u16 *)((u8 *)object + offset);
*val = (u16)le32_to_cpu(velem->value);
return 0;
}
int get_token_uuid(void *elem, void *object, u32 offset)
{
struct snd_soc_tplg_vendor_uuid_elem *velem = elem;
u8 *dst = (u8 *)object + offset;
memcpy(dst, velem->uuid, UUID_SIZE);
return 0;
}
int get_token_comp_format(void *elem, void *object, u32 offset)
{
u32 *val = (u32 *)((u8 *)object + offset);
*val = find_format((const char *)elem);
return 0;
}
int get_token_dai_type(void *elem, void *object, u32 offset)
{
u32 *val = (u32 *)((u8 *)object + offset);
*val = find_dai((const char *)elem);
return 0;
}
/* PCM */
static const struct sof_topology_token stream_tokens[] = {
{SOF_TKN_STREAM_PLAYBACK_COMPATIBLE_D0I3, SND_SOC_TPLG_TUPLE_TYPE_BOOL, get_token_u16,
offsetof(struct snd_sof_pcm, stream[0].d0i3_compatible)},
{SOF_TKN_STREAM_CAPTURE_COMPATIBLE_D0I3, SND_SOC_TPLG_TUPLE_TYPE_BOOL, get_token_u16,
offsetof(struct snd_sof_pcm, stream[1].d0i3_compatible)},
};
/* Leds */
static const struct sof_topology_token led_tokens[] = {
{SOF_TKN_MUTE_LED_USE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32,
offsetof(struct snd_sof_led_control, use_led)},
{SOF_TKN_MUTE_LED_DIRECTION, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32,
offsetof(struct snd_sof_led_control, direction)},
};
/**
* sof_parse_uuid_tokens - Parse multiple sets of UUID tokens
* @scomp: pointer to soc component
* @object: target ipc struct for parsed values
* @offset: offset within the object pointer
* @tokens: array of struct sof_topology_token containing the tokens to be matched
* @num_tokens: number of tokens in tokens array
* @array: source pointer to consecutive vendor arrays in topology
*
* This function parses multiple sets of string type tokens in vendor arrays
*/
static int sof_parse_uuid_tokens(struct snd_soc_component *scomp,
void *object, size_t offset,
const struct sof_topology_token *tokens, int num_tokens,
struct snd_soc_tplg_vendor_array *array)
{
struct snd_soc_tplg_vendor_uuid_elem *elem;
int found = 0;
int i, j;
/* parse element by element */
for (i = 0; i < le32_to_cpu(array->num_elems); i++) {
elem = &array->uuid[i];
/* search for token */
for (j = 0; j < num_tokens; j++) {
/* match token type */
if (tokens[j].type != SND_SOC_TPLG_TUPLE_TYPE_UUID)
continue;
/* match token id */
if (tokens[j].token != le32_to_cpu(elem->token))
continue;
/* matched - now load token */
tokens[j].get_token(elem, object,
offset + tokens[j].offset);
found++;
}
}
return found;
}
/**
* sof_copy_tuples - Parse tokens and copy them to the @tuples array
* @sdev: pointer to struct snd_sof_dev
* @array: source pointer to consecutive vendor arrays in topology
* @array_size: size of @array
* @token_id: Token ID associated with a token array
* @token_instance_num: number of times the same @token_id needs to be parsed i.e. the function
* looks for @token_instance_num of each token in the token array associated
* with the @token_id
* @tuples: tuples array to copy the matched tuples to
* @tuples_size: size of @tuples
* @num_copied_tuples: pointer to the number of copied tuples in the tuples array
*
*/
static int sof_copy_tuples(struct snd_sof_dev *sdev, struct snd_soc_tplg_vendor_array *array,
int array_size, u32 token_id, int token_instance_num,
struct snd_sof_tuple *tuples, int tuples_size, int *num_copied_tuples)
{
const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg;
const struct sof_token_info *token_list = ipc_tplg_ops->token_list;
const struct sof_topology_token *tokens;
int found = 0;
int num_tokens, asize;
int i, j;
/* nothing to do if token_list is NULL */
if (!token_list)
return 0;
if (!tuples || !num_copied_tuples) {
dev_err(sdev->dev, "Invalid tuples array\n");
return -EINVAL;
}
tokens = token_list[token_id].tokens;
num_tokens = token_list[token_id].count;
if (!tokens) {
dev_err(sdev->dev, "No token array defined for token ID: %d\n", token_id);
return -EINVAL;
}
/* check if there's space in the tuples array for new tokens */
if (*num_copied_tuples >= tuples_size) {
dev_err(sdev->dev, "No space in tuples array for new tokens from %s",
token_list[token_id].name);
return -EINVAL;
}
while (array_size > 0 && found < num_tokens * token_instance_num) {
asize = le32_to_cpu(array->size);
/* validate asize */
if (asize < 0) {
dev_err(sdev->dev, "Invalid array size 0x%x\n", asize);
return -EINVAL;
}
/* make sure there is enough data before parsing */
array_size -= asize;
if (array_size < 0) {
dev_err(sdev->dev, "Invalid array size 0x%x\n", asize);
return -EINVAL;
}
/* parse element by element */
for (i = 0; i < le32_to_cpu(array->num_elems); i++) {
/* search for token */
for (j = 0; j < num_tokens; j++) {
/* match token type */
if (!(tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_WORD ||
tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_SHORT ||
tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BYTE ||
tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BOOL ||
tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_STRING))
continue;
if (tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_STRING) {
struct snd_soc_tplg_vendor_string_elem *elem;
elem = &array->string[i];
/* match token id */
if (tokens[j].token != le32_to_cpu(elem->token))
continue;
tuples[*num_copied_tuples].token = tokens[j].token;
tuples[*num_copied_tuples].value.s = elem->string;
} else {
struct snd_soc_tplg_vendor_value_elem *elem;
elem = &array->value[i];
/* match token id */
if (tokens[j].token != le32_to_cpu(elem->token))
continue;
tuples[*num_copied_tuples].token = tokens[j].token;
tuples[*num_copied_tuples].value.v =
le32_to_cpu(elem->value);
}
found++;
(*num_copied_tuples)++;
/* stop if there's no space for any more new tuples */
if (*num_copied_tuples == tuples_size)
return 0;
}
}
/* next array */
array = (struct snd_soc_tplg_vendor_array *)((u8 *)array + asize);
}
return 0;
}
/**
* sof_parse_string_tokens - Parse multiple sets of tokens
* @scomp: pointer to soc component
* @object: target ipc struct for parsed values
* @offset: offset within the object pointer
* @tokens: array of struct sof_topology_token containing the tokens to be matched
* @num_tokens: number of tokens in tokens array
* @array: source pointer to consecutive vendor arrays in topology
*
* This function parses multiple sets of string type tokens in vendor arrays
*/
static int sof_parse_string_tokens(struct snd_soc_component *scomp,
void *object, int offset,
const struct sof_topology_token *tokens, int num_tokens,
struct snd_soc_tplg_vendor_array *array)
{
struct snd_soc_tplg_vendor_string_elem *elem;
int found = 0;
int i, j;
/* parse element by element */
for (i = 0; i < le32_to_cpu(array->num_elems); i++) {
elem = &array->string[i];
/* search for token */
for (j = 0; j < num_tokens; j++) {
/* match token type */
if (tokens[j].type != SND_SOC_TPLG_TUPLE_TYPE_STRING)
continue;
/* match token id */
if (tokens[j].token != le32_to_cpu(elem->token))
continue;
/* matched - now load token */
tokens[j].get_token(elem->string, object, offset + tokens[j].offset);
found++;
}
}
return found;
}
/**
* sof_parse_word_tokens - Parse multiple sets of tokens
* @scomp: pointer to soc component
* @object: target ipc struct for parsed values
* @offset: offset within the object pointer
* @tokens: array of struct sof_topology_token containing the tokens to be matched
* @num_tokens: number of tokens in tokens array
* @array: source pointer to consecutive vendor arrays in topology
*
* This function parses multiple sets of word type tokens in vendor arrays
*/
static int sof_parse_word_tokens(struct snd_soc_component *scomp,
void *object, int offset,
const struct sof_topology_token *tokens, int num_tokens,
struct snd_soc_tplg_vendor_array *array)
{
struct snd_soc_tplg_vendor_value_elem *elem;
int found = 0;
int i, j;
/* parse element by element */
for (i = 0; i < le32_to_cpu(array->num_elems); i++) {
elem = &array->value[i];
/* search for token */
for (j = 0; j < num_tokens; j++) {
/* match token type */
if (!(tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_WORD ||
tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_SHORT ||
tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BYTE ||
tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BOOL))
continue;
/* match token id */
if (tokens[j].token != le32_to_cpu(elem->token))
continue;
/* load token */
tokens[j].get_token(elem, object, offset + tokens[j].offset);
found++;
}
}
return found;
}
/**
* sof_parse_token_sets - Parse multiple sets of tokens
* @scomp: pointer to soc component
* @object: target ipc struct for parsed values
* @tokens: token definition array describing what tokens to parse
* @count: number of tokens in definition array
* @array: source pointer to consecutive vendor arrays in topology
* @array_size: total size of @array
* @token_instance_num: number of times the same tokens needs to be parsed i.e. the function
* looks for @token_instance_num of each token in the @tokens
* @object_size: offset to next target ipc struct with multiple sets
*
* This function parses multiple sets of tokens in vendor arrays into
* consecutive ipc structs.
*/
static int sof_parse_token_sets(struct snd_soc_component *scomp,
void *object, const struct sof_topology_token *tokens,
int count, struct snd_soc_tplg_vendor_array *array,
int array_size, int token_instance_num, size_t object_size)
{
size_t offset = 0;
int found = 0;
int total = 0;
int asize;
while (array_size > 0 && total < count * token_instance_num) {
asize = le32_to_cpu(array->size);
/* validate asize */
if (asize < 0) { /* FIXME: A zero-size array makes no sense */
dev_err(scomp->dev, "error: invalid array size 0x%x\n",
asize);
return -EINVAL;
}
/* make sure there is enough data before parsing */
array_size -= asize;
if (array_size < 0) {
dev_err(scomp->dev, "error: invalid array size 0x%x\n",
asize);
return -EINVAL;
}
/* call correct parser depending on type */
switch (le32_to_cpu(array->type)) {
case SND_SOC_TPLG_TUPLE_TYPE_UUID:
found += sof_parse_uuid_tokens(scomp, object, offset, tokens, count,
array);
break;
case SND_SOC_TPLG_TUPLE_TYPE_STRING:
found += sof_parse_string_tokens(scomp, object, offset, tokens, count,
array);
break;
case SND_SOC_TPLG_TUPLE_TYPE_BOOL:
case SND_SOC_TPLG_TUPLE_TYPE_BYTE:
case SND_SOC_TPLG_TUPLE_TYPE_WORD:
case SND_SOC_TPLG_TUPLE_TYPE_SHORT:
found += sof_parse_word_tokens(scomp, object, offset, tokens, count,
array);
break;
default:
dev_err(scomp->dev, "error: unknown token type %d\n",
array->type);
return -EINVAL;
}
/* next array */
array = (struct snd_soc_tplg_vendor_array *)((u8 *)array
+ asize);
/* move to next target struct */
if (found >= count) {
offset += object_size;
total += found;
found = 0;
}
}
return 0;
}
/**
* sof_parse_tokens - Parse one set of tokens
* @scomp: pointer to soc component
* @object: target ipc struct for parsed values
* @tokens: token definition array describing what tokens to parse
* @num_tokens: number of tokens in definition array
* @array: source pointer to consecutive vendor arrays in topology
* @array_size: total size of @array
*
* This function parses a single set of tokens in vendor arrays into
* consecutive ipc structs.
*/
static int sof_parse_tokens(struct snd_soc_component *scomp, void *object,
const struct sof_topology_token *tokens, int num_tokens,
struct snd_soc_tplg_vendor_array *array,
int array_size)
{
/*
* sof_parse_tokens is used when topology contains only a single set of
* identical tuples arrays. So additional parameters to
* sof_parse_token_sets are sets = 1 (only 1 set) and
* object_size = 0 (irrelevant).
*/
return sof_parse_token_sets(scomp, object, tokens, num_tokens, array,
array_size, 1, 0);
}
/*
* Standard Kcontrols.
*/
static int sof_control_load_volume(struct snd_soc_component *scomp,
struct snd_sof_control *scontrol,
struct snd_kcontrol_new *kc,
struct snd_soc_tplg_ctl_hdr *hdr)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
struct snd_soc_tplg_mixer_control *mc =
container_of(hdr, struct snd_soc_tplg_mixer_control, hdr);
int tlv[TLV_ITEMS];
unsigned int mask;
int ret;
/* validate topology data */
if (le32_to_cpu(mc->num_channels) > SND_SOC_TPLG_MAX_CHAN)
return -EINVAL;
/*
* If control has more than 2 channels we need to override the info. This is because even if
* ASoC layer has defined topology's max channel count to SND_SOC_TPLG_MAX_CHAN = 8, the
* pre-defined dapm control types (and related functions) creating the actual control
* restrict the channels only to mono or stereo.
*/
if (le32_to_cpu(mc->num_channels) > 2)
kc->info = snd_sof_volume_info;
scontrol->comp_id = sdev->next_comp_id;
scontrol->min_volume_step = le32_to_cpu(mc->min);
scontrol->max_volume_step = le32_to_cpu(mc->max);
scontrol->num_channels = le32_to_cpu(mc->num_channels);
scontrol->max = le32_to_cpu(mc->max);
if (le32_to_cpu(mc->max) == 1)
goto skip;
/* extract tlv data */
if (!kc->tlv.p || get_tlv_data(kc->tlv.p, tlv) < 0) {
dev_err(scomp->dev, "error: invalid TLV data\n");
return -EINVAL;
}
/* set up volume table */
ret = set_up_volume_table(scontrol, tlv, le32_to_cpu(mc->max) + 1);
if (ret < 0) {
dev_err(scomp->dev, "error: setting up volume table\n");
return ret;
}
skip:
/* set up possible led control from mixer private data */
ret = sof_parse_tokens(scomp, &scontrol->led_ctl, led_tokens,
ARRAY_SIZE(led_tokens), mc->priv.array,
le32_to_cpu(mc->priv.size));
if (ret != 0) {
dev_err(scomp->dev, "error: parse led tokens failed %d\n",
le32_to_cpu(mc->priv.size));
goto err;
}
if (scontrol->led_ctl.use_led) {
mask = scontrol->led_ctl.direction ? SNDRV_CTL_ELEM_ACCESS_MIC_LED :
SNDRV_CTL_ELEM_ACCESS_SPK_LED;
scontrol->access &= ~SNDRV_CTL_ELEM_ACCESS_LED_MASK;
scontrol->access |= mask;
kc->access &= ~SNDRV_CTL_ELEM_ACCESS_LED_MASK;
kc->access |= mask;
sdev->led_present = true;
}
dev_dbg(scomp->dev, "tplg: load kcontrol index %d chans %d\n",
scontrol->comp_id, scontrol->num_channels);
return 0;
err:
if (le32_to_cpu(mc->max) > 1)
kfree(scontrol->volume_table);
return ret;
}
static int sof_control_load_enum(struct snd_soc_component *scomp,
struct snd_sof_control *scontrol,
struct snd_kcontrol_new *kc,
struct snd_soc_tplg_ctl_hdr *hdr)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
struct snd_soc_tplg_enum_control *ec =
container_of(hdr, struct snd_soc_tplg_enum_control, hdr);
/* validate topology data */
if (le32_to_cpu(ec->num_channels) > SND_SOC_TPLG_MAX_CHAN)
return -EINVAL;
scontrol->comp_id = sdev->next_comp_id;
scontrol->num_channels = le32_to_cpu(ec->num_channels);
dev_dbg(scomp->dev, "tplg: load kcontrol index %d chans %d comp_id %d\n",
scontrol->comp_id, scontrol->num_channels, scontrol->comp_id);
return 0;
}
static int sof_control_load_bytes(struct snd_soc_component *scomp,
struct snd_sof_control *scontrol,
struct snd_kcontrol_new *kc,
struct snd_soc_tplg_ctl_hdr *hdr)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
struct snd_soc_tplg_bytes_control *control =
container_of(hdr, struct snd_soc_tplg_bytes_control, hdr);
struct soc_bytes_ext *sbe = (struct soc_bytes_ext *)kc->private_value;
size_t priv_size = le32_to_cpu(control->priv.size);
scontrol->max_size = sbe->max;
scontrol->comp_id = sdev->next_comp_id;
dev_dbg(scomp->dev, "tplg: load kcontrol index %d\n", scontrol->comp_id);
/* copy the private data */
if (priv_size > 0) {
scontrol->priv = kmemdup(control->priv.data, priv_size, GFP_KERNEL);
if (!scontrol->priv)
return -ENOMEM;
scontrol->priv_size = priv_size;
}
return 0;
}
/* external kcontrol init - used for any driver specific init */
static int sof_control_load(struct snd_soc_component *scomp, int index,
struct snd_kcontrol_new *kc,
struct snd_soc_tplg_ctl_hdr *hdr)
{
struct soc_mixer_control *sm;
struct soc_bytes_ext *sbe;
struct soc_enum *se;
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
struct snd_soc_dobj *dobj;
struct snd_sof_control *scontrol;
int ret;
dev_dbg(scomp->dev, "tplg: load control type %d name : %s\n",
hdr->type, hdr->name);
scontrol = kzalloc(sizeof(*scontrol), GFP_KERNEL);
if (!scontrol)
return -ENOMEM;
scontrol->name = kstrdup(hdr->name, GFP_KERNEL);
if (!scontrol->name)
return -ENOMEM;
scontrol->scomp = scomp;
scontrol->access = kc->access;
scontrol->info_type = le32_to_cpu(hdr->ops.info);
scontrol->index = kc->index;
switch (le32_to_cpu(hdr->ops.info)) {
case SND_SOC_TPLG_CTL_VOLSW:
case SND_SOC_TPLG_CTL_VOLSW_SX:
case SND_SOC_TPLG_CTL_VOLSW_XR_SX:
sm = (struct soc_mixer_control *)kc->private_value;
dobj = &sm->dobj;
ret = sof_control_load_volume(scomp, scontrol, kc, hdr);
break;
case SND_SOC_TPLG_CTL_BYTES:
sbe = (struct soc_bytes_ext *)kc->private_value;
dobj = &sbe->dobj;
ret = sof_control_load_bytes(scomp, scontrol, kc, hdr);
break;
case SND_SOC_TPLG_CTL_ENUM:
case SND_SOC_TPLG_CTL_ENUM_VALUE:
se = (struct soc_enum *)kc->private_value;
dobj = &se->dobj;
ret = sof_control_load_enum(scomp, scontrol, kc, hdr);
break;
case SND_SOC_TPLG_CTL_RANGE:
case SND_SOC_TPLG_CTL_STROBE:
case SND_SOC_TPLG_DAPM_CTL_VOLSW:
case SND_SOC_TPLG_DAPM_CTL_ENUM_DOUBLE:
case SND_SOC_TPLG_DAPM_CTL_ENUM_VIRT:
case SND_SOC_TPLG_DAPM_CTL_ENUM_VALUE:
case SND_SOC_TPLG_DAPM_CTL_PIN:
default:
dev_warn(scomp->dev, "control type not supported %d:%d:%d\n",
hdr->ops.get, hdr->ops.put, hdr->ops.info);
kfree(scontrol->name);
kfree(scontrol);
return 0;
}
if (ret < 0) {
kfree(scontrol->name);
kfree(scontrol);
return ret;
}
scontrol->led_ctl.led_value = -1;
dobj->private = scontrol;
list_add(&scontrol->list, &sdev->kcontrol_list);
return 0;
}
static int sof_control_unload(struct snd_soc_component *scomp,
struct snd_soc_dobj *dobj)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg;
struct snd_sof_control *scontrol = dobj->private;
int ret = 0;
dev_dbg(scomp->dev, "tplg: unload control name : %s\n", scontrol->name);
if (ipc_tplg_ops->control_free) {
ret = ipc_tplg_ops->control_free(sdev, scontrol);
if (ret < 0)
dev_err(scomp->dev, "failed to free control: %s\n", scontrol->name);
}
/* free all data before returning in case of error too */
kfree(scontrol->ipc_control_data);
kfree(scontrol->priv);
kfree(scontrol->name);
list_del(&scontrol->list);
kfree(scontrol);
return ret;
}
/*
* DAI Topology
*/
static int sof_connect_dai_widget(struct snd_soc_component *scomp,
struct snd_soc_dapm_widget *w,
struct snd_soc_tplg_dapm_widget *tw,
struct snd_sof_dai *dai)
{
struct snd_soc_card *card = scomp->card;
struct snd_soc_pcm_runtime *rtd;
struct snd_soc_dai *cpu_dai;
int i;
list_for_each_entry(rtd, &card->rtd_list, list) {
dev_vdbg(scomp->dev, "tplg: check widget: %s stream: %s dai stream: %s\n",
w->name, w->sname, rtd->dai_link->stream_name);
if (!w->sname || !rtd->dai_link->stream_name)
continue;
/* does stream match DAI link ? */
if (strcmp(w->sname, rtd->dai_link->stream_name))
continue;
switch (w->id) {
case snd_soc_dapm_dai_out:
for_each_rtd_cpu_dais(rtd, i, cpu_dai) {
/*
* Please create DAI widget in the right order
* to ensure BE will connect to the right DAI
* widget.
*/
if (!cpu_dai->capture_widget) {
cpu_dai->capture_widget = w;
break;
}
}
if (i == rtd->num_cpus) {
dev_err(scomp->dev, "error: can't find BE for DAI %s\n",
w->name);
return -EINVAL;
}
dai->name = rtd->dai_link->name;
dev_dbg(scomp->dev, "tplg: connected widget %s -> DAI link %s\n",
w->name, rtd->dai_link->name);
break;
case snd_soc_dapm_dai_in:
for_each_rtd_cpu_dais(rtd, i, cpu_dai) {
/*
* Please create DAI widget in the right order
* to ensure BE will connect to the right DAI
* widget.
*/
if (!cpu_dai->playback_widget) {
cpu_dai->playback_widget = w;
break;
}
}
if (i == rtd->num_cpus) {
dev_err(scomp->dev, "error: can't find BE for DAI %s\n",
w->name);
return -EINVAL;
}
dai->name = rtd->dai_link->name;
dev_dbg(scomp->dev, "tplg: connected widget %s -> DAI link %s\n",
w->name, rtd->dai_link->name);
break;
default:
break;
}
}
/* check we have a connection */
if (!dai->name) {
dev_err(scomp->dev, "error: can't connect DAI %s stream %s\n",
w->name, w->sname);
return -EINVAL;
}
return 0;
}
/* bind PCM ID to host component ID */
static int spcm_bind(struct snd_soc_component *scomp, struct snd_sof_pcm *spcm,
int dir)
{
struct snd_sof_widget *host_widget;
host_widget = snd_sof_find_swidget_sname(scomp,
spcm->pcm.caps[dir].name,
dir);
if (!host_widget) {
dev_err(scomp->dev, "can't find host comp to bind pcm\n");
return -EINVAL;
}
spcm->stream[dir].comp_id = host_widget->comp_id;
return 0;
}
static int sof_widget_parse_tokens(struct snd_soc_component *scomp, struct snd_sof_widget *swidget,
struct snd_soc_tplg_dapm_widget *tw,
enum sof_tokens *object_token_list, int count)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg;
const struct sof_token_info *token_list = ipc_tplg_ops->token_list;
struct snd_soc_tplg_private *private = &tw->priv;
int num_tuples = 0;
size_t size;
int ret, i;
if (count > 0 && !object_token_list) {
dev_err(scomp->dev, "No token list for widget %s\n", swidget->widget->name);
return -EINVAL;
}
/* calculate max size of tuples array */
for (i = 0; i < count; i++)
num_tuples += token_list[object_token_list[i]].count;
/* allocate memory for tuples array */
size = sizeof(struct snd_sof_tuple) * num_tuples;
swidget->tuples = kzalloc(size, GFP_KERNEL);
if (!swidget->tuples)
return -ENOMEM;
/* parse token list for widget */
for (i = 0; i < count; i++) {
if (object_token_list[i] >= SOF_TOKEN_COUNT) {
dev_err(scomp->dev, "Invalid token id %d for widget %s\n",
object_token_list[i], swidget->widget->name);
ret = -EINVAL;
goto err;
}
/* parse and save UUID in swidget */
if (object_token_list[i] == SOF_COMP_EXT_TOKENS) {
ret = sof_parse_tokens(scomp, swidget,
token_list[object_token_list[i]].tokens,
token_list[object_token_list[i]].count,
private->array, le32_to_cpu(private->size));
if (ret < 0) {
dev_err(scomp->dev, "Failed parsing %s for widget %s\n",
token_list[object_token_list[i]].name,
swidget->widget->name);
goto err;
}
continue;
}
/* copy one set of tuples per token ID into swidget->tuples */
ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size),
object_token_list[i], 1, swidget->tuples,
num_tuples, &swidget->num_tuples);
if (ret < 0) {
dev_err(scomp->dev, "Failed parsing %s for widget %s err: %d\n",
token_list[object_token_list[i]].name, swidget->widget->name, ret);
goto err;
}
}
return 0;
err:
kfree(swidget->tuples);
return ret;
}
static int sof_get_token_value(u32 token_id, struct snd_sof_tuple *tuples, int num_tuples)
{
int i;
if (!tuples)
return -EINVAL;
for (i = 0; i < num_tuples; i++) {
if (tuples[i].token == token_id)
return tuples[i].value.v;
}
return -EINVAL;
}
/* external widget init - used for any driver specific init */
static int sof_widget_ready(struct snd_soc_component *scomp, int index,
struct snd_soc_dapm_widget *w,
struct snd_soc_tplg_dapm_widget *tw)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg;
const struct sof_ipc_tplg_widget_ops *widget_ops = ipc_tplg_ops->widget;
struct snd_sof_widget *swidget;
struct snd_sof_dai *dai;
enum sof_tokens *token_list;
int token_list_size;
int ret = 0;
swidget = kzalloc(sizeof(*swidget), GFP_KERNEL);
if (!swidget)
return -ENOMEM;
swidget->scomp = scomp;
swidget->widget = w;
swidget->comp_id = sdev->next_comp_id++;
swidget->complete = 0;
swidget->id = w->id;
swidget->pipeline_id = index;
swidget->private = NULL;
dev_dbg(scomp->dev, "tplg: ready widget id %d pipe %d type %d name : %s stream %s\n",
swidget->comp_id, index, swidget->id, tw->name,
strnlen(tw->sname, SNDRV_CTL_ELEM_ID_NAME_MAXLEN) > 0
? tw->sname : "none");
token_list = widget_ops[w->id].token_list;
token_list_size = widget_ops[w->id].token_list_size;
/* handle any special case widgets */
switch (w->id) {
case snd_soc_dapm_dai_in:
case snd_soc_dapm_dai_out:
dai = kzalloc(sizeof(*dai), GFP_KERNEL);
if (!dai) {
kfree(swidget);
return -ENOMEM;
}
ret = sof_widget_parse_tokens(scomp, swidget, tw, token_list, token_list_size);
if (!ret)
ret = sof_connect_dai_widget(scomp, w, tw, dai);
if (ret < 0) {
kfree(dai);
break;
}
list_add(&dai->list, &sdev->dai_list);
swidget->private = dai;
break;
case snd_soc_dapm_effect:
/* check we have some tokens - we need at least process type */
if (le32_to_cpu(tw->priv.size) == 0) {
dev_err(scomp->dev, "error: process tokens not found\n");
ret = -EINVAL;
break;
}
ret = sof_widget_parse_tokens(scomp, swidget, tw, token_list, token_list_size);
break;
case snd_soc_dapm_pga:
if (!le32_to_cpu(tw->num_kcontrols)) {
dev_err(scomp->dev, "invalid kcontrol count %d for volume\n",
tw->num_kcontrols);
ret = -EINVAL;
break;
}
fallthrough;
case snd_soc_dapm_mixer:
case snd_soc_dapm_buffer:
case snd_soc_dapm_scheduler:
case snd_soc_dapm_aif_out:
case snd_soc_dapm_aif_in:
case snd_soc_dapm_src:
case snd_soc_dapm_asrc:
case snd_soc_dapm_siggen:
case snd_soc_dapm_mux:
case snd_soc_dapm_demux:
ret = sof_widget_parse_tokens(scomp, swidget, tw, token_list, token_list_size);
break;
case snd_soc_dapm_switch:
case snd_soc_dapm_dai_link:
case snd_soc_dapm_kcontrol:
default:
dev_dbg(scomp->dev, "widget type %d name %s not handled\n", swidget->id, tw->name);
break;
}
if (sof_debug_check_flag(SOF_DBG_DISABLE_MULTICORE)) {
swidget->core = SOF_DSP_PRIMARY_CORE;
} else {
int core = sof_get_token_value(SOF_TKN_COMP_CORE_ID, swidget->tuples,
swidget->num_tuples);
if (core >= 0)
swidget->core = core;
}
/* check token parsing reply */
if (ret < 0) {
dev_err(scomp->dev,
"error: failed to add widget id %d type %d name : %s stream %s\n",
tw->shift, swidget->id, tw->name,
strnlen(tw->sname, SNDRV_CTL_ELEM_ID_NAME_MAXLEN) > 0
? tw->sname : "none");
kfree(swidget);
return ret;
}
/* bind widget to external event */
if (tw->event_type) {
if (widget_ops[w->id].bind_event) {
ret = widget_ops[w->id].bind_event(scomp, swidget,
le16_to_cpu(tw->event_type));
if (ret) {
dev_err(scomp->dev, "widget event binding failed for %s\n",
swidget->widget->name);
kfree(swidget->private);
kfree(swidget->tuples);
kfree(swidget);
return ret;
}
}
}
w->dobj.private = swidget;
list_add(&swidget->list, &sdev->widget_list);
return ret;
}
static int sof_route_unload(struct snd_soc_component *scomp,
struct snd_soc_dobj *dobj)
{
struct snd_sof_route *sroute;
sroute = dobj->private;
if (!sroute)
return 0;
/* free sroute and its private data */
kfree(sroute->private);
list_del(&sroute->list);
kfree(sroute);
return 0;
}
static int sof_widget_unload(struct snd_soc_component *scomp,
struct snd_soc_dobj *dobj)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg;
const struct sof_ipc_tplg_widget_ops *widget_ops = ipc_tplg_ops->widget;
const struct snd_kcontrol_new *kc;
struct snd_soc_dapm_widget *widget;
struct snd_sof_control *scontrol;
struct snd_sof_widget *swidget;
struct soc_mixer_control *sm;
struct soc_bytes_ext *sbe;
struct snd_sof_dai *dai;
struct soc_enum *se;
int ret = 0;
int i;
swidget = dobj->private;
if (!swidget)
return 0;
widget = swidget->widget;
switch (swidget->id) {
case snd_soc_dapm_dai_in:
case snd_soc_dapm_dai_out:
dai = swidget->private;
if (dai)
list_del(&dai->list);
break;
default:
break;
}
for (i = 0; i < widget->num_kcontrols; i++) {
kc = &widget->kcontrol_news[i];
switch (widget->dobj.widget.kcontrol_type[i]) {
case SND_SOC_TPLG_TYPE_MIXER:
sm = (struct soc_mixer_control *)kc->private_value;
scontrol = sm->dobj.private;
if (sm->max > 1)
kfree(scontrol->volume_table);
break;
case SND_SOC_TPLG_TYPE_ENUM:
se = (struct soc_enum *)kc->private_value;
scontrol = se->dobj.private;
break;
case SND_SOC_TPLG_TYPE_BYTES:
sbe = (struct soc_bytes_ext *)kc->private_value;
scontrol = sbe->dobj.private;
break;
default:
dev_warn(scomp->dev, "unsupported kcontrol_type\n");
goto out;
}
kfree(scontrol->ipc_control_data);
list_del(&scontrol->list);
kfree(scontrol->name);
kfree(scontrol);
}
out:
/* free IPC related data */
if (widget_ops[swidget->id].ipc_free)
widget_ops[swidget->id].ipc_free(swidget);
kfree(swidget->tuples);
/* remove and free swidget object */
list_del(&swidget->list);
kfree(swidget);
return ret;
}
/*
* DAI HW configuration.
*/
/* FE DAI - used for any driver specific init */
static int sof_dai_load(struct snd_soc_component *scomp, int index,
struct snd_soc_dai_driver *dai_drv,
struct snd_soc_tplg_pcm *pcm, struct snd_soc_dai *dai)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
struct snd_soc_tplg_stream_caps *caps;
struct snd_soc_tplg_private *private = &pcm->priv;
struct snd_sof_pcm *spcm;
int stream;
int ret;
/* nothing to do for BEs atm */
if (!pcm)
return 0;
spcm = kzalloc(sizeof(*spcm), GFP_KERNEL);
if (!spcm)
return -ENOMEM;
spcm->scomp = scomp;
for_each_pcm_streams(stream) {
spcm->stream[stream].comp_id = COMP_ID_UNASSIGNED;
if (pcm->compress)
snd_sof_compr_init_elapsed_work(&spcm->stream[stream].period_elapsed_work);
else
snd_sof_pcm_init_elapsed_work(&spcm->stream[stream].period_elapsed_work);
}
spcm->pcm = *pcm;
dev_dbg(scomp->dev, "tplg: load pcm %s\n", pcm->dai_name);
dai_drv->dobj.private = spcm;
list_add(&spcm->list, &sdev->pcm_list);
ret = sof_parse_tokens(scomp, spcm, stream_tokens,
ARRAY_SIZE(stream_tokens), private->array,
le32_to_cpu(private->size));
if (ret) {
dev_err(scomp->dev, "error: parse stream tokens failed %d\n",
le32_to_cpu(private->size));
return ret;
}
/* do we need to allocate playback PCM DMA pages */
if (!spcm->pcm.playback)
goto capture;
stream = SNDRV_PCM_STREAM_PLAYBACK;
dev_vdbg(scomp->dev, "tplg: pcm %s stream tokens: playback d0i3:%d\n",
spcm->pcm.pcm_name, spcm->stream[stream].d0i3_compatible);
caps = &spcm->pcm.caps[stream];
/* allocate playback page table buffer */
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, sdev->dev,
PAGE_SIZE, &spcm->stream[stream].page_table);
if (ret < 0) {
dev_err(scomp->dev, "error: can't alloc page table for %s %d\n",
caps->name, ret);
return ret;
}
/* bind pcm to host comp */
ret = spcm_bind(scomp, spcm, stream);
if (ret) {
dev_err(scomp->dev,
"error: can't bind pcm to host\n");
goto free_playback_tables;
}
capture:
stream = SNDRV_PCM_STREAM_CAPTURE;
/* do we need to allocate capture PCM DMA pages */
if (!spcm->pcm.capture)
return ret;
dev_vdbg(scomp->dev, "tplg: pcm %s stream tokens: capture d0i3:%d\n",
spcm->pcm.pcm_name, spcm->stream[stream].d0i3_compatible);
caps = &spcm->pcm.caps[stream];
/* allocate capture page table buffer */
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, sdev->dev,
PAGE_SIZE, &spcm->stream[stream].page_table);
if (ret < 0) {
dev_err(scomp->dev, "error: can't alloc page table for %s %d\n",
caps->name, ret);
goto free_playback_tables;
}
/* bind pcm to host comp */
ret = spcm_bind(scomp, spcm, stream);
if (ret) {
dev_err(scomp->dev,
"error: can't bind pcm to host\n");
snd_dma_free_pages(&spcm->stream[stream].page_table);
goto free_playback_tables;
}
return ret;
free_playback_tables:
if (spcm->pcm.playback)
snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_PLAYBACK].page_table);
return ret;
}
static int sof_dai_unload(struct snd_soc_component *scomp,
struct snd_soc_dobj *dobj)
{
struct snd_sof_pcm *spcm = dobj->private;
/* free PCM DMA pages */
if (spcm->pcm.playback)
snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_PLAYBACK].page_table);
if (spcm->pcm.capture)
snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_CAPTURE].page_table);
/* remove from list and free spcm */
list_del(&spcm->list);
kfree(spcm);
return 0;
}
static const struct sof_topology_token common_dai_link_tokens[] = {
{SOF_TKN_DAI_TYPE, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_dai_type,
offsetof(struct snd_sof_dai_link, type)},
};
/* DAI link - used for any driver specific init */
static int sof_link_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link,
struct snd_soc_tplg_link_config *cfg)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg;
const struct sof_token_info *token_list = ipc_tplg_ops->token_list;
struct snd_soc_tplg_private *private = &cfg->priv;
struct snd_sof_dai_link *slink;
size_t size;
u32 token_id = 0;
int num_tuples = 0;
int ret, num_sets;
if (!link->platforms) {
dev_err(scomp->dev, "error: no platforms\n");
return -EINVAL;
}
link->platforms->name = dev_name(scomp->dev);
/*
* Set nonatomic property for FE dai links as their trigger action
* involves IPC's.
*/
if (!link->no_pcm) {
link->nonatomic = true;
/*
* set default trigger order for all links. Exceptions to
* the rule will be handled in sof_pcm_dai_link_fixup()
* For playback, the sequence is the following: start FE,
* start BE, stop BE, stop FE; for Capture the sequence is
* inverted start BE, start FE, stop FE, stop BE
*/
link->trigger[SNDRV_PCM_STREAM_PLAYBACK] =
SND_SOC_DPCM_TRIGGER_PRE;
link->trigger[SNDRV_PCM_STREAM_CAPTURE] =
SND_SOC_DPCM_TRIGGER_POST;
/* nothing more to do for FE dai links */
return 0;
}
/* check we have some tokens - we need at least DAI type */
if (le32_to_cpu(private->size) == 0) {
dev_err(scomp->dev, "error: expected tokens for DAI, none found\n");
return -EINVAL;
}
slink = kzalloc(sizeof(*slink), GFP_KERNEL);
if (!slink)
return -ENOMEM;
slink->num_hw_configs = le32_to_cpu(cfg->num_hw_configs);
slink->hw_configs = kmemdup(cfg->hw_config,
sizeof(*slink->hw_configs) * slink->num_hw_configs,
GFP_KERNEL);
if (!slink->hw_configs) {
kfree(slink);
return -ENOMEM;
}
slink->default_hw_cfg_id = le32_to_cpu(cfg->default_hw_config_id);
slink->link = link;
dev_dbg(scomp->dev, "tplg: %d hw_configs found, default id: %d for dai link %s!\n",
slink->num_hw_configs, slink->default_hw_cfg_id, link->name);
ret = sof_parse_tokens(scomp, slink, common_dai_link_tokens,
ARRAY_SIZE(common_dai_link_tokens),
private->array, le32_to_cpu(private->size));
if (ret < 0) {
dev_err(scomp->dev, "Failed tp parse common DAI link tokens\n");
kfree(slink->hw_configs);
kfree(slink);
return ret;
}
if (!token_list)
goto out;
/* calculate size of tuples array */
num_tuples += token_list[SOF_DAI_LINK_TOKENS].count;
num_sets = slink->num_hw_configs;
switch (slink->type) {
case SOF_DAI_INTEL_SSP:
token_id = SOF_SSP_TOKENS;
num_tuples += token_list[SOF_SSP_TOKENS].count * slink->num_hw_configs;
break;
case SOF_DAI_INTEL_DMIC:
token_id = SOF_DMIC_TOKENS;
num_tuples += token_list[SOF_DMIC_TOKENS].count;
/* Allocate memory for max PDM controllers */
num_tuples += token_list[SOF_DMIC_PDM_TOKENS].count * SOF_DAI_INTEL_DMIC_NUM_CTRL;
break;
case SOF_DAI_INTEL_HDA:
token_id = SOF_HDA_TOKENS;
num_tuples += token_list[SOF_HDA_TOKENS].count;
break;
case SOF_DAI_INTEL_ALH:
token_id = SOF_ALH_TOKENS;
num_tuples += token_list[SOF_ALH_TOKENS].count;
break;
case SOF_DAI_IMX_SAI:
token_id = SOF_SAI_TOKENS;
num_tuples += token_list[SOF_SAI_TOKENS].count;
break;
case SOF_DAI_IMX_ESAI:
token_id = SOF_ESAI_TOKENS;
num_tuples += token_list[SOF_ESAI_TOKENS].count;
break;
case SOF_DAI_MEDIATEK_AFE:
token_id = SOF_AFE_TOKENS;
num_tuples += token_list[SOF_AFE_TOKENS].count;
break;
default:
break;
}
/* allocate memory for tuples array */
size = sizeof(struct snd_sof_tuple) * num_tuples;
slink->tuples = kzalloc(size, GFP_KERNEL);
if (!slink->tuples) {
kfree(slink->hw_configs);
kfree(slink);
return -ENOMEM;
}
/* parse one set of DAI link tokens */
ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size),
SOF_DAI_LINK_TOKENS, 1, slink->tuples,
num_tuples, &slink->num_tuples);
if (ret < 0) {
dev_err(scomp->dev, "failed to parse %s for dai link %s\n",
token_list[SOF_DAI_LINK_TOKENS].name, link->name);
goto err;
}
/* nothing more to do if there are no DAI type-specific tokens defined */
if (!token_id || !token_list[token_id].tokens)
goto out;
/* parse "num_sets" sets of DAI-specific tokens */
ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size),
token_id, num_sets, slink->tuples, num_tuples, &slink->num_tuples);
if (ret < 0) {
dev_err(scomp->dev, "failed to parse %s for dai link %s\n",
token_list[token_id].name, link->name);
goto err;
}
/* for DMIC, also parse all sets of DMIC PDM tokens based on active PDM count */
if (token_id == SOF_DMIC_TOKENS) {
num_sets = sof_get_token_value(SOF_TKN_INTEL_DMIC_NUM_PDM_ACTIVE,
slink->tuples, slink->num_tuples);
if (num_sets < 0) {
dev_err(sdev->dev, "Invalid active PDM count for %s\n", link->name);
ret = num_sets;
goto err;
}
ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size),
SOF_DMIC_PDM_TOKENS, num_sets, slink->tuples,
num_tuples, &slink->num_tuples);
if (ret < 0) {
dev_err(scomp->dev, "failed to parse %s for dai link %s\n",
token_list[SOF_DMIC_PDM_TOKENS].name, link->name);
goto err;
}
}
out:
link->dobj.private = slink;
list_add(&slink->list, &sdev->dai_link_list);
return 0;
err:
kfree(slink->tuples);
kfree(slink->hw_configs);
kfree(slink);
return ret;
}
static int sof_link_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj)
{
struct snd_sof_dai_link *slink = dobj->private;
if (!slink)
return 0;
kfree(slink->tuples);
list_del(&slink->list);
kfree(slink->hw_configs);
kfree(slink);
dobj->private = NULL;
return 0;
}
/* DAI link - used for any driver specific init */
static int sof_route_load(struct snd_soc_component *scomp, int index,
struct snd_soc_dapm_route *route)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
struct snd_sof_widget *source_swidget, *sink_swidget;
struct snd_soc_dobj *dobj = &route->dobj;
struct snd_sof_route *sroute;
int ret = 0;
/* allocate memory for sroute and connect */
sroute = kzalloc(sizeof(*sroute), GFP_KERNEL);
if (!sroute)
return -ENOMEM;
sroute->scomp = scomp;
dev_dbg(scomp->dev, "sink %s control %s source %s\n",
route->sink, route->control ? route->control : "none",
route->source);
/* source component */
source_swidget = snd_sof_find_swidget(scomp, (char *)route->source);
if (!source_swidget) {
dev_err(scomp->dev, "error: source %s not found\n",
route->source);
ret = -EINVAL;
goto err;
}
/*
* Virtual widgets of type output/out_drv may be added in topology
* for compatibility. These are not handled by the FW.
* So, don't send routes whose source/sink widget is of such types
* to the DSP.
*/
if (source_swidget->id == snd_soc_dapm_out_drv ||
source_swidget->id == snd_soc_dapm_output)
goto err;
/* sink component */
sink_swidget = snd_sof_find_swidget(scomp, (char *)route->sink);
if (!sink_swidget) {
dev_err(scomp->dev, "error: sink %s not found\n",
route->sink);
ret = -EINVAL;
goto err;
}
/*
* Don't send routes whose sink widget is of type
* output or out_drv to the DSP
*/
if (sink_swidget->id == snd_soc_dapm_out_drv ||
sink_swidget->id == snd_soc_dapm_output)
goto err;
sroute->route = route;
dobj->private = sroute;
sroute->src_widget = source_swidget;
sroute->sink_widget = sink_swidget;
/* add route to route list */
list_add(&sroute->list, &sdev->route_list);
return 0;
err:
kfree(sroute);
return ret;
}
/**
* sof_set_pipe_widget - Set pipe_widget for a component
* @sdev: pointer to struct snd_sof_dev
* @pipe_widget: pointer to struct snd_sof_widget of type snd_soc_dapm_scheduler
* @swidget: pointer to struct snd_sof_widget that has the same pipeline ID as @pipe_widget
*
* Return: 0 if successful, -EINVAL on error.
* The function checks if @swidget is associated with any volatile controls. If so, setting
* the dynamic_pipeline_widget is disallowed.
*/
static int sof_set_pipe_widget(struct snd_sof_dev *sdev, struct snd_sof_widget *pipe_widget,
struct snd_sof_widget *swidget)
{
struct snd_sof_control *scontrol;
if (pipe_widget->dynamic_pipeline_widget) {
/* dynamic widgets cannot have volatile kcontrols */
list_for_each_entry(scontrol, &sdev->kcontrol_list, list)
if (scontrol->comp_id == swidget->comp_id &&
(scontrol->access & SNDRV_CTL_ELEM_ACCESS_VOLATILE)) {
dev_err(sdev->dev,
"error: volatile control found for dynamic widget %s\n",
swidget->widget->name);
return -EINVAL;
}
}
/* set the pipe_widget and apply the dynamic_pipeline_widget_flag */
swidget->pipe_widget = pipe_widget;
swidget->dynamic_pipeline_widget = pipe_widget->dynamic_pipeline_widget;
return 0;
}
/* completion - called at completion of firmware loading */
static int sof_complete(struct snd_soc_component *scomp)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
struct snd_sof_widget *swidget, *comp_swidget;
const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg;
const struct sof_ipc_tplg_widget_ops *widget_ops = ipc_tplg_ops->widget;
struct snd_sof_control *scontrol;
int ret;
/* first update all control IPC structures based on the IPC version */
if (ipc_tplg_ops->control_setup)
list_for_each_entry(scontrol, &sdev->kcontrol_list, list) {
ret = ipc_tplg_ops->control_setup(sdev, scontrol);
if (ret < 0) {
dev_err(sdev->dev, "failed updating IPC struct for control %s\n",
scontrol->name);
return ret;
}
}
/*
* then update all widget IPC structures. If any of the ipc_setup callbacks fail, the
* topology will be removed and all widgets will be unloaded resulting in freeing all
* associated memories.
*/
list_for_each_entry(swidget, &sdev->widget_list, list) {
if (widget_ops[swidget->id].ipc_setup) {
ret = widget_ops[swidget->id].ipc_setup(swidget);
if (ret < 0) {
dev_err(sdev->dev, "failed updating IPC struct for %s\n",
swidget->widget->name);
return ret;
}
}
}
/* set the pipe_widget and apply the dynamic_pipeline_widget_flag */
list_for_each_entry(swidget, &sdev->widget_list, list) {
switch (swidget->id) {
case snd_soc_dapm_scheduler:
/*
* Apply the dynamic_pipeline_widget flag and set the pipe_widget field
* for all widgets that have the same pipeline ID as the scheduler widget
*/
list_for_each_entry(comp_swidget, &sdev->widget_list, list)
if (comp_swidget->pipeline_id == swidget->pipeline_id) {
ret = sof_set_pipe_widget(sdev, swidget, comp_swidget);
if (ret < 0)
return ret;
}
break;
default:
break;
}
}
/* verify topology components loading including dynamic pipelines */
if (sof_debug_check_flag(SOF_DBG_VERIFY_TPLG)) {
if (ipc_tplg_ops->set_up_all_pipelines && ipc_tplg_ops->tear_down_all_pipelines) {
ret = ipc_tplg_ops->set_up_all_pipelines(sdev, true);
if (ret < 0) {
dev_err(sdev->dev, "Failed to set up all topology pipelines: %d\n",
ret);
return ret;
}
ret = ipc_tplg_ops->tear_down_all_pipelines(sdev, true);
if (ret < 0) {
dev_err(sdev->dev, "Failed to tear down topology pipelines: %d\n",
ret);
return ret;
}
}
}
/* set up static pipelines */
if (ipc_tplg_ops->set_up_all_pipelines)
return ipc_tplg_ops->set_up_all_pipelines(sdev, false);
return 0;
}
/* manifest - optional to inform component of manifest */
static int sof_manifest(struct snd_soc_component *scomp, int index,
struct snd_soc_tplg_manifest *man)
{
u32 size;
u32 abi_version;
size = le32_to_cpu(man->priv.size);
/* backward compatible with tplg without ABI info */
if (!size) {
dev_dbg(scomp->dev, "No topology ABI info\n");
return 0;
}
if (size != SOF_TPLG_ABI_SIZE) {
dev_err(scomp->dev, "error: invalid topology ABI size\n");
return -EINVAL;
}
dev_info(scomp->dev,
"Topology: ABI %d:%d:%d Kernel ABI %d:%d:%d\n",
man->priv.data[0], man->priv.data[1],
man->priv.data[2], SOF_ABI_MAJOR, SOF_ABI_MINOR,
SOF_ABI_PATCH);
abi_version = SOF_ABI_VER(man->priv.data[0],
man->priv.data[1],
man->priv.data[2]);
if (SOF_ABI_VERSION_INCOMPATIBLE(SOF_ABI_VERSION, abi_version)) {
dev_err(scomp->dev, "error: incompatible topology ABI version\n");
return -EINVAL;
}
if (SOF_ABI_VERSION_MINOR(abi_version) > SOF_ABI_MINOR) {
if (!IS_ENABLED(CONFIG_SND_SOC_SOF_STRICT_ABI_CHECKS)) {
dev_warn(scomp->dev, "warn: topology ABI is more recent than kernel\n");
} else {
dev_err(scomp->dev, "error: topology ABI is more recent than kernel\n");
return -EINVAL;
}
}
return 0;
}
/* vendor specific kcontrol handlers available for binding */
static const struct snd_soc_tplg_kcontrol_ops sof_io_ops[] = {
{SOF_TPLG_KCTL_VOL_ID, snd_sof_volume_get, snd_sof_volume_put},
{SOF_TPLG_KCTL_BYTES_ID, snd_sof_bytes_get, snd_sof_bytes_put},
{SOF_TPLG_KCTL_ENUM_ID, snd_sof_enum_get, snd_sof_enum_put},
{SOF_TPLG_KCTL_SWITCH_ID, snd_sof_switch_get, snd_sof_switch_put},
};
/* vendor specific bytes ext handlers available for binding */
static const struct snd_soc_tplg_bytes_ext_ops sof_bytes_ext_ops[] = {
{SOF_TPLG_KCTL_BYTES_ID, snd_sof_bytes_ext_get, snd_sof_bytes_ext_put},
{SOF_TPLG_KCTL_BYTES_VOLATILE_RO, snd_sof_bytes_ext_volatile_get},
};
static struct snd_soc_tplg_ops sof_tplg_ops = {
/* external kcontrol init - used for any driver specific init */
.control_load = sof_control_load,
.control_unload = sof_control_unload,
/* external kcontrol init - used for any driver specific init */
.dapm_route_load = sof_route_load,
.dapm_route_unload = sof_route_unload,
/* external widget init - used for any driver specific init */
/* .widget_load is not currently used */
.widget_ready = sof_widget_ready,
.widget_unload = sof_widget_unload,
/* FE DAI - used for any driver specific init */
.dai_load = sof_dai_load,
.dai_unload = sof_dai_unload,
/* DAI link - used for any driver specific init */
.link_load = sof_link_load,
.link_unload = sof_link_unload,
/* completion - called at completion of firmware loading */
.complete = sof_complete,
/* manifest - optional to inform component of manifest */
.manifest = sof_manifest,
/* vendor specific kcontrol handlers available for binding */
.io_ops = sof_io_ops,
.io_ops_count = ARRAY_SIZE(sof_io_ops),
/* vendor specific bytes ext handlers available for binding */
.bytes_ext_ops = sof_bytes_ext_ops,
.bytes_ext_ops_count = ARRAY_SIZE(sof_bytes_ext_ops),
};
int snd_sof_load_topology(struct snd_soc_component *scomp, const char *file)
{
struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp);
const struct firmware *fw;
int ret;
dev_dbg(scomp->dev, "loading topology:%s\n", file);
ret = request_firmware(&fw, file, scomp->dev);
if (ret < 0) {
dev_err(scomp->dev, "error: tplg request firmware %s failed err: %d\n",
file, ret);
dev_err(scomp->dev,
"you may need to download the firmware from https://github.com/thesofproject/sof-bin/\n");
return ret;
}
ret = snd_soc_tplg_component_load(scomp, &sof_tplg_ops, fw);
if (ret < 0) {
dev_err(scomp->dev, "error: tplg component load failed %d\n",
ret);
ret = -EINVAL;
}
release_firmware(fw);
if (ret >= 0 && sdev->led_present)
ret = snd_ctl_led_request();
return ret;
}
EXPORT_SYMBOL(snd_sof_load_topology);